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6 Two-factor Experiments

Last week we considered a CRD (completely randomized design) for comparing insecticides where
the levels of one factor (insecticide) vary while controlling other factors that influence survival time.
The inferences from the one-way ANOVA apply to beetles with a given age from the selected strain
that might be given the selected concentration of the insecticides. Any generalization of the conclu-
sions to other situations must be justified scientifically, typically through further experimentation.

Recall the way we set up the model: yij is the response for the jth experimental unit (replicate)
in the ith treatment group, where i = 1, 2, ..., I;

yij = µi + εij ,

where µi is the (unknown) population mean for all potential responses to the ith treatment, and εij

is the residual or deviation of the response from the population mean. The responses within and
across treatments are assumed to be independent, normal random variables with constant variance.
We further decomposed µi as µi = µ + αi.

There are several ways to broaden the scope of the study. For example, several strains of beetles
or several concentrations of the insecticide might be used. For simplicity, consider a simple two-
factor experiment where three concentrations (Low, Medium, and High) are applied with each of the
four insecticides. This is a completely crossed two-factor experiment where each of the 4×3 = 12
combinations of the two factors (insecticide and dose) are included in the comparison of survival
times. With this experiment, the scientist can compare insecticides, compare concentrations, and
check for an interaction between dose and insecticide.

Assuming that 48 beetles are available, the scientist would randomly assign them to the 12
experimental groups, giving prespecified numbers of beetles to the 12 groups. For simplicity, assume
that the experiment is balanced, that is, the same number of beetles (4) is assigned to each group
(12× 4 = 48). This is a CRD with two factors.

A Balanced Two-Factor Model

We will analyze survival times of groups of four beetles randomly allocated to twelve treatment
groups obtained by crossing the levels of four insecticides (1,2,3,4) at each of three concentrations
of the insecticides (1=Low, 2=Medium, 3=High). This is a balanced 4-by-3 factorial design (two-
factor design) that is replicated four times. Three variables are needed to uniquely represent each
response in the spreadsheet: dose (1-3, nominal), insecticide (1-4, nominal), and the survival time
(called time). The unit of measure for the survival times is 10 hours. That is, .3 is a survival time
of 3 hours. The data are given below, collected into 12 cells (4 rows and 3 columns):

Dose
Insecticide 1 2 3

1 .31, .45, .46, .43 .36, .29, .40, .23 .22, .21, .18, .23
2 .82, 1.10, .88, .72 .92, .61, .49, 1.24 .30, .37, .38, .29
3 .43, .45, .63, .76 .44, .35, .31, .40 .23, .25, .24, .22
4 .45, .71, .66, .62 .56, 1.02, .71, .38 .30, .36, .31, .33

We model this in terms of population means, just as we did in the one-way ANOVA. Now,
though, population means are indexed two ways, by insecticide and by dose, so we write

yijk = µij + εijk; i = 1, 2, . . . , I; j = 1, 2, . . . , J ; k = 1, 2, . . . , K
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where i refers to insecticide (I=4), j refers to dose (J=3), and k refers to replicate (K=4). For
instance y314 = .76. Since we have the same number (4) of replicates in each cell this is called
balanced. More generally it happens that k = 1, 2, . . . ,Kij , i.e. there can be different numbers
of replicates (usually not designed that way, but things happen!), and the analysis gets somewhat
more complicated. We will consider an unbalanced problem later.

In the one-way problem, the basic test of hypothesis is that all the means are equal. That is not
very useful here. What we want to do is compare insecticides, compare doses, and see if the effect
of dose varies with insecticide. We need to define some additional population averages to attack all
these hypotheses. The population marginal mean for Insecticide i is µ̄i. = 1

J

∑J
j=1 µij = 1

3

∑3
j=1 µij ,

the average of Insecticide i across Dose levels. The population marginal mean for Dose j is µ̄.j =
1
I

∑I
i=1 µij = 1

4

∑4
i=1 µij , the average of Dose j across Insecticide levels. There also is an overall

population average, µ̄.. = 1
IJ

∑I
i=1

∑J
j=1 µij = 1

12

∑4
i=1

∑3
j=1 µij , the average of all 12 population

means. What we are interested in is the structure in the following table of population mean values:

Dose
Insecticide 1 2 3 Insecticide marginal

1 µ11 µ12 µ13 µ̄1.

2 µ21 µ22 µ23 µ̄2.

3 µ31 µ32 µ33 µ̄3.

4 µ41 µ42 µ43 µ̄4.

Dose marginal µ̄.1 µ̄.2 µ̄.3 µ̄..

The basic unit of analysis is sample cell means, which are the direct estimators of the above
population averages. We have a sample of K observations in cell ij - the natural estimator of µij

is ȳij. = 1
K

∑K
k=1 yijk = 1

4

∑4
k=1 yijk . We define sample marginal means as we did for population

values above (row averages and column averages), ȳi.. = 1
J

∑J
j=1 ȳij., ȳ.j. = 1

I

∑I
i=1 ȳij., and ȳ... =

1
IJ

∑I
i=1

∑J
j=1 ȳij. . this gives us natural estimators of the above population values as the sample

values:

Dose
Insecticide 1 2 3 Insecticide marginal

1 ȳ11. ȳ12. ȳ13. ȳ1..

2 ȳ21. ȳ22. ȳ23. ȳ2..

3 ȳ31. ȳ32. ȳ33. ȳ3..

4 ȳ41. ȳ42. ȳ43. ȳ4..

Dose marginal ȳ.1. ȳ.2. ȳ.3. ȳ...

Values calculated with these data are as follows:

Dose
Insecticide 1 2 3 Insect marg

1 .413 .320 .210 .314
2 .880 .815 .335 .677
3 .568 .375 .235 .393
4 .610 .667 .325 .534

Dose marg .618 .544 .276 .479

Because the experiment is balanced, a marginal mean also is the average of all observations that
receive a given treatment. For example, the marginal mean for insecticide 1 is the average survival
time for the 12 beetles given insecticide 1.
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The basic model for the two-factor design, as applied to this experiment is that the

Response = GrandMean + Insect Effect + Dose Effect + Insect ∗Dose Interaction + Residual.

or
yijk = µ + αi + βj + (αβ)ij + εijk

i.e. µij = µ + αi + βj + (αβ)ij . The assumptions for the analysis of the model are identical to
those for a one-way ANOVA on the 12 treatment combinations (insecticide and dose), i.e. all 48
residual effects εijk are independent and variances are all the same, σ2

ij = σ2. There are constraints
put on the terms above, since there are too many, but those depend upon the software used. We
will discuss this at some length.

The ANOVA table for this experimental design decomposes the total variation in the data, as
measured by the Total SS, into components that measure the variation of marginal sample means
of insecticide and dose individually (the Insecticide SS and Dose SS), a component that measures
the degree to which the factors interact (the insecticide by dose SS), and a component that pools
the sample variances across the 12 samples (the Error SS). Each SS has a df, given in the following
ANOVA table. As usual, the MS for each source of variation is the corresponding SS divided by
the df. The MS Error estimates the common population variance for the 12 treatments.

Source df SS MS = SS/df
Insecticide I − 1 = 4− 1 = 3 JK

∑I
i=i(ȳi.. − ȳ...)2

Dose J − 1 = 3− 1 = 2 IK
∑J

j=i(ȳ.j. − ȳ...)2

Interaction (I − 1)(J − 1) = (3)(2) = 6 K
∑I

i=1

∑J
j=1(ȳij. − ȳi. − ȳ.j. + ȳ...)2

Error IJ(K − 1) = (4)(3)(3) = 36
∑I

i=1

∑J
j=1

∑K
k=1(yijk − ȳij.)2

Total IJK − 1 = 48− 1 = 47
∑I

i=1

∑J
j=1

∑K
k=1(yijk − ȳ...)2

Believe it or not, these formulas actually make sense! SS for Insecticide just compares the Insecticide
marginal means to each other by computing their variance (up to a constant), and similarly with
the SS for Dose. SS Total is the usual sum of all squared deviations from the overall mean. MS
Error is just 1

IJ

∑I
i=1

∑J
j=1 s2

ij = s2
pooled, the average of the sample variances from each of the cells,

a natural way to estimate σ2 (this is the within cell variability). The only term that is not easily
understood is SS for Interaction. We will turn to that in a little while (after we have decided what
interaction is).

There are three usual tests of interest.

1. The test of no insecticide effect. The absence of an insecticide effect implies that each level
of insecticide has the same population mean response when the means are averaged over
levels of dose. The test for no insecticide effect is based on the p-value for the F−statistic:
Fobs = MS Insecticide/MS Error. This hypothesis is rejected when the insecticide marginal means
vary significantly relative to the within cell variation. Formally, this is a test of H0 : µ̄1. = µ̄2. =
µ̄3. = µ̄4.(= µ̄..). The form of the SS certainly matches this hypothesis.

2. The test of no dose effect. The absence of a dose effect implies that each dose level has the same
population mean response when the means are averaged over levels of insecticide. The
test for no dose effect is based on the p-value for the F−statistic: Fobs = MS Dose/MS Error. This
hypothesis is rejected when the marginal means for dose vary significantly relative to the within
cell variation. Formally, this is a test of H0 : µ̄.1 = µ̄.2 = µ̄.3(= µ̄..). The form of the SS certainly
matches this hypothesis.

3. The test of no interaction between dose and insecticide is based on the p-value for the F−statistic:
Fobs = MS Interaction/MS Error. This is a test of a hypothesis that the structure is simple. Let’s
explore what that means.
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Interpretation of Interaction

The idea of no interaction is that the margins of the table tell you what the structure is. If row
2, for instance, is “large” for one column, it is similarly large for all the other columns. This
gets awkward to quantify, though, and we need a better approach. We have already seen the
decomposition µij = µ + αi + βj + (αβ)ij . This imposes no restrictions on the cell means. We can
impose a restriction if we force (αβ)ij ≡ 0 so that µij = µ + αi + βj . This additive model is how
we force the margins of the table to tell us everything. The hypothesis of no interaction is thus
formally H0 : (αβ)ij = 0 for all i and j.

There are serious implications of this hypothesis. One is that µij = µ̄i. + µ̄.j − µ̄.. . If you look
back at the SS for Interaction, this is exactly what is being tested. That is not nearly as useful
or interesting, though, as this: If i, i′, j, j′ are legal indexes, then µij − µij′ = µi′j − µi′j′ , which is
to say the difference between doses j and j’ is the same for insecticide i as for insecticide i’; and
µij − µi′j = µij′ − µi′j′ , which is to say the difference between insecticides i and i’ is the same for
dose j as it is for dose j’. These differences in cell means are slopes of line segments in interaction
plots. What no interaction tells you is that the slopes of the line segments (connecting) sample
cell means should be approximately parallel, and the formal test for no interaction is a check on
whether the profile plots of the population means are perfectly parallel.

Prototype Interaction Plots

These profile plots are extremely important tools for understanding our analysis, so let us examine
various possible patterns. Consider the simplest example with two factors A and B each at two
levels, and let the population cell means µij be broken down as µij = µ+αi+βj +(αβ)ij . Following
are plots of those population cell means (those based on data have noise in them so will not be so
perfect) for various combinations of effects present. Make sure you understand why each appears
as it does and match it with the appropriate model.
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Stata Analysis of Insecticide Data

The data need to go into three columns in the spreadsheet with full information for each observation
as follows (note that I folded output to save space – this should go on for 48 rows):

poison dose time poison dose time poison dose time
1 1 .43 2 2 1.24 3 3 .23
1 1 .46 2 2 .61 3 3 .25
1 1 .31 2 2 .49 3 3 .24
1 1 .45 2 2 .92 3 3 .22
1 2 .4 2 3 .29 4 1 .66
1 2 .29 2 3 .3 4 1 .45
1 2 .36 2 3 .37 4 1 .62
1 2 .23 2 3 .38 4 1 .71
1 3 .23 3 1 .63 4 2 .56
1 3 .21 3 1 .43 4 2 .71
1 3 .18 3 1 .76 4 2 1.02
1 3 .22 3 1 .45 4 2 .38
2 1 .88 3 2 .4 4 3 .3
2 1 1.1 3 2 .35 4 3 .31
2 1 .72 3 2 .31 4 3 .36
2 1 .82 3 2 .44 4 3 .33

The table of cell and marginal means
Dose

Insecticide 1 2 3 Insect marg
1 .413 .320 .210 .314
2 .880 .815 .335 .677
3 .568 .375 .235 .393
4 .610 .667 .325 .534

Dose marg .618 .544 .276 .479

is produced within Stata thus

. tabulate poison dose,summarize(time) means
Means of time

| dose
poison | 1 2 3 | Total

-----------+---------------------------------+----------
1 | .4125 .32 .21 | .31416667
2 | .88000001 .81500001 .335 | .67666667
3 | .5675 .375 .235 | .3925
4 | .61 .66749999 .32500001 | .53416667

-----------+---------------------------------+----------
Total | .6175 .544375 .27625 | .479375

The ANOVA table is produced using the anova command forcing the software to fit the model
µij = µ + αi + βj + (αβ)ij
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. anova time poison dose poison*dose
Number of obs = 48 R-squared = 0.7335
Root MSE = .149139 Adj R-squared = 0.6521

Source | Partial SS df MS F Prob > F
------------+----------------------------------------------------

Model | 2.20435628 11 .200396025 9.01 0.0000
|

poison | .921206282 3 .307068761 13.81 0.0000
dose | 1.03301249 2 .516506246 23.22 0.0000

poison*dose | .250137502 6 .041689584 1.87 0.1123
|

Residual | .800724989 36 .022242361
------------+----------------------------------------------------

Total | 3.00508126 47 .063937899

To examine interaction, consider the Dose*Insecticide profile plot given below. For each dose, we
have a plot of the mean survival times across insecticides, giving 3 profiles. There is no interaction
in the data if these profiles are parallel. The formal test for no interaction is a check on whether
the profile plots of the population means are perfectly parallel. Every statistical package requires
some special means to obtain these plots. In earlier versions of Stata we downloaded a command
named cmeans, but that appears no longer available. The method now is easy enough if a little
obscure looking:

anova time poison dose poison*dose
predict yhat,xb
sort dose poison
scatter yhat poison,c(L) mlabel(dose) title(Dose X Poison Profiles)

The points being plotted by this method are those actually fit by the anova model – with the
poison*dose term we are imposing no restrictions so these are the averages we calculated earlier.
Had we left that term off we would have forced the profiles to be parallel since we would have
imposed an additive model. The order of the sort is very important here. The c(L) option is a
very special connected line version suited to this application (c(l) does not work). mlabel lets us
label dose levels.
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The last two lines above could be modified to produce four profiles, one for each poison. The
plots are equally useful – sometimes both are worth examining.

sort poison dose
scatter yhat dose,c(L) mlabel(poison) title(Poison X Dose Profiles)
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These lines are not parallel, but they have the same general trend. If we accept that the
interaction is not significant, we may fit the additive model instead and base inferences on ad-
ditive structure. To fit the model with the interaction term we type anova time poison dose
poison*dose; the additive model is fit using anova time poison dose.

Interpretation of the ANOVA

The “Model” row in the ANOVA table gives a p-value for testing no differences among the popula-
tion mean survival times for the 12 dose and insecticide combinations (or whatever model we fit –
in this case we allow all 12 means to vary with no restriction because we fit the interaction term).
The p-value of .0000 strongly suggests that the population mean survival times are not equal across
all 12 groups.

The ANOVA table gives a breakdown of the Model SS into the SS for insecticide, dose, and
the insecticide by dose interaction. The Mean Squares, F-statistics and p-values for testing these
effects are given. The p-values indicate that the dose and insecticide effects are significant at the
.0001 level. However, the F-test for no dose by insecticide interaction is not significant at the .10
level (p-value=.1123).

The cell means give us an idea about the nature of the differences among doses and insecticides
(the F-tests only tell us if some difference appears to be there). In particular, the insecticides have
noticeably different mean survival times averaged over doses, with insecticide 1 having the lowest
mean survival time averaged over doses. Similarly, higher doses tend to produce lower survival
times. More formal comparisons of the doses and insecticides are possible using the output from
the Tukey comparisons of LS MEANS in JMP-IN or SAS, or from Fisher comparisons in Stata.
For example, using JMP-IN output for the Tukey comparisons (not shown here), the high dose
is significantly different from the low and medium doses, which are not significantly different from
each other. We obtain Fisher’s method in Stata using the commands

test _b[dose[2]]=_b[dose[1]]
test _b[dose[3]]=_b[dose[1]]
test _b[dose[3]]=_b[dose[2]]

These test the hypotheses H0 : β1 = β2, H0 : β1 = β3, and H0 : β2 = β3 respectively. This is
the same as testing H0 : µ̄.1 = µ̄.2, H0 : µ̄.1 = µ̄.3, and H0 : µ̄.2 = µ̄.3 We obtain:

( 1) - dose[1] + dose[2] = 0
F( 1, 36) = 0.30

Prob > F = 0.5889
( 1) - dose[1] + dose[3] = 0

F( 1, 36) = 7.30
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Prob > F = 0.0104
( 1) - dose[2] + dose[3] = 0

F( 1, 36) = 10.55
Prob > F = 0.0025

We see that doses 1 and 2 are not significantly different from each other, but dose 3 is signifi-
cantly different from doses 1 or 2, averaged over the poison effects. Bonferroni comparisons simply
multiply the above p-values by 3 (the number of comparisons), so Bonferroni, Tukey, and Fisher
all agree here.

Assuming the interaction is not important, we can obtain the three estimated pairwise differ-
ences in the three doses using any poison with the commands

lincom _b[dose[2]]-_b[dose[1]]
lincom _b[dose[3]]-_b[dose[1]]
lincom _b[dose[3]]-_b[dose[2]]

we obtain

. lincom _b[dose[2]]-_b[dose[1]]
------------------------------------------------------------------------------

time | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | .0575 .105457 0.55 0.589 -.1563767 .2713767
------------------------------------------------------------------------------
. lincom _b[dose[3]]-_b[dose[1]]
------------------------------------------------------------------------------

time | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | -.285 .105457 -2.70 0.010 -.4988767 -.0711233
------------------------------------------------------------------------------
. lincom _b[dose[3]]-_b[dose[2]]
------------------------------------------------------------------------------

time | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | -.3425 .105457 -3.25 0.003 -.5563767 -.1286233
------------------------------------------------------------------------------

We see, for instance, that we are 95% confident that the mean difference in survival time between
dose 2 and dose 3 is between 0.13 and 0.56. Put another way, beetles given dose 2 last between 1.3
and 5.6 hours longer on average than those given dose 3, regardless of the insecticide used. The
last part of this statement would not hold if we had an important interaction and a more detailed
analysis of how the difference changed with the insecticide used would be warranted.

Results from fitting the additive model are similar, although the confidence intervals are tighter:

. lincom _b[dose[2]]-_b[dose[1]]
------------------------------------------------------------------------------

time | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | -.073125 .0559247 -1.31 0.198 -.1859855 .0397355
------------------------------------------------------------------------------
. lincom _b[dose[3]]-_b[dose[1]]
------------------------------------------------------------------------------

time | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | -.34125 .0559247 -6.10 0.000 -.4541105 -.2283895
------------------------------------------------------------------------------
. lincom _b[dose[3]]-_b[dose[2]]
------------------------------------------------------------------------------

time | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | -.268125 .0559247 -4.79 0.000 -.3809855 -.1552645
------------------------------------------------------------------------------

74



6 TWO-FACTOR EXPERIMENTS

More Interpretation of the Dose Effect

The interpretation of the dose and insecticide effects (called the main-effects) depends on whether
interaction is present. The distinction is important, so I will give both interpretations to emphasize
the differences. Given that the test for interaction was not significant, I would likely summarize
the main effects assuming no interaction. For simplicity, I will restrict attention to the dose effect.

The average survival time decreases as the dose increases, with estimated mean survival times
of .618, .544, and .276, respectively. If dose and insecticide interact, you can conclude that beetles
given a high dose of the insecticide typically survive for shorter periods of time averaged over
insecticides. You can not, in general, conclude that the highest dose yields the lowest survival
time regardless of insecticide. For example, the difference in the medium and high dose marginal
means of .544 - .276 = .268 estimates the typical decrease in survival time achieved by using the
high dose instead of the medium dose, averaged over insecticides.

If the two factors interact, then the difference in mean times between the medium and high
doses on a given insecticide may be significantly greater than .268, significantly less than .268, or
even negative. In the latter case the medium dose would be better than the high dose for the
given insecticide, even though the high dose gives better performance averaged over insecticides.
An interaction forces you to use the cell means to decide which combination of dose and insecticide
gives the best results.

If dose and insecticide do not interact, then the difference in marginal dose means averaged
over insecticides also estimates the difference in population mean survival times between two doses,
regardless of the insecticide. This follows from the parallel profiles definition of no interaction.
Thus, the difference in the medium and high dose marginal means (.544 - .276 = .268) estimates
the expected decrease in survival time anticipated from using the high dose instead of the medium
dose, regardless of the insecticide (and hence also when averaged over insecticides).

A practical implication of no interaction is that you can conclude that the high dose is best,
regardless of the insecticide used. The difference in marginal means for two doses estimates the
difference in average survival expected, regardless of the insecticide.

As a final note, I will mention that the residual plot suggests that the variability in the survival
times increases with increasing mean (obtained using rvfplot). A transformation to the reciprocal
scale (which turns the response into a rate) is often suggested with these data. You should repeat
the analysis on that scale to see the improvement.
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An Unbalanced Two-Factor Experiment and Analysis

The sample sizes are rarely equal for the different treatments in an experiment. This has no
consequence on the specification of a model, and we proceed as in the balanced case.

Example: Insulin Levels in Rats

The data below are the insulin levels in rats a certain length of time after a fixed dose of insulin
was injected into their jugular or portal veins. This is a two-factor study with two vein types
(jugular=1, portal=2) and three time levels (0 minutes = 1, 30 minutes = 2, and 60 minutes = 3).
A feature of this experiment is that the rats used in the six vein and time combinations are distinct.
I will fit a two-factor interaction model, which assumes that the responses are independent within
and across treatments. The design is unbalanced, with sample sizes varying from 3 to 12.

Vein Time Insulin Levels
-----------------------------------------
jugular 0 18 36 12 24 43
jugular 30 61 116 63 132 68 37
jugular 60 18 133 33
portal 0 96 72 34 41 98 77 120 49 92 111 99 94
portal 30 146 193 78 127 136 144 115 199 253 338
portal 60 132 110 141 204 69 152 196 195 84 105 71 83

An alternative experimental design might randomly assign rats to the two vein groups, and
then measure the insulin levels of each rat at the three time points. Depending on the questions of
interest, you could compare veins using a one-way MANOVA, or a repeated measures design that
allows correlated responses within rats.

The model written abstractly is

Yijk = µ + αi + βj + (αβ)ij + εijk.

Here, i = 1, 2 denote the two vein types, j = 1, 2, 3 denote the three times, and k = 1, 2, . . . , Kij

denotes the kth rat out of Kij in the group with vein i and time j. You should verify that K11 = 5,
K12 = 6, K13 = 3, K21 = 12, K22 = 10, and K13 = 12. The tabulate command makes that fairly
easy

. tabulate vein time,summarize(insulin)
Means, Standard Deviations and Frequencies of Insulin
| Time

Vein | 1 2 3 | Total
-----------+---------------------------------+----------

1 | 26.6 79.5 61.333333 | 56.714286
| 12.75931 36.44585 62.516664 | 41.899933
| 5 6 3 | 14

-----------+---------------------------------+----------
2 | 81.916667 172.9 128.5 | 125.11765
| 27.747099 76.117526 49.718297 | 63.525115
| 12 10 12 | 34

-----------+---------------------------------+----------
Total | 65.647059 137.875 115.06667 | 105.16667

| 35.284453 78.10239 57.218212 | 65.621848
| 17 16 15 | 48

In order to get the interaction (profile) plots, we need to fit the ANOVA with interaction present.
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6 TWO-FACTOR EXPERIMENTS

. anova insulin vein time vein*time
Number of obs = 48 R-squared = 0.4915
Root MSE = 49.5009 Adj R-squared = 0.4310

Source | Partial SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 99478.4833 5 19895.6967 8.12 0.0000
|

vein | 48212.7037 1 48212.7037 19.68 0.0001
time | 37734.188 2 18867.094 7.70 0.0014

vein*time | 2745.9139 2 1372.95695 0.56 0.5752
|

Residual | 102914.183 42 2450.3377
-----------+----------------------------------------------------

Total | 202392.667 47 4306.22695

It probably makes sense to look at both profile plots:

predict yhat
sort vein time
scatter yhat time, c(L) ml(vein) title(Vein X Time Profile Plot)
sort time vein
scatter yhat time, c(L) ml(vein) title(Vein X Time Profile Plot)
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The profile or interaction plots show roughly parallel profiles indicating that the interaction
term may not be important. The profile plots, along with the table of means , indicate that the
insulin level is at its highest (of the three times considered) at 30 minutes for either vein considered
alone, or averaged over veins. The portal vein yields a higher insulin level at any of the three time
periods and averaged over the three time periods.

The ANOVA table indicates that the vein and time effects are significant, with p-values of .0001
and .0014, respectively, but that the interaction is not significant (p-value=.575). Recall that the
profiles are reasonably parallel, which is consistent with a lack of interaction.

The means table above shows that the mean insulin level in the portal vein is significantly
greater than the mean insulin level in the jugular vein. Because of the lack of interaction, the
difference in mean levels for the portal veins is reasonably consistent across times.

Since we accept that there is no interaction here, it makes sense to compare the overall main
effects vein and time using pairwise comparisons. A test that there is no difference in vein types
(test b[vein[2]] = b[vein[1]]) yields a p-value of 0.0416; we reject that there is no difference.
We estimate the difference in insulin levels from the portal versus the jugular veins in Stata using
the command lincom b[vein[2]]- b[vein[1]] and find the estimate to be α̂2−α̂1 = 67.2 with a
95% CI of (2.7, 132), independent of time. This is close to the estimate obtained from the marginal
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6 TWO-FACTOR EXPERIMENTS

means as 125 - 57 = 68, but need not be in unbalanced designs!! For this reason, one should always
use the model estimates from Stata rather than estimates obtained from looking at a raw means
table.

Since there is no interaction here, the difference in insulin levels is the same at time = 0, time =
30, and time = 60 minutes. Recall that when no interaction is present we say the model is additive.
Similarly we may look at differences in insulin levels at the three times independent of vein type.
The p-values for testing that there is no difference between (1) 30 minutes and 0 minutes, (2) 60
minutes and 0 minutes, and (3) 60 minutes and 30 minutes are (1) 0.0001, (2) 0.0262, and (3)
0.0423. These are Fisher values. The corresponding Bonferroni-adjusted values are obtained by

multiplying each by

(
3
2

)
= 3: (1) 0.0003 (2) 0.078, and (3) 0.13; the only significant difference

is between 30 minutes and 0 minutes. Using lincom we would estimate this difference in insulin
levels to be about 72, independent of vein type.

What are your thoughts on the residual plots?
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Finally, note that we accept H0 : (αβ)ij = 0 at any reasonable significance level. We can thus fit
and base inferences on the additive model if we choose to do so. The ANOVA table is

Number of obs = 48 R-squared = 0.4779
Root MSE = 49.0037 Adj R-squared = 0.4424

Source | Partial SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 96732.5694 3 32244.1898 13.43 0.0000
|

vein | 51594.4685 1 51594.4685 21.49 0.0000
time | 50332.2893 2 25166.1447 10.48 0.0002

|
Residual | 105660.097 44 2401.36585

-----------+----------------------------------------------------
Total | 202392.667 47 4306.22695

Now, using estimates from the additive model, we obtain the estimated mean difference in vein
effects to be α̂2−α̂1 = 73.0 with a 95% CI of (41, 105). The CI is now smaller than when calculated
with a model that includes an interaction term!! This is good news as it provides a tighter range
of plausible values and thus more powerful inference.
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