
3 TRANSFORMATIONS IN REGRESSION

3 Transformations in Regression

Simple linear regression is appropriate when the scatterplot of Y against X show a linear trend.
In many problems, non-linear relationships are evident in data plots. Linear regression techniques
can still be used to model the dependence between Y and X, provided the data can be transformed
to a scale where the relationship is roughly linear. In the ideal world, theory will suggest an ap-
propriate transformation. In the absence of theory one usually resorts to empirical model building.
Polynomial models are another method for handling nonlinear relationships.

I will suggest transformations that you can try if the trend in your scatterplot has one of the
following functional forms. The responses are assumed to be non-negative (in some cases strictly
positive) in all cases.
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(a) Y as a Negative Power of X
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(b) Y as a Positive Exponential of X
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(b) Y as a Negative Exponential of X

The functional relationship between Y and X in (a) is given by Y = β0X
β1 , that is Y is related

to a power of X, where the power is typically unknown. For the left plot, β1 > 0 whereas β1 < 0 for
the plot on the right. For either situation, the logarithm of Y is linearly related to the logarithm
of X (regardless of the base):

log(Y ) = log(β0) + β1log(X).

You should consider a simple linear regression of Y ′ = log(Y ) on X ′ = log(X).
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3 TRANSFORMATIONS IN REGRESSION

The functional relationship between Y and X in (b) is given by Y = β0 exp(β1X), that is Y is
an exponential function of X. For the plot on the left, β1 > 0 whereas β1 < 0 for the plot on the
right. In either situation, the natural logarithm of Y is linearly related to X:

loge(Y ) = loge(β0) + β1X.

You should consider a simple linear regression of Y ′ = loge(Y ) on X. Actually, the base of the
logarithm is not important here either.
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(d) Y as a Reciprocal of X
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(d) Y as a Reciprocal of X

The functional relationship between Y and X in (c) is given by Y = β0 + β1 log(X), that is Y
is an logarithmic function of X. For the plot on the left, β1 > 0 whereas β1 < 0 for the plot on the
right. In each situation, consider a simple linear regression of Y on X ′ = log(X).

The functional relationship between Y and X in (d) is

Y = β0 + β1
1
X

.

Hence, consider a simple linear regression of Y on X ′ = 1/X. Note that each plot in (d) has a
horizontal asymptote of β0.
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3 TRANSFORMATIONS IN REGRESSION

In most problems, the trend or signal will be buried in a considerable amount of noise, or
variability, so the best transformation may not be apparent. If two or more transformations are
suggested try all of them and see which is best - look at diagnostics from the various fits rather
than (meaningless) summaries such as R2. In situations where a logarithmic transformation is
suggested, you might try a square root transformation as well. It often does make a considerable
difference in the quality of the fit whether you transform Y only, X only, or both. There are more
organized schemes for choosing transformations, but this sort of trial and error is the most common
practice. Note that the functional forms (a) - (d), while probably the most frequently encountered,
are not at all the only ones used.

The need to transform is sometimes much more apparent in a plot of the residuals against the
predicted values from a “linear fit” of the original data because you tend not to perceive subtle
deviations from linearity. The Wind Speed example below illustrates this.

Transformations also can help to control influential values and outliers (recall that an outlying
X-value can cause that point to exert undue influence on the fit). Functions such as log have the
effect of bringing outlying values much closer to the rest of the data. The Brain Weights vs. Body
Weights example below illustrates this. When I see a variable with a highly skewed distribution, I
usually try transforming it to make it more symmetric. This can work both ways, of course - you
can make a nice symmetrically distributed variable skewed by transforming it.

Computing Predictions

Transforming the response to a new scale causes no difficulties if you wish to make predictions on
the original scale. For example, suppose you fit a linear regression of loge(Y ) on X. The fitted
values satisfy ̂loge(Y ) = b0 + b1X.

The predicted response Yp for an individual with X = Xp is obtained by first getting the predicted
value for loge(Yp): ̂loge(Yp) = b0 + b1Xp.

Our best guess for Yp is obtained by exponentiating our prediction for loge(Yp):

Ŷp = exp( ̂loge(Yp)) = exp(b0 + b1Xp).

The same idea can be used to get prediction intervals for Yp from a prediction interval for loge(Yp)
(just transform the lower and upper confidence limits).

Other transformations on Y are handled analogously. For example, how do you predict Y using
a simple linear regression with 1/Y as the selected response?

Example of Transformations: Wind Speed Data

A research engineer is investigating the use of a windmill to generate electricity. She has collected
data on the DC output from the windmill and the corresponding wind velocity. She wants to
develop a model that explains the dependence of the DC output on wind velocity. The data were
read into Stata and plotted.
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3 TRANSFORMATIONS IN REGRESSION

. list speed dc,clean
speed dc

1. 5 1.582
2. 6 1.822
3. 3.4 1.057
4. 2.7 .5
5. 10 2.236
6. 9.7 2.386
7. 9.55 2.294
8. 3.05 .558
9. 8.15 2.166
10. 6.2 1.866
11. 2.9 .653
12. 6.35 1.93
13. 4.6 1.562
14. 5.8 1.737
15. 7.4 2.088
16. 3.6 1.137
17. 7.85 2.179
18. 8.8 2.112
19. 7 1.8
20. 5.45 1.501
21. 9.1 2.303
22. 10.2 2.31
23. 4.1 1.194
24. 3.95 1.144
25. 2.45 .123
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DC Output vs. Wind Speed

. regress dc speed
Source | SS df MS Number of obs = 25

-------------+------------------------------ F( 1, 23) = 160.26
Model | 8.92961408 1 8.92961408 Prob > F = 0.0000

Residual | 1.28157328 23 .055720577 R-squared = 0.8745
-------------+------------------------------ Adj R-squared = 0.8690

Total | 10.2111874 24 .42546614 Root MSE = .23605
------------------------------------------------------------------------------

dc | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

speed | .2411489 .0190492 12.66 0.000 .2017426 .2805551
_cons | .1308752 .1259894 1.04 0.310 -.1297537 .3915041

------------------------------------------------------------------------------
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3 TRANSFORMATIONS IN REGRESSION

The data plot shows a strong linear trend, but the relationship is nonlinear. If I ignore the
nonlinearity and fit a simple linear regression model, I get

Predicted DC Output = .1309 + .2411 Wind Speed.

Although the R2 from this fit is high, R2 = .875, I am unhappy with the fit of the model. The plot
of the residuals against the fitted values clearly points out the inadequacy:
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Residual Plots

The rvfplot shows that the linear regression systematically underestimates the DC output for
wind speeds in the middle, and overestimates the DC output for low and high wind speeds. This
model is not acceptable for making predictions - one can and should do better!

The original data plot indicates that DC output approaches an upper limit of about 2.5 amps
as the wind speed increases. Given this fact, and the trend in the plot, I decided to use the inverse
of wind speed as a predictor of DC output. Another reasonable first step would be a logarithmic
transformation of wind speed but this function steadily increases without approaching a finite limit.

Aside: The above plot is not the same as in the previous notes or in the lab. I decided to illustrate
further the flexibility of Stata and the power of do files. We obtained exactly those four plots
in Minitab if we requested the 4-in-1 plots in regression. You might want to replace the histogram
with a boxplot – the modification is simple. The do file statements to produce the plot after
running the regression command are:
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3 TRANSFORMATIONS IN REGRESSION

predict residual, r
quietly qnorm residual, saving(probplot, replace) nodraw ///

title(Normal Prob. Plot of Residuals)
quietly rvfplot, saving(respredplot, replace) nodraw ///

title(Residuals vs. Fitted Values)
quietly hist residual, freq saving(hist, replace) nodraw ///

title(Histogram of the Residuals)
generate obs_order = _n
quietly twoway connect residual obs_order, saving(obs_order, replace) ///

nodraw title(Residuals vs. Order of the Data)
drop obs_order
graph combine probplot.gph respredplot.gph hist.gph obs_order.gph, ///

title(Residual Plots)

This program will fail if the variable residual exists before you run it (that can be fixed).

A plot of DC output against one over the wind speed is fairly linear:

0
.5

1
1.

5
2

2.
5

D
C

.1 .2 .3 .4
1/Speed

DC Output vs. Reciprocal of Speed

This suggests that a simple linear regression fit on this scale is appropriate. Note that DC
output is a decreasing function of one over the wind speed.

. regress dc speed_inv
Source | SS df MS Number of obs = 25

-------------+------------------------------ F( 1, 23) = 1128.43
Model | 10.0072178 1 10.0072178 Prob > F = 0.0000

Residual | .203969527 23 .00886824 R-squared = 0.9800
-------------+------------------------------ Adj R-squared = 0.9792

Total | 10.2111874 24 .42546614 Root MSE = .09417
------------------------------------------------------------------------------

dc | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

speed_inv | -6.934547 .2064335 -33.59 0.000 -7.361588 -6.507507
_cons | 2.97886 .0449023 66.34 0.000 2.885973 3.071748

------------------------------------------------------------------------------
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3 TRANSFORMATIONS IN REGRESSION
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The LS regression line is

Predicted DC output = 2.9789− 6.9345
1

Wind speed
.

The residual plots show left skewness, but no serious outliers. The Shapiro-Wilk test has a p-value
of 0.08. The transformation appears to work well, although if I tried harder I might be able to
symmetrize the residuals a little better (I would start by transforming Y instead of X). I don’t
think it is worth the trouble here, though. It is fairly clear by examining the scatter plot (the one
corresponding to the actual regression we did!) that there are no highly influential points here.
Still, we really should check the Cook’s D values as a routine matter. Since 1 is a common cutoff
for Cook’s D, and no values stand out much, we have little to be concerned over.
. predict cooksd,cooksd
. gene obs_order = _n
. twoway spike cooksd obs_order
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3 TRANSFORMATIONS IN REGRESSION

All our theory and modelling applies in the linear scale (the transformed problem where we fit
output to 1/speed). We really want to see how well things appear to work in the original scale,
though. The following statements accomplish that.

. regress dc speed_inv

. predict pred_dc,xb

. twoway (scatter dc speed_inv) (line pred_dc speed_inv,sort),legend(off)
> title(Prediction on Linear Scale) saving(l,replace)
. twoway (scatter dc speed) (line pred_dc speed,sort),legend(off)
> title(Prediction on Original Scale) saving(o,replace)
. graph combine l.gph o.gph

We would put confidence and prediction bands on the plot in a similar manner. How would we
predict output (with a prediction interval) for a wind speed of 15?
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3 TRANSFORMATIONS IN REGRESSION

Brain Weights and Body Weights of Mammals

The data below are the average brain weight (g) and body weights (kg) for 62 species of mammals.
We are interested in developing a model for predicting brain weight from body weight.

. list,clean
species body_wt brain_wt

1. Arctic fox 3.385 44.5
2. Owl monkey .48 15.499
3. Mountain beaver 1.35 8.1
4. Cow 465 423
5. Gray wolf 36.33 119.5
6. Goat 27.66 115
7. Roe deer 14.83 98.2
8. Guinea pig 1.04 5.5
9. Vervet 4.19 58
10. Chinchilla .425 6.4
11. Ground squirrel .101 4
12. Arctic ground squirrel .92 5.7
13. Africa giant poached rat 1 6.6
14. Lesser short-tailed shrew .005 .14
15. Star-nosed mole .06 1
16. Nine-banded armadillo 3.5 10.8
17. Tree hyrax 2 12.3
18. N. American opussum 1.7 6.3
19. Asian elephant 2547 4603
20. Big brown bat .023 .3
21. Donkey 187.1 419
22. Horse 521 655
23. European hedgehog .785 3.5
24. Patas monkey 10 115
25. Cat 3.3 25.6
26. Galago .2 5
27. Genet 1.41 17.5
28. Giraffe 529 680
29. Gorilla 207 406
30. Gray seal 85 325
31. Rock hyrax .75 12.3
32. Human 62 1320
33. African elephant 6654 5712
34. Water opussum 3.5 3.9
35. Rhesus monkey 6.8 179
36. Kangaroo 35 56
37. Yellow-bellied marmot 4.05 17
38. Golden hamster .12 1
39. Mouse .023 .4
40. Little brown bat .01 .25
41. Slow loris 1.4 12.5
42. Okapi 250.01 490
43. Rabbit 2.5 12.1
44. Sheep 55.5 175
45. Jaguar 100 157
46. Chimpanzee 52.16 440
47. Baboon 10.55 179.5
48. Desert hedgehog .55 2.4
49. Giant armadillo 60 81
50. Rock hyrax 3.6 21
51. Raccoon 4.288 39.2
52. Rat .28 1.9
53. Eastern American mole .075 1.2
54. Mole rat .122 3
55. Musk shrew .048 .33
56. Pig 192 180
57. Echidna 3 25
58. Brazilian tapir 160 169
59. Tenrec .9 2.6
60. Phalanger 1.62 11.4
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3 TRANSFORMATIONS IN REGRESSION

61. Tree shrew .104 2.5
62. Red fox 4.235 50.4

A plot of the brain weights against the body weights is non-informative because many species
have very small brain weights and body weights compared to the elephants:

. scatter br bo,tit(Brain Weight vs. Body Wt. for 62 Mammals)
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If we momentarily hold out the species with body weights exceeding 200kg or brain weights exceed-
ing 200g, and replot the data, we see that the brain weight of mammals typically increases with
the body weight, but the relationship is nonlinear:

. scatter br bo if(bo<=200),tit(Brain Wt vs. Body Wt. for 62 Mammals)
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The trend suggests transforming both variables to a logarithmic scale to linearize the relationship
between brain weight and body weight. It does not matter which base logarithm you choose. The
relationship is no more linear with one base than another. I will use natural logarithms. What is
even more compelling about the log transform here is the extreme right skewness of both variables
– logs pull extremely large values down much more than more modest values, so they tend to
symmetrize such data (and regression works much better when both variables have reasonably
symmetric distributions).
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3 TRANSFORMATIONS IN REGRESSION

. graph box bod,name(bodbox)

. graph box br,name(brbox)

. graph combine bodbox brbox
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The plot of loge(brain weight) against loge(body weight) is fairly linear:

. gene lbod=log(body_wt)

. gene lbr = log(brain_wt)

. scatter lbr lbod,title(Brain Wt. vs. Body Wt. on a log-log scale) xti(Log(Bod
> y Weight)) yti(Log(Brain Weight))
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Brain Wt. vs. Body Wt. on a log−log scale

At this point I considered fitting the model:

loge(brain weight) = β0 + β1 loge(body weight) + ε.

Summary information from fitting this model:
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3 TRANSFORMATIONS IN REGRESSION

. regre lbr lbo

Source | SS df MS Number of obs = 62
-------------+------------------------------ F( 1, 60) = 697.42

Model | 336.188164 1 336.188164 Prob > F = 0.0000
Residual | 28.9225677 60 .482042795 R-squared = 0.9208

-------------+------------------------------ Adj R-squared = 0.9195
Total | 365.110732 61 5.98542184 Root MSE = .69429

------------------------------------------------------------------------------
lbr | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
lbod | .7516859 .0284635 26.41 0.000 .6947505 .8086214

_cons | 2.134787 .0960432 22.23 0.000 1.942672 2.326902
------------------------------------------------------------------------------

The fitted relationship:

Predicted loge(brain weight) = 2.135 + 0.752 loge(body weight),

explains about 92% of the variation in loge(brain weight). The t−test for H0 : β1 = 0 is highly
significant (p − value = 0 to three decimal places). This summary information combined with
the data plot indicates that there is a strong linear relationship between loge(brain weight) and
loge(body weight), with the average loge(brain weight) increasing as loge(body weight) increases.

To predict brain weights, use the inverse transformation

Predicted brain weight = exp{Predicted loge(brain weight)}

or

Predicted brain weight = exp{2.135 + 0.752 loge(body weight)}
= exp(2.135) ∗ body weight0.752

= 8.457 ∗ body weight0.752.

These conclusions are tentative, subject to a careful residual analysis. Residual plots do not
suggest any serious deficiencies with the model, but do highlight one or more poorly fitted species:
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3 TRANSFORMATIONS IN REGRESSION

Can anyone guess what species these may be, and what further analyses might be reasonable?
The largest and smallest residuals belong to observations 32 and 34 respectively (obtained from
simply entering the data editor). Note that a normal probability (or Q − Q) plot of the residuals
is reasonably straight and the Shapiro-Wilk test of normality indicates no gross departures from
normality:

Shapiro-Wilk W test for normal data
Variable | Obs W V z Prob>z

-------------+-------------------------------------------------
res | 62 0.98268 0.967 -0.073 0.52927

Cook’s D does not show any particular problems (until the value approaches 1, most data
analysts do not worry much about it). Compare it to the value in the original scale where the
distribution of both variables was so skewed.
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Usually it is worth plotting the fitted values back on the original scale as we did for the wind
speed data. That would not be very useful here since the original scale obscures most of the data.
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