
2 THE LINEAR REGRESSION MODEL

2 The Linear Regression Model

The following statistical model is assumed as a means to provide error estimates for the LS line,
regression coefficients, and predictions. Assume that the data (Xi, Yi), i = 1, ..., n are a sample of
(X, Y ) values from the population of interest, and

Visual representation of regression model with population regression line
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1. The mean in the population of all responses Y at a given X value (called µY |X by SW) falls
on a straight line, β0 + β1X, called the population regression line.

2. The variation among responses Y at a given X value is the same for each X, and is denoted
by σ2

Y |X .

3. The population of responses Y at a given X is normally distributed.

4. The pairs (Xi, Yi) are a random sample from the population. Alternatively, we can think that
the Xis were fixed by the experimenter, and that the Yi are random responses at the selected
predictor values.

The model is usually written in the form

Yi = β0 + β1Xi + εi

(i.e. Response = Mean Response + Residual), where the εis are, by virtue of assumptions 2, 3 and
4, independent normal random variables with mean 0 and variance σ2

Y |X . The picture below might
help you visualize this. Note that the population regression line is unknown, and is estimated from
the data using the LS line.
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2 THE LINEAR REGRESSION MODEL

Visual representation of population regression model notation
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Back to the Data

There are three unknown population parameters in the model: β0, β1 and σ2
Y |X . Given the data,

the LS line
Ŷ = b0 + b1X

estimates the population regression line β0+β1X. The LS line is our best guess about the unknown
population regression line. Here b0 estimates the intercept β0 of the population regression line and
b1 estimates the slope β1 of the population regression line.

The ith observed residual ei = Yi− Ŷi, where Ŷi = b0 +b1Xi is the ith fitted value, estimates
the unobservable residual εi. ( εi is unobservable because β0 and β1 are unknown.) The Residual
MS from the ANOVA table is used to estimate σ2

Y |X :

s2
Y |X = Res MS =

Res SS
Res df

=
∑

i(Yi − Ŷi)2

n− 2
.

CI and Tests for β1

A CI for β1 is given b1 ± tcritSEb1 , where the standard error of b1 under the model is

SEb1 =
sY |X√∑

i(Xi − X̄)2
,

and where tcrit is the appropriate critical value for the desired CI level from a t−distribution with
df =Res df .
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2 THE LINEAR REGRESSION MODEL

To test H0 : β1 = β1,0 (a given value) against HA : β1 6= β1,0, reject H0 if |ts| ≥ tcrit, where

ts =
b1 − β1,0

SEb1

,

and tcrit is the t−critical value for a two-sided test, with the desired size and df =Res df . Alterna-
tively, you can evaluate a p-value in the usual manner to make a decision about H0.

The parameter estimates table in Stata gives the standard error, t−statistic, p-value for testing
H0 : β1 = 0, and a 95% CI for β1. Analogous summaries are given for the intercept, but these are
typically of less interest.

Testing β1 = 0

Assuming the mean relationship is linear, consider testing H0 : β1 = 0 against HA : β1 6= 0. This
test can be conducted using a t-statistic, as outlined above, or with an ANOVA F−test, as outlined
below.

For the analysis of variance (ANOVA) F -test, compute

Fs =
Reg MS
Res MS

and reject H0 when Fs exceeds the critical value (for the desired size test) from an F−table with
numerator df = 1 and denominator df = n − 2; see SW, page 654. The hypothesis of zero slope
(or no relationship) is rejected when Fs is large, which happens when a significant portion of the
variation in Y is explained by the linear relationship with X. Stata gives the F−statistic and
p-value with the ANOVA table output.

The p-values from the t−test and the F−test are always equal. Furthermore this p-value is
equal to the p-value for testing no correlation between Y and X, using the t−test described earlier.
Is this important, obvious, or disconcerting?

A CI for the Population Regression Line

I can not overemphasize the power of the regression model. The model allows you to estimate the
mean response at any X value in the range for which the model is reasonable, even if little or no
data is observed at that location.

We estimate the mean population response among individuals with X = Xp

µp = β0 + β1Xp,

with the fitted value, or the value of the least squares line at Xp:

Ŷp = b0 + b1Xp.

Xp is not necessarily one of the observed Xis in the data. To get a CI for µp, use Ŷp ± tcritSE(Ŷp),
where the standard error of Ŷp is

SE(Ŷp) = sY |X

√
1
n

+
(Xp − X̄)2∑
i(Xi − X̄)2

.

The t−critical value is identical to that used in the subsection on CI for β1.
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2 THE LINEAR REGRESSION MODEL

CI for Predictions

Suppose a future individual (i.e. someone not used to compute the LS line) has X = Xp. The best
prediction for the response Y of this individual is the value of the least squares line at Xp:

Ŷp = b0 + b1Xp.

To get a CI (prediction interval) for an individual response, use Ŷp ± tcritSEpred(Ŷp), where

SEpred(Ŷp) = sY |X

√
1 +

1
n

+
(Xp − X̄)2∑
i(Xi − X̄)2

,

and tcrit is identical to the critical value used for a CI on β1.
For example, in the blood loss problem you may want to estimates the blood loss for an 50kg

individual, and to get a CI for this prediction. This problem is different from computing a CI for
the mean blood loss of all 50kg individuals!

Comments

1. The prediction interval is wider than the CI for the mean response. This is reasonable
because you are less confident in predicting an individual response than the mean response
for all individuals.

2. The CI for the mean response and the prediction interval for an individual response become
wider as Xp moves away from X̄. That is, you get a more sensitive CI and prediction interval
for Xps near the center of the data.

A Further Look at the Blood Loss Data using Stata

We obtain a prediction interval for an individual and confidence intervals for mean blood loss in
Stata as follows (but note that there are a lot of ways to do this). In a separate Stata data set
we create a variable that contains the weight values at which we would like to predict blood loss.
This is done either with the input command or (preferably) using the data editor, an Excel-like
spreadsheet utility. We illustrate the use of input. We desire predictions at weights of 30, 35, 40,
45, 50, 55, 60, 65, 70, and 75 kg. Examine the following Stata code.

clear
input weight
30
35
40
45
50
55
60
65
70
75
end
save weight.dta
use bloodloss
append using weight
regress loss weight
predict loss_hat,xb
predict se_line, stdp
predict se_pred, stdf
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2 THE LINEAR REGRESSION MODEL

generate lci=loss_hat-invttail(6,0.025)*se_line
generate uci=loss_hat+invttail(6,0.025)*se_line
generate lpi=loss_hat-invttail(6,0.025)*se_pred
generate upi=loss_hat+invttail(6,0.025)*se_pred
graph twoway (scatter loss weight) (line loss_hat weight) ///

(line lci weight,sort)(line uci weight,sort) ///
(line lpi weight,sort)(line upi weight, sort) ///
, title(Blood Loss Data) subtitle(CI for Line and Prediction Int.)

The above commands create a new data set called weight, append those weight values to the
bloodloss data set (leaving values of weight and time missing) perform regression using only the
original data set (cases with missing values of X or Y are discarded), and then save the predicted
values Ŷp (fitted values on the regression line) for each value of the variable weight as well as the
standard errors for the fitted line, SE(Ŷp), and standard errors for prediction, SEpred(Ŷp). The
confidence interval for the line and prediction interval is computed and plotted. After this program
is run (from a do-file) the data set looks as follows.

. list,clean
weight time loss loss_hat se_line se_pred lci uci lpi upi

1. 44.3 105 503 494.8375 4.46279 12.48698 483.9175 505.7576 464.283 525.392
2. 40.6 80 490 499.6487 5.295104 12.80805 486.6921 512.6054 468.3086 530.9889
3. 69 86 471 462.7195 9.965039 15.33982 438.3359 487.103 425.1843 500.2546
4. 43.7 112 505 495.6177 4.569383 12.52547 484.4369 506.7986 464.969 526.2665
5. 50.3 109 482 487.0356 4.222673 12.40319 476.703 497.3681 456.686 517.3851
6. 50.2 100 490 487.1656 4.213473 12.40006 476.8556 497.4756 456.8237 517.5074
7. 35.4 96 513 506.4104 6.947425 13.57479 489.4107 523.4102 473.1941 539.6267
8. 52.2 120 464 484.5649 4.475415 12.4915 473.614 495.5159 453.9994 515.1306
9. 30 . . 513.4322 8.954061 14.70317 491.5224 535.342 477.4548 549.4095
10. 35 . . 506.9306 7.088681 13.64762 489.5852 524.2759 473.536 540.3251
11. 40 . . 500.4289 5.463197 12.87846 487.061 513.7969 468.9165 531.9413
12. 45 . . 493.9273 4.355063 12.44888 483.2708 504.5838 463.466 524.3886
13. 50 . . 487.4257 4.196375 12.39426 477.1575 497.6938 457.098 517.7533
14. 55 . . 480.924 5.076955 12.71942 468.5012 493.3469 449.8008 512.0474
15. 60 . . 474.4224 6.592747 13.39673 458.2905 490.5543 441.6418 507.203
16. 65 . . 467.9207 8.406906 14.37652 447.3498 488.4917 432.7427 503.0988
17. 70 . . 461.4191 10.36392 15.60189 436.0595 486.7787 423.2427 499.5956
18. 75 . . 454.9175 12.39631 17.01989 424.5848 485.2502 413.2713 496.5636

40
0

45
0

50
0

55
0

30 40 50 60 70 80
weight

loss Linear prediction
lci uci
lpi upi

CI for Line and Prediction Int.
Blood Loss Data
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2 THE LINEAR REGRESSION MODEL

Given the model Blood Loss = β0 + β1 Weight +ε:

• The LS line is: Predicted Blood Loss = 552.442 - 1.30 Weight.

• The R2 is .597 (i.e. 59.7%); see Lecture 1.

• The F−statistic for testing H0 : β1 = 0 is Fobs = 8.88 with a p − value = .0247. The Error
MS is s2

Y |X = 136.008; see ANOVA table.

• The Parameter Estimates table gives b0 and b1, their standard errors, t−statistics and p-
values for testing H0 : β0 = 0 and H0 : β1 = 0. The t−test and F− test p-values for testing
that the slope is zero are identical.

• Prediction and CI: The estimated average blood loss for all 50kg patients is 552.442−1.30033∗
50 = 487.43. We are 95% confident that the mean blood loss of all 50kg patients is between
(approximately) 477 and 498 ml. A 95% prediction interval for the blood loss of a single 50
kg person is less precise (about 457 to 518 ml).

As a summary we might say that weight is important for explaining the variation in blood loss.
In particular, the estimated slope of the least squares line (Predicted Blood loss = 552.442 - 1.30
Weight) is significantly different from zero (p-value = .0247), with weight explaining approximately
60% (59.7%) of the variation in blood loss for this sample of 8 thyroid operation patients.

Checking the regression model

A regression analysis is never complete until the assumptions of the model have been checked.
In addition, you need to evaluate whether individual observations, or groups of observations, are
unduly influencing the analysis. A first step in any analysis is to plot the data. The plot provides
information on the linearity and constant variance assumption. For example, the data plot below
shows a linear relationship with roughly constant variance.

In addition to plotting the data, a variety of methods for checking models are based on plots of
the residuals, ei = Yi− Ŷi (i.e. Observed − Fitted). The command rvpplot in Stata plots the ei

against the predictor values Xi. Alternatively (and equivalently for simple linear regression), the
command rvfplot plots ei against the fitted values Ŷi, as illustrated in the plots below. Regardless
of which you use, the residual plot should exhibit no systematic dependence of the sign or the
magnitude of the residuals on the fitted values.
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The real power of this plot (ei against Ŷi) is with multiple predictor problems (multiple re-

gression). For simple linear regression, the information in this plot is similar to the information
in the original data plot, except that the residual plot eliminates the effect of the trend on your
perceptions of model adequacy.

The following plots show how inadequacies in the data plot appear in a residual plot.
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The first plot (above) shows a roughly linear relationship between Y and X with non-constant
variance. The residual plot shows a megaphone shape rather than the ideal horizontal band. A
possible remedy is a weighted least squares analysis to handle the non-constant variance, or to
transform Y to stabilize the variance. Transforming the data may destroy the linearity.
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The next plot (above) shows a nonlinear relationship between Y and X. The residual plot
shows a systematic dependence of the sign of the residual on the fitted value. A possible remedy is
to transform the data.
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The last plot (above) shows an outlier. This point has a large residual. A sensible approach is
to refit the model after deleting the case and see if any conclusions change.

Checking Normality

The normality assumption can be evaluated with a boxplot or a normal quantile plot of the residuals
(Stata command graph [residuals], box and qnorm). A formal test of normality using the residuals

20



2 THE LINEAR REGRESSION MODEL

can be based on the Wilk-Shapiro test (discussed in last semester’s lab) using the Stata command
swilk.

Checking Independence

Diagnosing dependence among observations usually requires some understanding of the mechanism
that generated the data. There are a variety of graphical and inferential tools for checking inde-
pendence for data collected over time (called a time series). The easiest thing to do is plot the ri

against time index and look for any suggestive patterns.

Outliers

Outliers are observations that are poorly fitted by the regression model. The response for an outlier
is far from the fitted line, so outliers have large positive or negative values of the residual ei.

What do you do with outliers? Outliers may be due to incorrect recordings of the data or
failure of the measuring device, or indications or a change in the mean or variance structure for
one or more cases. Incorrect recordings should be fixed if possible, but otherwise deleted from the
analysis.

Routine deletion of outliers from the analysis is not recommended. This practice can have a
dramatic effect on the fit of the model and the perceived precision of parameter estimates and
predictions. Analysts who routinely omit outliers without cause tend to overstate the significance
of their findings and get a false sense of precision in their estimates and predictions. At the very
least, a data analyst should repeat the analysis with and without the outliers to see whether any
substantive conclusions are changed.

Influential observations

Certain data points can play a very important role in determining the position of the LS line. These
data points may or may not be outliers. For example, the observation with Y > 45 in the first
plot below is an outlier relative to the LS fit. The extreme observation in the second plot has a
very small ei. Both points are highly influential observations - the LS line changes dramatically
when these observations are deleted. The influential observation in the second plot is not an outlier
because its presence in the analysis determines that the LS line will essentially pass through it! In
these plots the solid line is the LS line from the full data set, whereas the dashed line is the LS line
after omitting the unusual point.
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A standard measure of the influence that individual cases have on the LS line is called Cook’s
Distance, which is available as predict cooksd, cooksd for example. For simple linear regression
most influential cases can be easily spotted by carefully looking at the data plot. If you identify
cases that you suspect might be influential, you should hold them out (individually) and see if any
important conclusions change. If so, you need to think hard about whether the cases should be
included or excluded from the analysis. We will obtain and interpret Cook’s distances later.

A Final Look at the Blood Loss Data

We create various diagnostic plots and perform the Shapiro-Wilk test of normality on the residuals
using the Stata commands

use bloodloss
regress loss weight
predict res, r
swilk r
graph box r, saving(boxplot)
qnorm r, saving(probplot)
rvfplot, saving(respredplot)
rvpplot weight, saving(resweightplot)
graph combine boxplot.gph probplot.gph respredplot.gph resweightplot.gph, saving(all)

Residual plots for the blood loss problem follow. Do we see any marked problems with influential

cases, outliers, or non-normality? Also, go back in the notes and look at the data plot.
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The results of the Shapiro-Wilk normality test on the residuals:

Shapiro-Wilk W test for normal data
Variable | Obs W V z Prob>z

-------------+-------------------------------------------------
res | 8 0.84852 2.110 1.328 0.09204
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