
7 TWO-FACTOR EXPERIMENTS, CONTINUED

7 Two-factor Experiments, Continued

In the last lecture and in lab we dealt with the parameters Stata (and most software packages)
use to fit the additive and the interaction models for two-way ANOVA. The lincom command was
one way we learned to deal with the parameters. That probably is not the easiest approach in
many problems, however. If we learn a little more about the parameters, some information is fairly
immediate.

Let’s continue with the insecticide problem, where we have 4 poisons and 3 doses. Remember
the pattern of population cell means as follows (ignoring marginal means for now):

Dose
Insecticide 1 2 3

1 µ11 µ12 µ13

2 µ21 µ22 µ23

3 µ31 µ32 µ33

4 µ41 µ42 µ43

Consider the full interaction model first. The parameterization for this is µij = µ + αi + βj +
(αβ)ij , i = 1, . . . , 4; j = 1, . . . , 3 . We dodged the issue of constraints last time, but recall the
problem: There are 12 real parameters (the µij), but 20 new parameters (1 + 4 + 3 + 12). We need
to put 8 constraints (restrictions) on these new parameters to bring us back down to 12. An old
standard textbook solution to this, and one that makes the math look a lot simpler (for marginal
means at least) is

0 =
∑

i

αi =
∑

j

βj =
∑

i

(αβ)ij =
∑

j

(αβ)ij

(that looks like 9 constraints but one is redundant so it is 8). Software packages like Stata and
SAS use an algorithm called the sweep algorithm that makes a completely different and much
more useful set of constraints more natural, though. Effectively, they start adding parameters in
the model and as soon as they hit a redundant one, they set the new parameter to 0. The new
constraints become

0 = α4 = β3 = (αβ)41 = (αβ)42 = (αβ)43 = (αβ)13 = (αβ)23 = (αβ)33

i.e. if there are I levels of i and J levels of j then any time i reaches level I or j reaches level J
then the parameter becomes 0. It is a little easier to see 8 constraints here.

If we plug in these constraints and rewrite all 12 cell means, we see the following pattern:

Dose
Insecticide 1 2 3

1 µ + α1 + β1 + (αβ)11 µ + α1 + β2 + (αβ)12 µ + α1

2 µ + α2 + β1 + (αβ)21 µ + α2 + β2 + (αβ)22 µ + α2

3 µ + α3 + β1 + (αβ)31 µ + α3 + β2 + (αβ)32 µ + α3

4 µ + β1 µ + β2 µ

At first this may not seem like much simplification, but let’s examine it a bit more carefully. µ is
often refereed to as the grand mean (this comes from the old textbook parameterization) but here
we see µ = µ43. The last cell of the table has become the reference group with all other parameters
being deviations from that reference group. β2 is the difference between doses 2 and 3 for the 4th

poison, β1 is the difference between doses 1 and 3 for the 4th poison. α3 is the difference between
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7 TWO-FACTOR EXPERIMENTS, CONTINUED

poisons 3 and 4 for the 3rd dose, α2 is the difference between poisons 2 and 4 for the 3rd dose, and
α1 is the difference between poisons 1 and 4 for the 3rd dose. The difference between poisons 3 and
4 for the 2nd dose is α3 + (αβ)32 rather than just α3 (if the difference does not depend on poison
then there is no interaction).

With these constraints then (µ32−µ42)− (µ33−µ43) = (αβ)32. Recall last lecture we said that
no interaction (parallel profiles in an interaction plot) was this: If i, i′, j, j′ are legal indexes, then
µij−µij′ = µi′j−µi′j′ , which is to say the difference between doses j and j′ is the same for insecticide
i as for insecticide i′; and µij −µi′j = µij′ −µi′j′ , which is to say the difference between insecticides
i and i′ is the same for dose j as it is for dose j′. Last week we saw that [µij −µij′ ]− [µi′j −µi′j′ ] =
[(αβ)ij−(αβ)ij′ ]−[(αβ)i′j−(αβ)i′j′ ] . The constraints that 0 = (αβ)Ij = (αβ)iJ allow us to simplify
greatly the lincom command for many such terms. Since (µ32 − µ42)− (µ33 − µ43) = (αβ)32 (only
for these constraints, though!) then a simple lincom(_b[poison[3]*dose[2]]) gets that term.
Better yet, we can have it automatically printed.

Stata Implementation

Anova problems actually are specialized regression problems (we will grapple with this idea later).
What we want are regression estimates of all the effects (µ, αi, βj , (αβ)ij). The regress option
with anova gets that for us in a form that matches the lincom syntax. This can be treated as
a post-estimation command, i.e. after issuing the anova time poison dose poison*dose com-
mand (and examining the the ANOVA table, interaction plots, etc.) just type another command
anova,regress to get the following results

. anova, regress
Source | SS df MS Number of obs = 48

-------------+------------------------------ F( 11, 36) = 9.01
Model | 2.20435628 11 .200396025 Prob > F = 0.0000

Residual | .800724989 36 .022242361 R-squared = 0.7335
-------------+------------------------------ Adj R-squared = 0.6521

Total | 3.00508126 47 .063937899 Root MSE = .14914
------------------------------------------------------------------------------

time Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------------------------------------------------------
_cons .325 .0745694 4.36 0.000 .1737663 .4762337
poison

1 -.115 .105457 -1.09 0.283 -.3288767 .0988767
2 .01 .105457 0.09 0.925 -.2038767 .2238767
3 -.09 .105457 -0.85 0.399 -.3038767 .1238767
4 (dropped)

dose
1 .285 .105457 2.70 0.010 .0711233 .4988767
2 .3425 .105457 3.25 0.003 .1286233 .5563767
3 (dropped)

poison*dose
1 1 -.0825 .1491387 -0.55 0.584 -.3849674 .2199674
1 2 -.2325 .1491387 -1.56 0.128 -.5349673 .0699674
1 3 (dropped)
2 1 .26 .1491387 1.74 0.090 -.0424673 .5624674
2 2 .1375 .1491387 0.92 0.363 -.1649673 .4399674
2 3 (dropped)
3 1 .0475 .1491387 0.32 0.752 -.2549674 .3499674
3 2 -.2025 .1491387 -1.36 0.183 -.5049673 .0999674
3 3 (dropped)
4 1 (dropped)
4 2 (dropped)
4 3 (dropped)

------------------------------------------------------------------------------

Let’s try to make sense of these coefficients by relating them both to the table of sample cell means
and to an interaction plot from the last lecture. First, try to reconstruct the sample cell means
from the coefficients. Recall that the full interaction model imposes no restrictions.

80



7 TWO-FACTOR EXPERIMENTS, CONTINUED

Various questions arise. Why is poison highly significant yet none of the poison coefficients is
significant? – Get your answer from the interaction plot and what these coefficients are estimating.
One of the large differences appears to be between poisons 1 and 2 at dose level 2. How would you
estimate that difference? How would you test for specific interactions (i.e. different slopes in the
above plot?). We will spend some time examining all this.

Dose
Insecticide 1 2 3 Insect marg

1 .413 .320 .210 .314
2 .880 .815 .335 .677
3 .568 .375 .235 .393
4 .610 .668 .325 .534

Dose marg .618 .544 .277 .480
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The Additive Model

Since interaction was not significant (there is not much data so this might just be poor power)
we should see how all this looks when we fit the no-interaction (additive) model. This is a highly
restricted model and we will not reproduce all the sample cell means from this model. Now we fit
µij = µ + αi + βj using the command, with ensuing results given below:

. anova time poison dose
Number of obs = 48 R-squared = 0.6503
Root MSE = .158179 Adj R-squared = 0.6087

Source | Partial SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 1.95421877 5 .390843755 15.62 0.0000
|

poison | .921206282 3 .307068761 12.27 0.0000
dose | 1.03301249 2 .516506246 20.64 0.0000

|
Residual | 1.05086249 42 .025020536

-----------+----------------------------------------------------
Total | 3.00508126 47 .063937899

All constraints are as previously described, and easily seen from the following:

. anova,regress
Source | SS df MS Number of obs = 48

-------------+------------------------------ F( 5, 42) = 15.62
Model | 1.95421877 5 .390843755 Prob > F = 0.0000

Residual | 1.05086249 42 .025020536 R-squared = 0.6503
-------------+------------------------------ Adj R-squared = 0.6087
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Total | 3.00508126 47 .063937899 Root MSE = .15818
------------------------------------------------------------------------------

time Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------------------------------------------------------
_cons .3310417 .0559247 5.92 0.000 .2181811 .4439022
poison

1 -.22 .0645762 -3.41 0.001 -.3503201 -.0896799
2 .1425 .0645762 2.21 0.033 .0121799 .2728201
3 -.1416667 .0645762 -2.19 0.034 -.2719868 -.0113466
4 (dropped)

dose
1 .34125 .0559247 6.10 0.000 .2283895 .4541105
2 .268125 .0559247 4.79 0.000 .1552645 .3809855
3 (dropped)

------------------------------------------------------------------------------

What we have fit now is the much simpler structure for population cell means (all the parameters
have very easy interpretations – what are they?):

Dose
Insecticide 1 2 3

1 µ + α1 + β1 µ + α1 + β2 µ + α1

2 µ + α2 + β1 µ + α2 + β2 µ + α2

3 µ + α3 + β1 µ + α3 + β2 µ + α3

4 µ + β1 µ + β2 µ

You should confirm that you no longer reproduce the sample cell means ȳij. from the estimated
regression coefficients, but you do reproduce the sample marginal means ȳi.. and ȳ.j. . We can
look at an interaction plot of predicted cell means, but note that we have forced it to look this way.
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Estimable Functions

What we have been covering is expanded upon at considerable length in the SAS manual and many
textbooks under the topic of estimable functions. This is a fairly advanced topic, but the gist of
it is that only linear combinations of population cell means can legally be estimated (things of the
form

∑
i

∑
j cijµij for some constants cij – we have been using 0, 1 and -1 as constants). Anything

we estimate or test has to be a linear combination of population cell means. In particular, µ and
αi, for instance, are not estimable since there is ambiguity about what they are until constraints
are put on them. Different constraints give different interpretations. What we have been doing is
relating everything back to the µij in order to keep it all “legal”. I can run an analysis on two
different packages (or even the same package with different options) and get considerably different
estimates of α1 reported. As long as I stick to estimable functions, though, I always get the same
estimate.
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Parameters in the One-Way Problem

A look back at the one-way ANOVA problem shows the constraints can make some things simpler
there too. In that case we have a model yij = µi + εij ; i = 1, . . . , I; j = 1, . . . , ni . Let’s do the
same type of decomposition of µi, i.e. µi = µ + αi, with the same problem that we have I “real”
group means and now I + 1 new parameters. We need a constraint, and the one Stata and SAS
impose is αI = 0 (set the first redundant parameter to 0).

What is the implication? Now µ = µI and αi = µi − µI , i.e. the last group has become a
reference group and all the parameter estimates (the αi) are deviations from this reference group.
In the CHDS example this means we could get mostly for free the t-tests comparing non-smokers to
heavy smokers and light smokers to heavy smokers. It might be more convenient to reorder so that
nonsmokers were last, so that the easy tests would compare the two smoking groups to nonsmokers.
The lincom command can fill in the last comparison in either case (µ1 − µ2 = α1 − α2). The idea
of estimable functions still applies; we need to make sure we are looking at linear combinations of
the means.

Unbalanced Data

Returning to the two-way problem, we wrote a model

yijk = µ + αi + βj + (αβ)ij + εijk; i = 1, 2, . . . , I; j = 1, 2, . . . , J ; k = 1, 2, . . . , K

where the sample size in each cell (i, j) was the same number K. Unbalanced data allow the sample
size to vary with cell, so now

yijk = µ + αi + βj + (αβ)ij + εijk; i = 1, 2, . . . , I; j = 1, 2, . . . , J ; k = 1, 2, . . . , Kij

What difference does it make? — In practice, not much. The reason the topic gets mentioned is
that there are disagreeable aspects to unbalanced designs. There are multiple ways to formulate
SSs and F-tests. SAS provides 4, Types I-IV, and Stata provides the same as SAS Types I and
III. With balanced data all the types agree, but for unbalanced data they do not all agree. The
only reason this is not much of a practical problem is that most analysts use Type III (Stata’s
default) and don’t anguish much over it. The t-tests on coefficients are not obviously affected (i.e.
lincom results), although comparing main effects in the presence of interaction is a subtle business
in unbalanced designs (the preferred approach being least squares means, and Stata makes those
awkward to get).

Let’s return to the unbalanced example of rat insulin levels from the last lecture. The ANOVA
table indicates that the vein and time effects are significant, with p-values of .0001 and .0014,
respectively, but that the interaction is not significant (p-value=.575). Recall that the jugular and
portal profiles are reasonably parallel, which is consistent with a lack of interaction. Looking at
the estimates below, let us figure out as an in-class exercise how to interpret the various coefficient
estimates, and how to test for significance of the important effects. We really ought to see if we
can transform to a scale where the residuals look better, too.
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7 TWO-FACTOR EXPERIMENTS, CONTINUED

. anova,regress
Source | SS df MS Number of obs = 48

-------------+------------------------------ F( 5, 42) = 8.12
Model | 99478.4833 5 19895.6967 Prob > F = 0.0000

Residual | 102914.183 42 2450.3377 R-squared = 0.4915
-------------+------------------------------ Adj R-squared = 0.4310

Total | 202392.667 47 4306.22695 Root MSE = 49.501
------------------------------------------------------------------------------

insulin Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------------------------------------------------------
_cons 128.5 14.28967 8.99 0.000 99.66227 157.3377
vein

1 -67.16667 31.95268 -2.10 0.042 -131.6498 -2.68354
2 (dropped)

time
1 -46.58333 20.20865 -2.31 0.026 -87.36604 -5.800623
2 44.4 21.19501 2.09 0.042 1.626732 87.17327
3 (dropped)

vein*time
1 1 11.85 41.41541 0.29 0.776 -71.72969 95.42969
1 2 -26.23333 40.9194 -0.64 0.525 -108.812 56.34536
1 3 (dropped)
2 1 (dropped)
2 2 (dropped)
2 3 (dropped)

------------------------------------------------------------------------------

. anova insulin vein time
Number of obs = 48 R-squared = 0.4779
Root MSE = 49.0037 Adj R-squared = 0.4424

Source | Partial SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 96732.5694 3 32244.1898 13.43 0.0000
|

vein | 51594.4685 1 51594.4685 21.49 0.0000
time | 50332.2893 2 25166.1447 10.48 0.0002

|
Residual | 105660.097 44 2401.36585

-----------+----------------------------------------------------
Total | 202392.667 47 4306.22695

. anova,regress
Source | SS df MS Number of obs = 48

-------------+------------------------------ F( 3, 44) = 13.43
Model | 96732.5694 3 32244.1898 Prob > F = 0.0000

Residual | 105660.097 44 2401.36585 R-squared = 0.4779
-------------+------------------------------ Adj R-squared = 0.4424

Total | 202392.667 47 4306.22695 Root MSE = 49.004
------------------------------------------------------------------------------

insulin Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------------------------------------------------------
_cons 129.6685 13.03897 9.94 0.000 103.3902 155.9468
vein

1 -73.00912 15.75087 -4.64 0.000 -104.7529 -41.26531
2 (dropped)

time
1 -42.54816 17.42256 -2.44 0.019 -77.66102 -7.435306
2 35.58493 17.82622 2.00 0.052 -.3414601 71.51132
3 (dropped)

------------------------------------------------------------------------------

To see one difference with the unbalanced design, consider the following two ANOVA tables; the
first is the usual one, the second is an optional one. Note the differences for SS of main effects. If
the data were balanced, the default (SAS Type III SS) and the sequential (SAS Type I SS) would
be the same. The second form even depends upon the order terms are entered into the model.
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. anova insulin vein time vein*time
Number of obs = 48 R-squared = 0.4915
Root MSE = 49.5009 Adj R-squared = 0.4310

Source | Partial SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 99478.4833 5 19895.6967 8.12 0.0000
|

vein | 48212.7037 1 48212.7037 19.68 0.0001
time | 37734.188 2 18867.094 7.70 0.0014

vein*time | 2745.9139 2 1372.95695 0.56 0.5752
|

Residual | 102914.183 42 2450.3377
-----------+----------------------------------------------------

Total | 202392.667 47 4306.22695
. anova insulin vein time vein*time,seq

Number of obs = 48 R-squared = 0.4915
Root MSE = 49.5009 Adj R-squared = 0.4310

Source | Seq. SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 99478.4833 5 19895.6967 8.12 0.0000
|

vein | 46400.2801 1 46400.2801 18.94 0.0001
time | 50332.2893 2 25166.1447 10.27 0.0002

vein*time | 2745.9139 2 1372.95695 0.56 0.5752
|

Residual | 102914.183 42 2450.3377
-----------+----------------------------------------------------

Total | 202392.667 47 4306.22695

Regression on Dummy Variables: Stata’s xi

The way anova works is that it creates special variables called indicator or dummy variables for
categorical variables and performs regression on them. One dummy variable is created for each
level of a categorical variable and has a value of 1 if the observation has that level of the category
else the value is 0. We do not need to worry much about this if we can use the anova command, but
if we want to do all this in logistic regression we have to get explicit about it. All the big statistics
packages do this, and if we were using SAS I could hide it all from you, but Stata requires you to
learn about it. The xi facility in Stata is one we will need for many problems.

Following is the insecticide data analyzed as a regression problem using xi:

. xi: regress time i.poison i.dose i.poison*i.dose
i.poison _Ipoison_1-4 (naturally coded; _Ipoison_1 omitted)
i.dose _Idose_1-3 (naturally coded; _Idose_1 omitted)
i.poi~n*i.dose _IpoiXdos_#_# (coded as above)

Source | SS df MS Number of obs = 48
-------------+------------------------------ F( 11, 36) = 9.01

Model | 2.20435628 11 .200396025 Prob > F = 0.0000
Residual | .800724989 36 .022242361 R-squared = 0.7335

-------------+------------------------------ Adj R-squared = 0.6521
Total | 3.00508126 47 .063937899 Root MSE = .14914

------------------------------------------------------------------------------
time | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Ipoison_2 | .4675 .105457 4.43 0.000 .2536233 .6813767
_Ipoison_3 | .155 .105457 1.47 0.150 -.0588767 .3688767
_Ipoison_4 | .1975 .105457 1.87 0.069 -.0163767 .4113767

_Idose_2 | -.0925 .105457 -0.88 0.386 -.3063767 .1213767
_Idose_3 | -.2025 .105457 -1.92 0.063 -.4163767 .0113767

_Ipoison_2 | (dropped)
_Ipoison_3 | (dropped)
_Ipoison_4 | (dropped)
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_Idose_2 | (dropped)
_Idose_3 | (dropped)

_IpoiXdo~2_2 | .0275 .1491387 0.18 0.855 -.2749674 .3299674
_IpoiXdo~2_3 | -.3425 .1491387 -2.30 0.028 -.6449674 -.0400326
_IpoiXdo~3_2 | -.1 .1491387 -0.67 0.507 -.4024674 .2024674
_IpoiXdo~3_3 | -.13 .1491387 -0.87 0.389 -.4324674 .1724674
_IpoiXdo~4_2 | .15 .1491387 1.01 0.321 -.1524674 .4524674
_IpoiXdo~4_3 | -.0825 .1491387 -0.55 0.584 -.3849674 .2199674

_cons | .4125 .0745694 5.53 0.000 .2612663 .5637337
------------------------------------------------------------------------------

You should do this and then examine the variables Stata has placed in the data set. This does
not give us the tests from the ANOVA table. The test on interaction is easy:

. testparm _IpoiXdo*
( 1) _IpoiXdos_2_2 = 0
( 2) _IpoiXdos_2_3 = 0
( 3) _IpoiXdos_3_2 = 0
( 4) _IpoiXdos_3_3 = 0
( 5) _IpoiXdos_4_2 = 0
( 6) _IpoiXdos_4_3 = 0

F( 6, 36) = 1.87
Prob > F = 0.1123

but the tests on main effects (equality of marginal means) are a lot less obvious (don’t worry, you
won’t have to do it this way for anova problems). Because this is such a mess, we probably would
not test for main effects if interaction were present if we had to go through these steps. With no
interaction the procedure is just like the test above.

. test _Ipoison_2 + (_IpoiXdos_2_2+_IpoiXdos_2_3)/3 = _Ipoison_3 + (_IpoiXdos_3_2+_IpoiXdo
> s_3_3)/3 = _Ipoison_4 + (_IpoiXdos_4_2+_IpoiXdos_4_3)/3 =0
( 1) _Ipoison_2 - _Ipoison_3 + .3333333 _IpoiXdos_2_2 + .3333333 _IpoiXdos_2_3 - .333333

> 3 _IpoiXdos_3_2 - .3333333 _IpoiXdos_3_3 = 0
( 2) _Ipoison_2 - _Ipoison_4 + .3333333 _IpoiXdos_2_2 + .3333333 _IpoiXdos_2_3 - .333333

> 3 _IpoiXdos_4_2 - .3333333 _IpoiXdos_4_3 = 0
( 3) _Ipoison_2 + .3333333 _IpoiXdos_2_2 + .3333333 _IpoiXdos_2_3 = 0

F( 3, 36) = 13.81
Prob > F = 0.0000

. test _Idose_2+(_IpoiXdos_2_2+_IpoiXdos_3_2+_IpoiXdos_4_2)/4 =_Idose_3+(_IpoiXdos_2_3+_I
> poiXdos_3_3+_IpoiXdos_4_3)/4=0
( 1) _Idose_2 - _Idose_3 + .25 _IpoiXdos_2_2 - .25 _IpoiXdos_2_3 + .25 _IpoiXdos_3_2 - .

> 25 _IpoiXdos_3_3 + .25 _IpoiXdos_4_2 - .25 _IpoiXdos_4_3 = 0
( 2) _Idose_2 + .25 _IpoiXdos_2_2 + .25 _IpoiXdos_3_2 + .25 _IpoiXdos_4_2 = 0

F( 2, 36) = 23.22
Prob > F = 0.0000

Annoyingly, Stata has changed constraints on us (now the first level of a categorical variable
gets zeroed out). We can set what level gets zeroed out (and thus becomes the reference level) with
the char command

. char poison[omit] 4

. char dose[omit] 3

. xi: regress time i.poison i.dose i.poison*i.dose

Execute these commands and confirm the original parameters from anova,regress are reproduced.
We rarely use xi and explicit regression on dummy variables in anova problems. We will need it
with logistic regression, though.
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