
4 INTRODUCTION TO MULTIPLE LINEAR REGRESSION

4 Introduction to Multiple Linear Regression

In multiple linear regression, a linear combination of two or more predictor variables is used to
explain the variation in a response. In essence, the additional predictors are used to explain the
variation in the response not explained by a simple linear regression fit.

As an illustration, I will consider the following problem. The data set is from the statistics
package Minitab, where it is described thus:

Anthropologists wanted to determine the long-term effects of altitude change on human
blood pressure. They measured the blood pressures of a number of Peruvians native to
the high Andes mountains who had since migrated to lower climes. Previous research
suggested that migration of this kind might cause higher blood pressure at first, but over
time blood pressure would decrease. The subjects were all males over 21, born at high
altitudes, with parents born at high altitudes. The measurements included a number
of characteristics to help measure obesity: skin-fold and other physical characteristics.
Systolic and diastolic blood pressure are recorded separately; systolic is often a more
sensitive indicator. Note that this is only a portion of the data collected.

The data set is on the web site. Variables in the data set are

Name Description
Age Age in years
Years Years since migration
Weight Weight in kilograms
Height Height in mm
Chin Chin skin fold in mm
Forearm Forearm skin fold in mm
Calf Calf skin fold in mm
Pulse Pulse in beats per minute
Systol Systolic blood pressure
Diastol Diastolic blood pressure

A question we consider concerns the long term effects of an environmental change on the systolic
blood pressure. In particular, is there a relationship between the systolic blood pressure and how
long the Indians lived in their new environment as measured by the fraction of their life spent in
the new environment? (fraction = years since migration/age - you need to generate fraction).

A plot of systolic blood pressure against fraction suggests a weak linear relationship (from graph
matrix weight systol fraction). Nonetheless, consider fitting the regression model

sys bp = β0 + β1 fraction + ε.

The least squares line is given by

̂sys bp = 133.50− 15.75 fraction,

and suggests that average systolic blood pressure decreases as the fraction of life spent in modern so-
ciety increases. However, the t−test of H0 : β1 = 0 is not significant at the 5% level (p-value=.089).
That is, the weak linear relationship observed in the data is not atypical of a population where
there is no linear relationship between systolic blood pressure and the fraction of life spent in a
modern society.
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Stata output:

. regress systol fraction

Source | SS df MS Number of obs = 39
-------------+------------------------------ F( 1, 37) = 3.05

Model | 498.063981 1 498.063981 Prob > F = 0.0888
Residual | 6033.37192 37 163.064106 R-squared = 0.0763

-------------+------------------------------ Adj R-squared = 0.0513
Total | 6531.4359 38 171.879892 Root MSE = 12.77

------------------------------------------------------------------------------
systol | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
fraction | -15.75183 9.012962 -1.75 0.089 -34.01382 2.510169

_cons | 133.4957 4.038011 33.06 0.000 125.3139 141.6775
------------------------------------------------------------------------------

Even if this test were significant, the small value of R2 = .076 suggests that fraction does not
explain a substantial amount of the variation in the systolic blood pressures. If we omit the
individual with the highest blood pressure (see the plot) then the relationship would be weaker.

Taking Weight into Consideration

At best, there is a weak relationship between systolic blood pressure and fraction. However, it is
usually accepted that systolic blood pressure and weight are related; see the scatterplot matrix for
confirmation. A natural way to take weight into consideration is to include weight and fraction as
predictors of systolic blood pressure in the multiple regression model:

sys bp = β0 + β1 fraction + β2 weight + ε.

As in simple linear regression, the model is written in the form:

Response = Mean of Response + Residual,
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4 INTRODUCTION TO MULTIPLE LINEAR REGRESSION

so the model implies that average systolic blood pressure is a linear combination of fraction and
weight. As in simple linear regression, the standard multiple regression analysis assumes that the
responses are normally distributed with a constant variance σ2

Y |X . The parameters of the regression
model β0, β1, β2 and σ2

Y |X are estimated by LS.
Stata output for fitting the multiple regression model follows.

. regress systol fraction weight

Source | SS df MS Number of obs = 39
-------------+------------------------------ F( 2, 36) = 16.16

Model | 3090.07324 2 1545.03662 Prob > F = 0.0000
Residual | 3441.36266 36 95.5934072 R-squared = 0.4731

-------------+------------------------------ Adj R-squared = 0.4438
Total | 6531.4359 38 171.879892 Root MSE = 9.7772

------------------------------------------------------------------------------
systol | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
fraction | -26.76722 7.217801 -3.71 0.001 -41.40559 -12.12884
weight | 1.216857 .2336873 5.21 0.000 .7429168 1.690796
_cons | 60.89592 14.28088 4.26 0.000 31.93295 89.85889

------------------------------------------------------------------------------

Important Points to Notice About the Regression Output

1. The LS estimates of the intercept and the regression coefficient for fraction, and their standard
errors, change from the simple linear model to the multiple regression model. For the simple
linear regression

̂sys bp = 133.50− 15.75 fraction.

For the multiple regression model

̂sys bp = 60.89− 26.76 fraction + 1.21 weight.

There is frequently a big difference between coefficients from simple linear regression and
those from multiple linear regression (for the same predictor variables).

2. Comparing the simple linear regression and the multiple regression models we see that the
Model (Regression) df has increased to 2 from 1 (2=number of predictor variables) and the
Residual (error) df has decreased from 37 to 36 (= n− 1− number of predictors). Adding a
predictor increases the Model (Regression) df by 1 and decreases the Residual df by 1.

3. The Residual SS decreases by 6033.37 - 3441.36 = 2592.01 upon adding the weight term. The
Model (Regression) SS increased by 2592.01 upon adding the weight term to the model. The
Total SS does not depend on the number of predictors so it stays the same. The Residual
SS, or the part of the variation in the response unexplained by the regression model never
increases when new predictors are added. After all, you are not going to do any worse
modelling the data if you use more predictors - the smaller model (simple linear regression)
is a special case of the larger model (multiple linear regression). Anything you can fit using
the simple one-variable model you also can fit using the two-variable model, but you can do
a lot more with the two-variable model.

4. The proportion of variation in the response explained by the regression model:

R2 = Model (or Regression) SS / Total SS
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never decreases when new predictors are added to a model. The R2 for the simple linear
regression was .076, whereas R2 = .473 for the multiple regression model. Adding the weight
variable to the model increases R2 by 40%. That is, weight and fraction together explain
40% more of the variation in systolic blood pressure than explained by fraction alone. I am
not showing you the output, but if you predict systolic blood pressure using only weight, the
R2 is .27; adding fraction to that model increases the R2 once again to .47. How well two
predictors work together is not predictable from how well each works alone.

Stata also reports an adjusted R2. That has a penalty for fitting too many variables built
into it, and can decrease when variables are added. If the number of variables is a lot less
than n (it should be) there is not much difference between the two R2s.

5. The estimated variability about the regression line

Residual MS = s2
Y |X

decreased dramatically after adding the weight effect. For the simple linear regression model
(fitting fraction as the only predictor), s2

Y |X = 163.06, whereas s2
Y |X = 95.59 for the multiple

regression model. This suggests that an important predictor has been added to model. Note
that Stata also reports Root MSE =

√
ResidualMS =

√
s2
Y |X , an estimate of the standard

deviation rather than the variance about the regression line.

6. The F -statistic for the multiple regression model

Fobs = Regression MS / Residual MS = 16.16

(which is compared to a F-table with 2 and 36 df) tests H0 : β1 = β2 = 0 against HA : not H0.
This is a test of no relationship between the average systolic blood pressure and fraction and
weight, assuming the relationship is linear. If this test is significant then either fraction or
weight, or both, are important for explaining the variation in systolic blood pressure. Unlike
simple linear regression, this test statistic is not simply the square of a t-statistic. It is a
whole new test for us, and simply addresses the question “is anything going on anywhere in
this model?”

7. Given the model
sys bp = β0 + β1 fraction + β2 weight + ε,

one interest is testing H0 : β2 = 0 against HA : β2 6= 0. The t-statistic for this test

tobs =
b2 − 0
SE(b2)

=
1.217
.234

= 5.21

is compared to a t−critical value with Residual df = 36. Stata gives a p-value of .000,
which suggests β2 6= 0. The t-test of H0 : β2 = 0 in the multiple regression model tests
whether adding weight to the simple linear regression model explains a significant part of the
variation in systolic blood pressure not explained by fraction. In some sense, the t−test of
H0 : β2 = 0 will be significant if the increase in R2 (or decrease in Residual SS) obtained by
adding weight to this simple linear regression model is substantial. We saw a big increase in
R2, which is deemed significant by the t−test. A similar interpretation is given to the t−test
for H0 : β1 = 0.
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8. The t−tests for β0 = 0 and β1 = 0 are conducted, assessed, and interpreted in the same
manner. The p-value for testing H0 : β0 = 0 is .000, whereas the p-value for testing H0 : β1 = 0
is .001. This implies that fraction is important in explaining the variation in systolic blood
pressure after weight is taken into consideration (by including weight in the model as a
predictor). These t-tests are tests for the effect of a variable adjusted for the effects of all
other variables in the model.

9. We compute CIs for the regression parameters βi in the usual way: bi + tcritSE(bi), where
tcrit is the t−critical value for the corresponding CI level with df = Residual df .

Understanding the Model

The t−test for H0 : β1 = 0 is highly significant (p-value=.001) in the multiple regression model,
which implies that fraction is important in explaining the variation in systolic blood pressure after
weight is taken into consideration (by including weight in the model as a predictor). Weight is
called a suppressor variable. Ignoring weight suppresses the relationship between systolic blood
pressure and fraction - recall that fraction was not significant as a predictor by itself.

The implications of this analysis are enormous! Essentially, the correlation between a predictor
and a response says very little about the importance of the predictor in a regression model with
one or more additional predictors. This conclusion also holds in situations where the correlation is
high, in the sense that a predictor that is highly correlated with the response may be unimportant
in a multiple regression model once other predictors are included in the model.

Another issue that I wish to address concerns the interpretation of the regression coefficients
in a multiple regression model. For our problem, let us first focus on the fraction coefficient in the
fitted model

̂sys bp = 60.90− 26.77 fraction + 1.22 weight.

The negative coefficient indicates that the predicted systolic blood pressure decreases as fraction
increases holding weight constant. In particular, the predicted systolic blood pressure decreases
by 26.76 for each unit increase in fraction, holding weight constant at any value. Similarly, the
predicted systolic blood pressure increases by 1.21 for each unit increase in weight, holding fraction
constant at any level.

We should examine residuals. Now the diagnostics are much more important to us, since we
cannot see everything in terms of one predictor variable.
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Shapiro-Wilk W test for normal data
Variable | Obs W V z Prob>z

-------------+-------------------------------------------------
residual | 39 0.98269 0.671 -0.838 0.79910

We will discuss these plots in class. Are there any observations we should investigate further?
Which ones?
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4 INTRODUCTION TO MULTIPLE LINEAR REGRESSION

Another Multiple Regression Example

The data below are selected from a larger collection of data referring to candidates for the General
Certificate of Education (GCE) who were being considered for a special award. Here, total denotes
the candidate’s TOTAL mark, out of 1000, in the GCE exam, while comp is the candidate’s score
in the compulsory part of the exam, which has a maximum score of 200 of the 1000 points on the
exam. scel denotes the candidates’ score, out of 100, in a School Certificate English Language
(SCEL) paper taken on a previous occasion.

. list,clean

total comp scel
1. 476 111 68
2. 457 92 46
3. 540 90 50
4. 551 107 59
5. 575 98 50
6. 698 150 66
7. 545 118 54
8. 574 110 51
9. 645 117 59

10. 690 114 80
11. 634 130 57
12. 637 118 51
13. 390 91 44
14. 562 118 61
15. 560 109 66

A goal here is to compute a multiple regression of the TOTAL score on COMP and SCEL, and
make the necessary tests to enable you to comment intelligently on the extent to which current
performance in the compulsory test (COMP) may be used to predict aggregate TOTAL performance
on the GCE exam, and on whether previous performance in the School Certificate English Language
(SCEL) has any predictive value independently of what has already emerged from the current
performance in the compulsory papers.

I will lead you through a number of steps to help you answer this question. Let us answer the
following straightforward questions based on the Stata output.

1. Plot TOTAL against COMP and SCEL individually, and comment on the form (i.e. linear,
non-linear, logarithmic, etc.), strength, and direction of the relationships.

2. Plot COMP against SCEL and comment on the form, strength, and direction of the
relationship.

3. Compute the correlation between all pairs of variables. Do the correlation values appear
reasonable, given the plots?

Stata output: scatterplot matrix and correlations...
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. pwcorr total comp scel, sig
| total comp scel

-------------+---------------------------
total | 1.0000

|
|

comp | 0.7307 1.0000
| 0.0020
|

scel | 0.5477 0.5089 1.0000
| 0.0346 0.0527
|

In parts 4 through 9, ignore the possibility that TOTAL, COMP or SCEL might ideally need
to be transformed.

4. Which of COMP and SCEL explains a larger proportion of the variation in TOTAL?
Which would appear to be a better predictor of TOTAL? (Explain).

5. Consider 2 simple linear regression models for predicting TOTAL one with COMP as
a predictor, and the other with SCEL as the predictor. Do COMP and SCEL individually
appear to be important for explaining the variation in TOTAL (i.e. test that the slopes of the
regression lines are zero). Which, if any, of the output, support, or contradicts, your answer
to the previous question?

Stata output:
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. regress total comp

Source | SS df MS Number of obs = 15
-------------+------------------------------ F( 1, 13) = 14.90

Model | 53969.7272 1 53969.7272 Prob > F = 0.0020
Residual | 47103.2062 13 3623.32355 R-squared = 0.5340

-------------+------------------------------ Adj R-squared = 0.4981
Total | 101072.933 14 7219.49524 Root MSE = 60.194

------------------------------------------------------------------------------
total | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
comp | 3.948465 1.023073 3.86 0.002 1.73825 6.158681

_cons | 128.5479 115.1604 1.12 0.285 -120.241 377.3367
------------------------------------------------------------------------------

. regress total scel

Source | SS df MS Number of obs = 15
-------------+------------------------------ F( 1, 13) = 5.57

Model | 30320.6397 1 30320.6397 Prob > F = 0.0346
Residual | 70752.2936 13 5442.48412 R-squared = 0.3000

-------------+------------------------------ Adj R-squared = 0.2461
Total | 101072.933 14 7219.49524 Root MSE = 73.773

------------------------------------------------------------------------------
total | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
scel | 4.826232 2.044738 2.36 0.035 .4088448 9.243619

_cons | 291.5859 119.0382 2.45 0.029 34.4196 548.7522
------------------------------------------------------------------------------

6. Fit the multiple regression model

TOTAL = β0 + β1COMP + β2SCEL + ε.

Test H0 : β1 = β2 = 0 at the 5% level. Describe in words what this test is doing, and what
the results mean here.

Stata output:

. regress total comp scel

Source | SS df MS Number of obs = 15
-------------+------------------------------ F( 2, 12) = 8.14

Model | 58187.5043 2 29093.7522 Prob > F = 0.0058
Residual | 42885.429 12 3573.78575 R-squared = 0.5757

-------------+------------------------------ Adj R-squared = 0.5050
Total | 101072.933 14 7219.49524 Root MSE = 59.781

------------------------------------------------------------------------------
total | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
comp | 3.295936 1.180318 2.79 0.016 .7242444 5.867628
scel | 2.09104 1.924796 1.09 0.299 -2.102731 6.284811

_cons | 81.16147 122.4059 0.66 0.520 -185.5382 347.8611
------------------------------------------------------------------------------

7. In the multiple regression model, test H0 : β1 = 0 and H0 : β2 = 0 individually. Describe
in words what these tests are doing, and what the results mean here.

8. How does the R2 from the multiple regression model compare to the R2 from the individual
simple linear regressions? Is what you are seeing here appear reasonable, given the tests on
the individual coefficients?
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9. Do your best to answer the question posed above, in the paragraph on page 43 that begins
“A goal .... ”. Provide an equation (LS) for predicting TOTAL.

Comments on the GCE Analysis

I will give you my thoughts on these data, and how I would attack this problem, keeping the
ultimate goal in mind. As a first step, I plot the data and check whether transformations are
needed. The plot of TOTAL against COMP is fairly linear, but the trend in the plot of TOTAL
against SCEL is less clear. You might see a non-linear trend here, but the relationship is not very
strong. When I assess plots I try to not allow a few observations affect my perception of trend, and
with this in mind, I do not see any strong evidence at this point to transform any of the variables.

One difficulty that we must face when building a multiple regression model is that these two-
dimensional (2D) plots of a response against individual predictors may have little information about
the appropriate scales for a multiple regression analysis. In particular, the 2D plots only tell us
whether we need to transform the data in a simple linear regression analysis. If a 2D plot shows a
strong non-linear trend, I would do an analysis using the suggested transformations, including any
other effects that are important. However, it might be that no variables need to be transformed in
the multiple regression model.

Although SCEL appears to be useful as a predictor of TOTAL on its own, the multiple regression
output indicates that SCEL does not explain a significant amount of the variation in TOTAL,
once the effect of COMP has been taken into account. In particular, the SCEL effect in the
multiple regression model is far from significant (p-value=.30). Hence, previous performance in the
SCEL exam has little predictive value independently of what has already emerged from the current
performance in the compulsory papers.

What are my conclusions? Given that SCEL is not a useful predictor in the multiple regression
model, I would propose a simple linear regression model to predict TOTAL from COMP:

Predicted TOTAL = 128.55 + 3.95 COMP.

Output from the fitted model was given earlier. A residual analysis of the model showed no serious
deficiencies. In particular, the residuals versus the predicted values looks random and the normal
probability plot of the residuals looks reasonably straight. Note that the following summaries are
for this one-variable model, not the two-variable model fit earlier.

Shapiro-Wilk W test for normal data
Variable | Obs W V z Prob>z

-------------+-------------------------------------------------
residual | 15 0.97287 0.526 -1.271 0.89806
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A Taste of Model Selection for Multiple Regression

Given data on a response variable Y and k predictor variables X1, X2, ..., Xk, we wish to develop
a regression model to predict Y . Assuming that the collection of variables is measured on the
correct scale, and that the candidate list of predictors includes all the important predictors, the
most general (linear) model is

Y = β0 + β1 X1 + · · ·+ βk Xk + ε.

In most problems one or more of the predictors can be eliminated from this general or full model
without loss of information. We want to identify the important predictors, or equivalently, eliminate
the predictors that are not useful for explaining the variation in Y .

We will study several automated methods for model selection. Given a specific criterion for
selecting a model, Stata gives the best predictors. Before applying any of the methods, you should
plot Y against each predictor X1, X2, ..., Xk to see whether transformations are needed. If a
transformation of Xi is suggested, include the transformation along with the original Xi in the
candidate list. Note that you can transform the predictors differently, for example, log(X1) and√

X2. However, if several transformations are suggested for the response, then you should consider
doing one analysis for each suggested response scale before deciding on the final scale.

At this point, I will only consider the backward elimination method. Other approaches can
be handled in Stata.

Backward Elimination

The backward elimination procedure deletes unimportant variables, one at a time, starting from
the full model. The steps in the procedure are:

1. Fit the full model
Y = β0 + β1 X1 + · · ·+ βk Xk + ε. (1)

2. Find the variable which when omitted from the full model (1) reduces R2 the least, or equiv-
alently, increases the Residual SS the least. This is the variable that gives the largest p-value
for testing an individual regression coefficient H0 : βi = 0 for i > 0. Suppose this variable is
Xk. If you reject H0, stop and conclude that the full model is best. If you do not reject H0,
delete Xk from the full model, giving the new full model

Y = β0 + β1 X1 + · · ·+ βk−1 Xk−1 + ε.

Repeat steps 1 and 2 sequentially until no further predictors can be deleted.

In backward elimination we isolate the least important predictor left in the model, and check
whether it is important. If not, delete it and repeat the process. Otherwise, stop. A test level of
0.1 (a very common value to use), for example, on the individual predictors is specified in Stata
using pr(0.1) in the sw command.

Epidemiologists use a slightly different approach to building models. They argue strongly
for the need to always include confounding variables in a model, regardless of their statistical
significance. I will discuss this issue more completely for logistic regression, but you should recognize
its importance.
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Illustration

I will illustrate backward elimination on the Peru Indian data, using systolic blood pressure as
the response, and seven candidate predictors: weight in kilos, height in mm, chin skin fold in mm,
forearm skin fold in mm, calf skin fold in mm, pulse rate-beats/min, and fraction. A plot of systolic
blood pressure against each of the individual potential predictors does not strongly suggest the need
to transform either the response or any of the predictors:
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The correlation matrix shows that most of the potential predictors are weakly correlated with
systolic blood pressure. Based on correlations, the best single variable for predicting blood pressure
is weight.

. correlate weight height chin forearm calf pulse fraction systol
(obs=39)

| weight height chin forearm calf pulse fraction systol
-------------+------------------------------------------------------------------------

weight | 1.0000
height | 0.4503 1.0000
chin | 0.5617 -0.0079 1.0000

forearm | 0.5437 -0.0689 0.6379 1.0000
calf | 0.3919 -0.0028 0.5160 0.7355 1.0000
pulse | 0.3118 0.0078 0.2231 0.4219 0.2087 1.0000

fraction | 0.2931 0.0512 0.1201 0.0280 -0.1130 0.2142 1.0000
systol | 0.5214 0.2191 0.1702 0.2723 0.2508 0.1355 -0.2761 1.0000

Stata commands for the previous output are (assuming you grabbed the Stata data set peru.dta
from the web and use’d it)
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generate fraction=years/age
graph matrix weight height chin forearm calf pulse fraction systol
correlate weight height chin forearm calf pulse fraction systol

Summaries from the full model with 7 predictors follow. The F -test in the full model ANOVA

table (F = 4.92 with p-value=.0008) tests the hypothesis that the regression coefficient for each

predictor variable is zero. This test is highly significant, indicating that one or more of the

predictors is important in the model. Note that R2 = .53 for the full model.

. regress systol weight height chin forearm calf pulse fraction
Source | SS df MS Number of obs = 39

-------------+------------------------------ F( 7, 31) = 4.92
Model | 3436.89993 7 490.985705 Prob > F = 0.0008

Residual | 3094.53596 31 99.8237407 R-squared = 0.5262
-------------+------------------------------ Adj R-squared = 0.4192

Total | 6531.4359 38 171.879892 Root MSE = 9.9912
------------------------------------------------------------------------------

systol | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

weight | 1.710538 .3864434 4.43 0.000 .9223814 2.498694
height | -.0454089 .0394397 -1.15 0.258 -.1258466 .0350289
chin | -1.154889 .845932 -1.37 0.182 -2.880179 .5704004

forearm | -.7143249 1.350676 -0.53 0.601 -3.469047 2.040397
calf | .1058654 .6116778 0.17 0.864 -1.14166 1.35339
pulse | .07971 .1959149 0.41 0.687 -.3198611 .4792811

fraction | -29.35489 7.86754 -3.73 0.001 -45.40084 -13.30894
_cons | 106.3085 53.8376 1.97 0.057 -3.494025 216.111

------------------------------------------------------------------------------

You can automate stepwise selection of predictors (for which backward elimination is a special
case) using the sw command. Six model selection procedures are allowed: backward selection,
forward selection, backward stepwise, forward stepwise, backward hierarchical selection, and for-
ward hierarchical selection. See the Stata manual for descriptions. The command sw can also be
used with other regression models including logistic (and other binary response model) regression,
Poisson regression, and Cox proportional hazards regression. To obtain the stepwise procedure for
multiple linear regression in our example, using an cutoff of 0.1, type sw regress systol weight
height chin forearm calf pulse fraction, pr(0.1). I cannot seem to get this to work cor-
rectly using the pull-down menus, and I’m not sure there is much potential gain anyway. This is a
pretty simple command. The Stata output follows.

. sw regress systol weight height chin forearm calf pulse fraction,pr(0.1)
begin with full model

p = 0.8637 >= 0.1000 removing calf
p = 0.6953 >= 0.1000 removing pulse
p = 0.6670 >= 0.1000 removing forearm
p = 0.2745 >= 0.1000 removing height
p = 0.1534 >= 0.1000 removing chin

Source | SS df MS Number of obs = 39
-------------+------------------------------ F( 2, 36) = 16.16

Model | 3090.07324 2 1545.03662 Prob > F = 0.0000
Residual | 3441.36266 36 95.5934072 R-squared = 0.4731

-------------+------------------------------ Adj R-squared = 0.4438
Total | 6531.4359 38 171.879892 Root MSE = 9.7772

------------------------------------------------------------------------------
systol | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
weight | 1.216857 .2336873 5.21 0.000 .7429168 1.690796

fraction | -26.76722 7.217801 -3.71 0.001 -41.40559 -12.12884
_cons | 60.89592 14.28088 4.26 0.000 31.93295 89.85889

------------------------------------------------------------------------------
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4 INTRODUCTION TO MULTIPLE LINEAR REGRESSION

The procedure summary tells you that the least important variable in the full model, as judged
by the p-value, is calf skin fold. This variable, upon omission, will reduce R2 the least, or equiv-
alently, increases the Residual SS the least. The p-value of .86 exceeds the specified 0.10 cut-off,
so the first step of the backward elimination would be to eliminate calf skin fold from the model.
This is the p-value for the t-test on calf in the 7-variable model.

The next variable eliminated is pulse because of the p-value of .70 in the 6-variable model where
calf was not fit (Stata isn’t showing you all of that output). Notice that this is different from the
p-value in the 7-variable model. Next Stata removes forearm because of the large p-value of .67 in
a 5-variable model with calf and pulse removed. Other variables are eliminated similarly. There is
a huge amount of computation summarized in this one table.

Looking at the rest of the step history, the backward elimination procedure eliminates five
variables from the full model, in the following order: calf skin fold, pulse rate, forearm skin fold,
height, and chin skin fold. As we progress from the full model to the selected model, R2 decreases as
follows: R2 = .53 (full model), .53, .52, .52, .50, and .47 (from several regression fits not shown).
The decrease is slight across this spectrum of models.

The model summary selected by backward elimination includes two predictors: weight and
fraction. The fitted model is given by:

Predicted SYS BP = 60.90 + 1.22 Weight− 26.77 Fraction.

Each predictor is significant at the .001 level. The fitted model explains 47% of the variation in
systolic blood pressures. This 2-variable model does as well, for any practical purposes, in predicting
systolic blood pressure as a much more complicated 7-variable model. There was no real surprise
here, since these two variables were the only ones significant in the 7-variable model, but often you
will be left with a model you would not have guessed from a fit of all variables.

Using a mechanical approach, we are led to a model with weight and fraction as predictors of
systolic blood pressure. At this point you should closely examine the fitted model.

Stepwise procedures receive a great deal of criticism. When a large number of variables are
screened this way, the resulting relationships tend to be exaggerated. There is a big multiple
comparisons problem here as well. This technique should be regarded as exploratory and the
resulting p-values and coefficients assessed from independent data, although common practice is
just to report final results. It is likely that the strength of relationships discovered in stepwise
procedures will be hard to replicate in later studies, however. This is, nonetheless, an invaluable
screening device when one has a lot of predictor variables.
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