
5 ONE-WAY ANOVA (REVIEW) AND EXPERIMENTAL DESIGN

5 One-Way ANOVA (Review) and Experimental Design

Samuels and Witmer Chapter 11 - all sections except 6.
The one-way analysis of variance (ANOVA) is a generalization of the two sample t−test to

k ≥ 2 groups. Assume that the populations of interest have the following (unknown) population
means and standard deviations:

population 1 population 2 · · · population k

mean µ1 µ2 · · · µk

std dev σ1 σ2 · · · σk

A usual interest in ANOVA is whether µ1 = µ2 = · · · = µk. If not, then we wish to know which
means differ, and by how much. To answer these questions we select samples from each of the k
populations, leading to the following data summary:

sample 1 sample 2 · · · sample k

size n1 n2 · · · nk

mean Y 1 Y 2 · · · Y k

std dev s1 s2 · · · sk

A little more notation is needed for the discussion. Let Yij denote the jth observation in the ith

sample and define the total sample size n∗ = n1 + n2 + · · · + nk. Finally, let Y be the average
response over all samples (combined), that is

Y =
∑

ij Yij

n∗
=

∑
i niY i

n∗
.

Note that Y is not the average of the sample means, unless the sample sizes ni are equal.
An F−statistic is used to test H0 : µ1 = µ2 = · · · = µk against HA : not H0. The assumptions

needed for the standard ANOVA F−test are analogous to the independent two-sample t−test
assumptions: (1) Independent random samples from each population. (2) The population frequency
curves are normal. (3) The populations have equal standard deviations, σ1 = σ2 = · · · = σk.

The F−test is computed from the ANOVA table, which breaks the spread in the combined data
set into two components, or Sums of Squares (SS). The Within SS, often called the Residual
SS or the Error SS, is the portion of the total spread due to variability within samples:

SS(Within) = (n1 − 1)s2
1 + (n2 − 1)s2

2 + · · ·+ (nk − 1)s2
k =

∑
ij(Yij − Y i)2.

The Between SS, often called the Model SS, measures the spread between (actually among!) the
sample means

SS(Between) = n1(Y 1 − Y )2 + n2(Y 2 − Y )2 + · · ·+ nk(Y k − Y )2 =
∑

i ni(Y i − Y )2,

weighted by the sample sizes. These two SS add to give

SS(Total) = SS(Between) + SS(Within) =
∑

ij(Yij − Y )2.

Each SS has its own degrees of freedom (df). The df(Between) is the number of groups minus
one, k − 1. The df(Within) is the total number of observations minus the number of groups:
(n1−1)+(n2−1)+· · · (nk−1) = n∗−k. These two df add to give df(Total) = (k−1)+(n∗−k) = n∗−1.

The Sums of Squares and df are neatly arranged in a table, called the ANOVA table:
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Source df SS MS
Between Groups k − 1

∑
i ni(Y i − Y )2

Within Groups n∗ − k
∑

i(ni − 1)s2
i

Total n∗ − 1
∑

ij(Yij − Y )2.

The ANOVA table often gives a Mean Squares (MS) column, left blank here. The Mean
Square for each source of variation is the corresponding SS divided by its df . The Mean Squares
can be easily interpreted.

The MS(Within)

(n1 − 1)s2
1 + (n2 − 1)s2

2 + · · ·+ (nk − 1)s2
k

n∗ − k
= s2

pooled

is a weighted average of the sample variances. The MS(Within) is known as the pooled estimator
of variance, and estimates the assumed common population variance. If all the sample sizes are
equal, the MS(Within) is the average sample variance. The MS(Within) is identical to the pooled
variance estimator in a two-sample problem when k = 2.

The MS(Between) ∑
i ni(Y i − Y )2

k − 1
is a measure of variability among the sample means. This MS is a multiple of the sample variance
of Y 1, Y 2, ..., Y k when all the sample sizes are equal.

The MS(Total) ∑
ij(Yij − Y )2

n∗ − 1
is the variance in the combined data set.

The decision on whether to reject H0 : µ1 = µ2 = · · · = µk is based on the ratio of the
MS(Between) and the MS(Within):

Fs =
MS(Between)
MS(Within)

.

Large values of Fs indicate large variability among the sample means Y 1, Y 2, ..., Y k relative to the
spread of the data within samples. That is, large values of Fs suggest that H0 is false.

Formally, for a size α test, reject H0 if Fs ≥ Fcrit, where Fcrit is the upper-α percentile from
an F distribution with numerator degrees of freedom k − 1 and denominator degrees of freedom
n∗− k (i.e. the df for the numerators and denominators in the F−ratio.). An F distribution table
is given on pages 687-696 of SW. The p-value for the test is the area under the F− probability
curve to the right of Fs. Stata summarizes the ANOVA F−test with a p-value. In Stata, use
the anova or oneway commands to perform 1-way ANOVA. The data should be in the form of a
variable containing the response Yij and a grouping variable. For k = 2, the test is equivalent to
the pooled two-sample t−test.
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0 1 2 3 4 5 6FCrit

α = .05 (fixed)

Reject H0 for FS here

F with 4 and 20 degrees of freedom

0 1 2 3 4 5 6FS

p−value (random)

F with 4 and 20 degrees of freedom
FS not significant

FCrit

Example from the Child Health and Development Study (CHDS)

We consider data from the birth records of 680 live-born white male infants. The infants were
born to mothers who reported for pre-natal care to three clinics of the Kaiser hospitals in northern
California. As an initial analysis, we will examine whether maternal smoking has an effect on
the birth weights of these children. To answer this question, we define 3 groups based on mother’s
smoking history: (1) mother does not currently smoke or never smoked (2) mother smoked less than
one pack of cigarettes a day during pregnancy (3) mother smoked at least one pack of cigarettes a
day during pregnancy.

Let µi = pop mean birth weight (in lbs) for children in group i, (i = 1, 2, 3). We wish to test
H0 : µ1 = µ2 = µ3 against HA : not H0.

The side-by-side boxplots of the data show roughly the same spread among groups and little
evidence of skew:
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 Nonsmoker Less than a pack Pack or more

Birth Weight by Maternal Smoking

There is no strong evidence against normality here. Furthermore the sample standard deviations
are close (see the following output). We may formally test the equality of variances across the three
groups (remember - the F-test is not valid if its assumptions are not met) using Stata’s robvar
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command. In this example we obtain a set of three robust tests for the hypothesis H0 : σ1 = σ2 = σ3

where σi is the population standard deviation of weight in group i, i = 1, 2, 3. What robust means
in this context is that the test still works reasonably well if assumptions are not quite met. The
classical test of this hypothesis is Bartlett’s test, and that test is well known to be extraordinarily
sensitive to the assumption of normality of all the distributions. There are two ways a test may not
work well when assumptions are violated - the level may not be correct, or the power may be poor.
For Bartlett’s test, the problem is the level may not be accurate, which in this case means that you
may see a small p-value that does not reflect unequal variances but instead reflects non-normality.
A test with this property is known as liberal because it rejects H0 too often (relative to the nominal
α).

Stata output follows; we do not reject that the variances are equal across the three groups at
any reasonable significance level using any of the three test statistics:

. robvar( weight),by(ms_gp_txt)
| Summary of Child’s birth weight
| (lbs)

ms_gp_txt | Mean Std. Dev. Freq.
-----------------+------------------------------------

Nonsmoker | 7.7328084 1.0523406 381
Less than a pack | 7.2213018 1.0777604 169

Pack or more | 7.2661539 1.0909461 130
-----------------+------------------------------------

Total | 7.5164706 1.0923455 680
W0 = .82007944 df(2, 677) Pr > F = .44083367
W50 = .75912861 df(2, 677) Pr > F = .46847213
W10 = .77842523 df(2, 677) Pr > F = .45953896

There are multiple ways to get the ANOVA table here, the most common being the command
anova weight ms_gp or the more specialized oneway weight ms_gp. Bartlett’s test for equal
variances is given when using the latter. In the following output, I also gave the ,b option to get
Bonferroni multiple comparisons, discussed after the Fisher’s Method (next section).

The ANOVA table is:

. oneway weight ms_gp_txt,b
Analysis of Variance

Source SS df MS F Prob > F
------------------------------------------------------------------------
Between groups 40.7012466 2 20.3506233 17.90 0.0000
Within groups 769.4943 677 1.13662378
------------------------------------------------------------------------

Total 810.195546 679 1.19321877
Bartlett’s test for equal variances: chi2(2) = 0.3055 Prob>chi2 = 0.858

Comparison of Child’s birth weight (lbs) by ms_gp_txt
(Bonferroni)

Row Mean-|
Col Mean | Nonsmok Less tha
---------+----------------------
Less tha | -.511507

| 0.000
|

Pack or | -.466655 .044852
| 0.000 1.000

The p-value for the F−test is less than .0001. We would reject H0 at any of the usual test
levels (i.e. .05 or .01), concluding that the population mean birth weights differ in some way across
smoking status groups. The data (boxplots) suggest that the mean birth weights are higher for
children born to mothers that did not smoke during pregnancy, but that is not a legal conclusion
based upon the F-test alone.

The Stata commands to obtain this analysis are:
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infile id head ...et cetera... pheight using c:/chds.txt
generate ms_gp = 1 if msmoke == 0
replace ms_gp = 2 if msmoke >= 1 & msmoke < 20
replace ms_gp = 3 if msmoke >= 20
gene ms_gp_txt = " Nonsmoker" if ms_gp ==1
replace ms_gp_txt = "Less than a pack" if ms_gp ==2
replace ms_gp_txt = "Pack or more" if ms_gp ==3
graph box weight, over(ms_gp_txt)
robvar weight, by (ms_gp_txt)
oneway weight ms_gp_txt,b

Multiple Comparison Methods: Fisher’s Method

The ANOVA F−test checks whether all the population means are equal. Multiple comparisons
are often used as a follow-up to a significant ANOVA F−test to determine which population means
are different. I will discuss Fisher, Bonferroni, and Tukey methods for comparing all pairs of means.
Fisher’s and Tukey’s approaches are implemented in Stata using Stata’s prcomp command. This
command is not automatically installed in Stata 8 or 9. You will have to search for “pairwise
comparisons” under Help > Search... and click on the blue sg101 link. Click on [Click here
to install] (your computer must be connected to the internet to do this) and you will then have
access to this command.

Fisher’s Least significant difference method (LSD or FSD) is a two-step process:

1. Carry out the ANOVA F−test of H0 : µ1 = µ2 = · · · = µk at the α level. If H0 is not rejected,
stop and conclude that there is insufficient evidence to claim differences among population
means. If H0 is rejected, go to step 2.

2. Compare each pair of means using a pooled two sample t−test at the α level. Use spooled

from the ANOVA table and df = df(Residual). Using this denominator is different from just
doing all the possible pair-wise t-tests.

To see where the name LSD originated, consider the t−test of H0 : µi = µj (i.e. populations i and
j have same mean). The t−statistic is

ts =
Y i − Y j

spooled

√
1
ni

+ 1
nj

.

You reject H0 if |ts| ≥ tcrit, or equivalently, if

|Y i − Y j | ≥ tcrit spooled

√
1
ni

+
1
nj

.

The minimum absolute difference between Y i and Y j needed to reject H0 is the LSD, the quantity
on the right hand side of this inequality.

Stata gives all possible comparisons between pairs of populations means. The error level (i.e.
α) can be set to an arbitrary value using the level() subcommand, with 0.05 being the standard.
Looking at the CI’s in the Stata output, we conclude that the mean birth weights for children
born to non-smoking mothers (group 1) is significantly different from the mean birth weights for
each of the other two groups (2 and 3), since confidence intervals do not contain 0. The Stata
command prcomp weight ms_gp produced the output (it needs group defined numerically); the
default output includes CIs for differences in means. Alternatively, one obtains the p-values for
testing the hypotheses that the population means are equal using the test subcommand. This is
illustrated in the section on Tukey’s method. Examining the output from the prcomp command,
we see the FSD method is called the t method by Stata.
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. prcomp weight ms_gp
Pairwise Comparisons of Means

Response variable (Y): weight Child’s birth weight (lbs)
Group variable (X): ms_gp Maternal Smoking Group

Group variable (X): ms_gp Response variable (Y): weight
------------------------------- -------------------------------

Level n Mean S.E.
------------------------------------------------------------------

1 381 7.732808 .053913
2 169 7.221302 .0829046
3 130 7.266154 .0956823

------------------------------------------------------------------
Individual confidence level: 95% (t method)
Homogeneous error SD = 1.066126, degrees of freedom = 677

95%
Level(X) Mean(Y) Level(X) Mean(Y) Diff Mean Confidence Limits
-------------------------------------------------------------------------------

2 7.221302 1 7.732808 -.5115066 -.7049746 -.3180387
3 7.266154 1 7.732808 -.4666546 -.6792774 -.2540318

2 7.221302 .0448521 -.1993527 .2890568
-------------------------------------------------------------------------------

Discussion of the FSD Method

With k groups, there are c =
(k
2

)
= k(k−1)

2 pairs of means to compare in the second step of the FSD
method. Each comparison is done at the α level, where for a generic comparison of the ith and jth

populations

α = probability of rejecting H0 : µi = µj when H0 is true.

This probability is called the comparison error rate or the individual error rate.
The individual error rate is not the only error rate that is important in multiple comparisons.

The family error rate (FER), or the experimentwise error rate, is defined to be the probability
of at least one false rejection of a true hypothesis H0 : µi = µj over all comparisons. When many
comparisons are made, you may have a large probability of making one or more false rejections of
true null hypotheses. In particular, when all c comparisons of two population means are performed,
each at the α level, then α ≤ FER ≤ cα.

For example, in the birth weight problem where k = 3, there are c = .5 ∗ 3 ∗ 2 = 3 possible
comparisons of two groups. If each comparison is carried out at the 5% level, then .05 ≤ FER ≤ .15.
At the second step of the FSD method, you could have up to a 15% chance of claiming one or more
pairs of population means are different if no differences existed between population means.

The first step of the FSD method is the ANOVA “screening” test. The multiple comparisons
are carried out only if the F−test suggests that not all population means are equal. This screening
test tends to deflate the FER for the two-step FSD procedure. However, the FSD method is
commonly criticized for being extremely liberal (too many false rejections of true null hypotheses)
when some, but not many, differences exist - especially when the number of comparisons is large.
This conclusion is fairly intuitive. When you do a large number of tests, each, say, at the 5% level,
then sampling variation alone will suggest differences in 5% of the comparisons where the H0 is
true. The number of false rejections could be enormous with a large number of comparisons. For
example, chance variation alone would account for an average of 50 significant differences in 1000
comparisons each at the 5% level.

The Bonferroni Multiple Comparison Method

The Bonferroni method goes directly after the preceding relationship, α ≤ FER ≤ cα. To keep the
FER below level α, do the individual tests at level α

c , or equivalently multiply each of the reported
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p-values by c. This is, in practice, extremely conservative but it does guarantee the FER is below
α. If you have, for instance, c = 3 comparisons to make, and a reported p-value from a t-test is
.02 then the Bonferroni p-value is 3(.02) = .06 and the difference would not be judged significant.
With more comparisons it becomes extremely hard for the Bonferroni method to find anything.
The FSD method tends to have a too-high FER, the Bonferroni method a too-low FER. Very often
they agree.

Earlier (p. 69) we looked at the ANOVA output following the oneway weight group,b com-
mand. Examining that output we see p-values of 0 for testing H0 : µ1 = µ2 and H0 : µ1 = µ3,
and a p-value of 1 for testing H0 : µ2 = µ3 using the Bonferroni method. The Bonferroni tests see
group 1 differing from both 2 and 3, and no difference between 2 and 3, in complete agreement
with FSD.

Tukey’s Multiple Comparison Method

One commonly used alternative to FSD and Bonferroni is Tukey’s honest significant difference
method (HSD). Unlike FSD (but similar to Bonferroni), Tukey’s method allows you to prespecify
the FER, at the cost of making the individual comparisons more conservative than in FSD (but
less conservative than Bonferroni).

To implement Tukey’s method with a FER of α, reject H0 : µi = µj when

|Y i − Y j | ≥ qcrit√
2

spooled

√
1
ni

+
1
nj

,

where qcrit is the α level critical value of the studentized range distribution (tables not in SW).
The right hand side of this equation is called the HSD. For the birth weight data, the groupings
based on the Tukey and Fisher methods are identical. We obtain Tukey’s groupings via the Stata
command prcomp weight group, tukey test. The differences with an asterisk next to them are
significant (the |numerator| is larger than the denominator):

. prcomp weight ms_gp,tukey test
Pairwise Comparisons of Means

Response variable (Y): weight Child’s birth weight (lbs)
Group variable (X): ms_gp Maternal Smoking Group

Group variable (X): ms_gp Response variable (Y): weight
------------------------------- -------------------------------

Level n Mean S.E.
------------------------------------------------------------------

1 381 7.732808 .053913
2 169 7.221302 .0829046
3 130 7.266154 .0956823

------------------------------------------------------------------
Simultaneous significance level: 5% (Tukey wsd method)
Homogeneous error SD = 1.066126, degrees of freedom = 677

(Row Mean - Column Mean) / (Critical Diff)
Mean(Y) | 7.7328 7.2213 Level(X)

| 1 2
--------+--------------------
7.2213| -.51151*

2| .23145
|

7.2662| -.46665* .04485
3| .25436 .29214
|

Stata does not provide, as built-in commands or options, very many multiple comparison
procedures. The one-way ANOVA problem we have been looking at is relatively simple, and the
Tukey method appears as something of an afterthought for it. For more complicated multi-factor
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models, about all Stata offers is Bonferroni and a two other methods (Holm and Sidak) that adjust
the p-value similarly using slightly different principles to control FER, but less conservatively than
Bonferroni. The help file on mtest has details. FSD is always available, since that amounts to no
adjustment. In response to questions on the www about doing multiple comparisons, Stata has
pointed out how easy it is to program whatever you want in do files (probably the right answer
for experts). Some packages like SAS offer a larger number of options. What Stata offers is
adequate for many areas of research, but for some others it will be necessary to go beyond the
built-in offerings of Stata (a reviewer on your paper will let you know!)

Checking Assumptions in ANOVA Problems

The classical ANOVA assumes that the populations have normal frequency curves and the popu-
lations have equal variances (or spreads). You can test the normality assumption using multiple
Wilk-Shapiro tests (i.e. one for each sample). In addition, you can save (to the worksheet) the
centered data values, which are the observations minus the mean for the group from which each
observation comes. These centered values, or residuals, should behave as a single sample from a
normal population. A boxplot and normal quantile test of the residuals gives an overall assessment
of normality. The commands predict residuals, resid and then swilk residuals indicates
that, although not significant at the 5% level, normality may be suspect:

. swilk residuals
Shapiro-Wilk W test for normal data

Variable | Obs W V z Prob>z
-------------+-------------------------------------------------

residuals | 680 0.99580 1.866 1.520 0.06425

Mathematically, this is just a specialized regression problem and we can construct the same
diagnostic plots we have been doing for regression. Cook’s D is not worth doing in this case,
though.
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There are several alternative procedures that can be used when either the normality or equal
variance assumption are not satisfied. Welch’s ANOVA method (available in JMP-In, not directly
available in Stata) is appropriate for normal populations with unequal variances. The test is a gen-
eralization of Satterthwaite’s two-sample test discussed last semester. Most statisticians probably
would use weighted least squares or transformations to deal with the unequal variance problem (we
will discuss this if time permits this semester). The Wilcoxon or Kruskal-Wallis non-parametric
ANOVA is appropriate with non-normal populations with similar spreads.

For the birth weight data, recall that formal tests of equal variances are not significant (p-
values > .4). Thus, there is insufficient evidence that the population variances differ. Given that
the distributions are fairly symmetric, with no extreme values, the standard ANOVA appears to
be the method of choice. As an illustration of an alternative method, though, the summary from
the Kruskal-Wallis approach follows, leading to the same conclusion as the standard ANOVA. One
weakness of Stata is that it does not directly provide for non-parametric multiple comparisons. One
could do all the pair-wise Mann-Whitney two-sample tests and use a Bonferroni adjustment (the
ranksum command implements this two sample version of the Kruskal-Wallis test). The Bonferroni
adjustment just multiplies all the p-values by 3 (the number of comparisons). If you do this, you find
the same conclusions as with the normal-theory procedures: Group 1 differs from the other two, and
groups 2 and 3 are not significantly different. Recall from last semester the Kruskal-Wallis and the
Mann-Whitney amount to little more than one-way ANOVA and two-sample t-tests, respectively,
on ranks in the combined samples (this controls for outliers).

. kwallis weight,by(ms_gp_txt)
Test: Equality of populations (Kruskal-Wallis test)
+------------------------------------+
| ms_gp_txt | Obs | Rank Sum |
|------------------+-----+-----------|
| Nonsmoker | 381 | 144979.00 |
| Less than a pack | 169 | 47591.00 |
| Pack or more | 130 | 38970.00 |
+------------------------------------+

chi-squared = 36.594 with 2 d.f.
probability = 0.0001
chi-squared with ties = 36.637 with 2 d.f.
probability = 0.0001

Basics of Experimental Design

This section describes an experimental design to compare the effectiveness of four insecticides to
eradicate beetles. The primary interest is determining which treatment is most effective, in the
sense of providing the lowest typical survival time.

In a completely randomized design (CRD), the scientist might select a sample of genetically
identical beetles for the experiment, and then randomly assign a predetermined number of beetles
to the treatment groups (insecticides). The sample sizes for the groups need not be equal. A power
analysis is often conducted to determine sample sizes for the treatments. For simplicity, assume
that 48 beetles will be used in the experiment, with 12 beetles assigned to each group.

After assigning the beetles to the four groups, the insecticide is applied (uniformly to all ex-
perimental units or beetles), and the individual survival times recorded. A natural analysis of the
data would be to compare the survival times using a one-way ANOVA.

There are several important controls that should be built into this experiment. The same strain
of beetles should be used to ensure that the four treatment groups are alike as possible, so that
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differences in survival times are attributable to the insecticides, and not due to genetic differences
among beetles. Other factors that may influence the survival time, say the concentration of the
insecticide or the age of the beetles, would be held constant, or fixed by the experimenter, if possible.
Thus, the same concentration would be used with the four insecticides.

In complex experiments, there are always potential influences that are not realized or thought
to be unimportant that you do not or can not control. The randomization of beetles to groups
ensures that there is no systematic dependence of the observed treatment differences on the un-
controlled influences. This is extremely important in studies where genetic and environmental
influences can not be easily controlled (as in humans, more so than in bugs or mice). The ran-
domization of beetles to insecticides tends to diffuse or greatly reduce the effect of the uncontrolled
influences on the comparison of insecticides, in the sense that these effects become part of the
uncontrolled or error variation of the experiment.

Suppose yij is the response for the jth experimental unit in the ith treatment group, where
i = 1, 2, ..., I. The statistical model for a completely randomized one-factor design that leads to
a one-way ANOVA is given by:

yij = µi + eij ,

where µi is the (unknown) population mean for all potential responses to the ith treatment, and eij

is the residual or deviation of the response from the population mean. The responses within and
across treatments are assumed to be independent, normal random variables with constant variance.

For the insecticide experiment, yij is the survival time for the jth beetle given the ith insec-
ticide, where i = 1, 2, 3, 4 and j = 1, 2, .., 12. The random selection of beetles coupled with the
randomization of beetles to groups ensures the independence assumptions. The assumed population
distributions of responses for the I = 4 insecticides can be represented as follows:

 

 

Insecticide 1

Insecticide 2

Insecticide 3

Insecticide 4
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Let µ = 1
I

∑
i µi be the grand mean, or average of the population means. Let αi = µi − µ be

the ith treatment group effect. The treatment effects add to zero, α1 + α2 + · · ·+ αI = 0, and
measure the difference between the treatment population means and the grand mean. Given this
notation, the one-way ANOVA model is

yij = µ + αi + eij .

The model specifies that the

Response = Grand Mean + Treatment Effect + Residual.

An hypothesis of interest is whether the population means are equal: H0 : µ1 = · · · = µI , which
is equivalent to the hypothesis of no treatment effects: H0 : α1 = · · · = αI = 0. If H0 is true, then
the one-way model is

yij = µ + eij ,

where µ is the common population mean. We know how to test H0 and do multiple comparisons
of the treatments, so I will skip this material.

Most epidemiological studies are observational studies where the groups to be compared
ideally consist of individuals that are similar on all characteristics that influence the response,
except for the feature that defines the groups. In a designed experiment, the groups to be compared
are defined by treatments randomly assigned to individuals. If, in an observational study we can not
define the groups to be homogeneous on important factors that might influence the response, then
we should adjust for these factors in the analysis. I will discuss this more completely in the next
2 weeks. In the analysis we just did on smoking and birth weight, we were not able to randomize
with respect to several factors that might influence the response, and will need to adjust for them.

Paired Experiments and Randomized Block Experiment

A randomized block design is often used instead of a completely randomized design in studies
where there is extraneous variation among the experimental units that may influence the response.
A significant amount of the extraneous variation may be removed from the comparison of treatments
by partitioning the experimental units into fairly homogeneous subgroups or blocks.

For example, suppose you are interested in comparing the effectiveness of four antibiotics for
a bacterial infection. The recovery time after administering an antibiotic may be influenced by
the patients general health, the extent of their infection, or their age. Randomly allocating ex-
perimental subjects to the treatments (and then comparing them using a one-way ANOVA) may
produce one treatment having a “favorable” sample of patients with features that naturally lead to
a speedy recovery. Additionally, if the characteristics that affect the recovery time are spread across
treatments, then the variation within samples due to these uncontrolled features can dominate the
effects of the treatment, leading to an inconclusive result.

A better way to design this experiment would be to block the subjects into groups of four
patients who are alike as possible on factors other than the treatment that influence the recovery
time. The four treatments are then randomly assigned to the patients (one per patient) within a
block, and the recovery time measured. The blocking of patients usually produces a more sensi-
tive comparison of treatments than does a completely randomized design because the variation in
recovery times due to the blocks is eliminated from the comparison of treatments.

A randomized block design is a paired experiment when two treatments are compared. The
usual analysis for a paired experiment is a parametric or non-parametric paired comparison. In
certain experiments, each experimental unit receives each treatment. The experimental units are
“natural” blocks for the analysis.
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Example: Comparison of Treatments to Relieve Itching

Ten male volunteers between 20 and 30 years old were used as a study group to compare seven
treatments (5 drugs, a placebo, and no drug) to relieve itching. Each subject was given a different
treatment on seven study days. The time ordering of the treatments was randomized across days.
Except on the no-drug day, the subjects were given the treatment intravenously, and then itching
was induced on their forearms using an effective itch stimulus called cowage. The subjects recorded
the duration of itching, in seconds. The data are given in the table below. From left to right the
drugs are: papaverine, morphine, aminophylline, pentobarbitol, tripelenamine.

Patient Nodrug Placebo Papv Morp Amino Pento Tripel
1 174 263 105 199 141 108 141
2 224 213 103 143 168 341 184
3 260 231 145 113 78 159 125
4 255 291 103 225 164 135 227
5 165 168 144 176 127 239 194
6 237 121 94 144 114 136 155
7 191 137 35 87 96 140 121
8 100 102 133 120 222 134 129
9 115 89 83 100 165 185 79
10 189 433 237 173 168 188 317

The volunteers in the study were treated as blocks in the analysis. At best, the volunteers might
be considered a representative sample of males between the ages of 20 and 30. This limits the extent
of inferences from the experiment. The scientists can not, without sound medical justification,
extrapolate the results to children or to senior citizens.

The Analysis of a Randomized Block Design

Assume that you designed a randomized block experiment with I blocks and J treatments, where
each treatment occurs once in each block. Let yij be the response for the jth treatment within the
ith block. The model for the experiment is

yij = µij + eij ,

where µij is the population mean response for the jth treatment in the ith block and eij is the
deviation of the response from the mean. The population means are assumed to satisfy the additive
model

µij = µ + αi + βj

where µ is a grand mean, αi is the effect for the ith block, and βj is the effect for the jth treatment.
The responses are assumed to be independent across blocks, normally distributed and with constant
variance. The randomized block model does not require the observations within a block to be
independent, but does assume that the correlation between responses within a block is identical for
each pair of treatments. This is a reasonable working assumption in many analyses. In this case
you really need to be sure the order in which treatments are administered to subjects is randomized
in order to assume equal correlation.

The model is sometimes written as

Response = Grand Mean + Treatment Effect + Block Effect + Residual.
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Given the data, let ȳi· be the ith block sample mean (the average of the responses in the ith

block), ȳ·j be the jth treatment sample mean (the average of the responses on the jth treatment),
and ȳ·· be the average response of all IJ observations in the experiment.

An ANOVA table for the randomized block experiment partitions the Model SS into SS for
Blocks and Treatments.

Source df SS MS
Blocks I − 1 J

∑
i(ȳi· − ȳ··)2

Treats J − 1 I
∑

j(ȳ·j − ȳ··)2

Error (I − 1)(J − 1)
∑

ij(yij − ȳi· − ȳ·j + ȳ··)2

Total IJ − 1
∑

ij(yij − ȳ··)2.

A primary interest is testing whether the treatment effects are zero: H0 : β1 = · · · = βJ = 0.
The treatment effects are zero if the population mean responses are identical for each treat-
ment. A formal test of no treatment effects is based on the p-value from the F-statistic Fobs =
MS Treat/MS Error. The p-value is evaluated in the usual way (i.e. as an upper tail area from an
F-distribution with J − 1 and (I − 1)(J − 1) df.) This H0 is rejected when the treatment averages
ȳ·j vary significantly relative to the error variation.

A test for no block effects (H0 : α1 = · · · = αI = 0) is often a secondary interest, because, if
the experiment is designed well, the blocks will be, by construction, noticeably different. There are
no block effects if the block population means are identical. A formal test of no block effects is
based on the p-value from the F-statistic Fobs = MS Blocks/MS Error. This H0 is rejected when
the block averages ȳi· vary significantly relative to the error variation.

A Randomized Block Analysis of the Itching Data

The anova command is used to get the randomized block analysis. You will be shown the steps in
Thursday’s Lab, but I will mention a few important points.

• The data are comprised of three variables: itchtime, person (ranges from 1-10), and treat-
ment (ranges from 1-7). A data file called itch.txt was created with these three variables to
be read into Stata.

• In the anova table, persons play the role of Blocks in this analysis. Using the commands
infile itchtime person treatment using c:/itch.txt and then
anova itchtime person treatment we obtain the following output:

Number of obs = 70 R-squared = 0.4832
Root MSE = 55.6327 Adj R-squared = 0.3397

Source | Partial SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 156292.6 15 10419.5067 3.37 0.0005
|

person | 103279.714 9 11475.5238 3.71 0.0011
treatment | 53012.8857 6 8835.48095 2.85 0.0173

|
Residual | 167129.686 54 3094.99418

-----------+----------------------------------------------------
Total | 323422.286 69 4687.2795

• The Model SS is the Sum of the person SS and treatment SS; check that they add up. The
F-test on the Whole-Model test ANOVA checks for whether Treatments or Persons, or both,
are significant, i.e. provides an overall test of all effects in the model.
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• Next comes the SS for Persons and Treatments, and the corresponding F-statistics and p-
values.

• It is possible in Minitab, JMP-IN and SAS (but not directly in Stata) to obtain Tukey
multiple comparisons of the treatments. These are options in the analysis of the individual
effects.

• In Stata, we obtain the results of testing differences in the treatments (averaged over persons)
using Fisher’s method from the test command. You will cover this in more detail in Thurs-
day’s lab. To obtain Bonferroni’s adjusted p-values, simply multiply the p-value for each of
Fisher’s tests by the number of comparisons you are making; in the itching time example this

is

(
7
2

)
= 21 paired comparisons. We obtain, for example the results of Fisher’s method

for comparing treatment 1 with treatment 2 (no drug versus placebo) and treatment 1 with
treatment 3 (no drug versus papaverine) with the following commands:

test _b[treatment[1]] = _b[treatment[2]]
test _b[treatment[1]] = _b[treatment[3]]

We obtain the output:

( 1) treatment[1] - treatment[2] = 0
F( 1, 54) = 0.31

Prob > F = 0.5814
( 1) treatment[1] - treatment[3] = 0

F( 1, 54) = 8.56
Prob > F = 0.0050

We see that using Fisher’s method, treatments 1 and 2 do not significantly differ, but treat-
ments 1 and 3 do significantly differ at the 5% level. The corresponding Bonferroni p-values
are 0.58(2) > 1 and 0.005(2) = 0.01 for only the two comparisons. They are 0.58(21) > 1 and
0.005(21) = 0.105 if all 21 paired comparisons are to be made. We would accept that there
is no significant difference in mean itching time between either pairs of treatments when all
21 comparisons are to be made. The tabulated p-values resulting from Fisher’s method are:

Treatment 1 2 3 4 5 6
2 0.58
3 0.01 0.00
4 0.09 0.03 0.23
5 0.07 0.02 0.30 0.88
6 0.56 0.26 0.02 0.26 0.20
7 0.34 0.13 0.05 0.44 0.36 0.71

We have the following groupings:

3 5 4 7 6 1 2
-------
--------- Fisher’s

-------

-----------
----------- Bonferroni’s [and Tukey’s obtained in JMP-IN]
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Looking at the means for each treatment averaged over persons, we see that each of the five
drugs appears to have an effect, compared to the placebo and to no drug, which have similar
means. Papaverine appears to be the most effective drug, whereas placebo is the least effective
treatment. A formal F-test shows significant differences among the treatments (p-value=0.017),
and among patients (p-value=0.001). The only significant pairwise difference in treatments is
between papaverine and placebo using Bonferroni (or Tukey) adjustments.

This all looks more difficult than it needs to be in practice. The usual strategy to start grouping
population means this way is first to get the ordering of sample means. Examining the following
produces the order 3 5 4 7 6 1 2 above.

. mean itchtime,over(treatment) noheader
--------------------------------------------------------------

Over | Mean Std. Err. [95% Conf. Interval]
-------------+------------------------------------------------
itchtime |

1 | 191 17.34871 156.3903 225.6097
2 | 204.8 33.43278 138.1034 271.4966
3 | 118.2 16.69983 84.88474 151.5153
4 | 148 14.14763 119.7762 176.2238
5 | 144.3 13.30585 117.7556 170.8444
6 | 176.5 21.77422 133.0616 219.9384
7 | 167.2 21.34521 124.6175 209.7825

--------------------------------------------------------------

The target p-value for the Fisher method probably will be .05, and for the Bonferroni method is
obtained by simple calculation:

. disp .05/21

.00238095

We really want to avoid running all 21 tests, and we can skip most. Once the comparisons between
3 and 7 turn out not significant, it is unnecessary to compare 3 to 5 and 4. Once the comparison
between 3 and 6 turns out significant, it is not necessary to compare 3 to 1 and 2. Careful
examination of patterns can make this fairly quick.

For this particular problem, there are a few outliers and possible problems with the normality
assumption. The data set is on the web site - do the residual analysis, and try transforming itchtime
with something like the square root to handle outliers a little better. Boxplots can be very valuable
here. Redo the comparisons to see if anything has changed in the transformed scale.

A final note: An analysis that ignored person (the blocking factor), i.e. a simple one-way
ANOVA, would be incorrect here since it would be assuming all observations are independent. In
fact, that analysis finds no differences because the MSE is too large when ignoring blocks (you still
should not treat that p-value as valid).
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