
8 ANALYSIS OF COVARIANCE

8 Analysis of Covariance

Let us recall our previous one-way ANOVA problem, where we compared the mean birth weight
(weight) for children in three groups defined by the mother’s smoking habits. The three groups
had mothers that did not smoke during pregnancy (group 1), mothers that smoked a pack or less
of cigarettes per day during their pregnancy (group 2), and mothers that smoked more than one
pack of cigarettes per day during their pregnancy (group 3). We concluded that children born to
non-smoking mothers were, on average, heavier than children born to mothers in the two smoking
groups (and there was no significant difference in birth weights between the two smoking groups).

A deficiency with the analysis is that the differences among groups may be due to other fac-
tors that could not be controlled; for example, the mother’s intake of caffeine, the mother’s pre-
pregnancy weight (mweight), and so on. This, of course, is a standard problem with observational
studies. If the primary interest is to assess the potential effect of mother’s smoking on birth weight,
then a proper analysis would need to account for the possible effect of these other features on birth
weight. For simplicity, I will consider an analysis that accounts, or adjusts, for the effect of mother’s
pre-pregnancy weight (mweight) when assessing the effect of smoking. We will see how to adjust
for more effects as well.

Let weightij be the birth weight for the jth child born to a mother in group i (i = 1, 2, 3) with
pre-pregnancy weight mweightij . The statistical technique for comparing weights across groups,
adjusting for mother’s mweight, is called the analysis of covariance (ANCOVA), and is based on
the model:

weightij = µ + αi + β mweightij + εij ,

where µ is a ”grand mean”, αi is the ith group effect, and β is a regression effect. If β = 0 this is
the standard one-way ANOVA model for comparing weights across smoking groups. In words:

weight = Grand Mean + Group Effect + mweight Effect + Residual.

The ANCOVA model implies that the relationship between the mean weight and mother’s
mweight is linear in each group, but that the regression lines for the groups have different intercepts
(and equal slopes). The intercept for group i is µ + αi. Figure 1 illustrates one possible realization
of the model (PPW is mweight).
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Figure 1: Possible population regression lines for ANCOVA model
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8 ANALYSIS OF COVARIANCE

Primary interest is in testing the hypothesis of no group effects, which is equivalent to testing
that the intercepts of the population regression lines are equal: H0 : α1 = α2 = α3 = 0. If H0

is true then the relationship between weight and mweight does not depend on the smoking group
to which the mother belongs, that is, there is no effect of mother’s smoking on the child’s weight,
after adjusting for mweight (by including mweight in the model).

Fitting the ANCOVA Model in Stata

ANCOVA is a hybrid of ANOVA and Regression. In Stata both the anova and regress commands
assume a continuous response (dependent or y-variable); with regress all predictors are continuous,
with anova all predictors are by default categorical (and a separate indicator variable is created
for each level of each predictor). ANCOVA is implemented most easily using the anova command
(or by using xi: regress), but you need to specify what is continuous and what is categorical.
The regress form is more awkward but is needed when we move to logistic regression. Continuous
predictors are known as covariates.

Recall the syntax for one-way ANOVA was anova weight ms_gp where weight is child’s birth
weight and ms_gp is mother’s smoking group (Note I coded group as 0,1,2 in the example. This
actually serves to illustrate a point, because Stata will in subsequent analysis decide to recode
groups as 1-3. I don’t want you surprised by this). Page 1 of the Stata output has the analysis for
this one-way problem. In order to adjust for mweight (Maternal pre-pregnancy weight) the usual
method in Stata is the command anova weight ms_gp mweight,cont(mweight) where the option
“,cont(mweight)” tells anova that mweight is continuous. Everything not listed as continuous is
assumed to be categorical. You may also use the syntax anova weight Smoke mweight,cat(Smoke)
to list the categorical variables, with remaining variables treated as continuous.

Page 2 of the Stata output begins the summaries of the ANCOVA model. At this time, I will
not worry about whether the model fits the data. The F-test for the model gives a p-value for
testing no significant effects in the model. The p-value of 0.0000 strongly suggests that either the
smoking groups or mweight, or both, have an effect on the weight. The p-values for smoking group
and mweight also are both 0.0000, indicating that the group and mweight effects are significant. In
particular, there are significant differences in the intercepts of the population regression lines, or
put another way, there are significant differences in the mean weights of the three groups defined
by mother’s smoking habits, after adjusting for the effect of mweight. Figure 2 shows the
predicted values for the groups from this analysis.
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Figure 2: Fitted regression lines for ANCOVA model
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8 ANALYSIS OF COVARIANCE

A Little More Explanation of the Model

To better understand why ANCOVA is preferred to the one-way ANOVA on birth weights, suppose
for argument’s sake that weight is strongly positively related to mweight. If smoking behavior is
strongly related to mother’s mweight, then differences in the mean weights for the three groups could
be due solely to differences in mother’s mweight. For example, consider the hypothetical population
in Figure 3 where I have plotted the relationship between the mean weight and mother’s mweight
in each group. Suppose that any data collected from these populations falls exactly on the lines in
the plot.
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Figure 3: More possible population regression lines for ANCOVA model

A simple linear regression model relating weight to mweight, with no group effects, is appropri-
ate, yet the distributions for weights, ignoring groups, would differ dramatically. The regression line
suggests that you would have identical mean weights for mothers in the different smoking groups,
if mothers with a fixed weight could be compared across groups.

A one-way ANOVA comparing smoking groups, ignoring mother’s mweight would find signifi-
cant differences in weight across groups. The ANCOVA would conclude, appropriately, that there
are no differences across groups once mweight was taken into account. (A more fundamental ques-
tion is whether these groups, as drawn, are even comparable!)

Interpreting Parameter Estimates

We have already tackled most of the confusing issues with parameter estimates in the two-way
ANOVA problem. We have the same issues of constraints here (because we use more model pa-
rameters than we actually have “real” parameters). We have 3 intercepts and one slope; we have 1
µ, 3 αi s, and one β in the model. One of the αi s is redundant, and Stata will take care of that by
setting the last one to 0. Again, that is just one possible solution, and different software packages
can make different decisions.

We have three lines, and we want the equations for all three. We have forced parallel lines, so
the slope is the same for each smoking group, .0118683. The intercept for the ith smoking group
has been modelled as µ + αi, but α3 has been constrained to 0, so

Intercept group 0 = Constant for model + gp[0] effect
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8 ANALYSIS OF COVARIANCE

= 5.7517 + 0.4477 = 6.1994
Intercept group 1 = Constant for model + gp[1] effect

= 5.7517 + .0318 = 5.7835
Intercept group 2 = Constant for model = 5.7517

The fitted relationships are

Predicted weight = 6.1994 + .00187 mweight, for group 0
= 5.7835 + .00187 mweight, for group 1
= 5.7517 + .00187 mweight, for group 2

A plot of the fitted relationships is given in Figure 2.

Group Differences

Group differences in the ANCOVA model are differences in intercepts, i.e. vertical distances between
the lines. Using a Bonferroni criterion, we see significant differences between Groups 0 and 2
(from _b[ms_gp[1]]), and Groups 0 and 1 (from the lincom (_b[ms_gp[1]]-_b[Smoke[2]])
command), but no significant difference between Groups 1 and 2 (from _b[Smoke[2]]). (Note that
Stata has renumbered groups as 1, 2, 3 even though we had made them 0, 1, 2 — I apologize for
making this confusing, but this “feature” could catch you off guard someday.) This is very similar
to what we found in the one-way problem both in direction and size of all effects. Adjusting for
mweight has not given us all that much insight here, but needed to be done in order to believe the
group differences were “real”. The slope of the line has the same interpretation as in regression
(what is the interpretation?), but is not of primary interest here.

Checking the ANCOVA Model

I have explained the basics of ANCOVA, without considering whether this model describes the
CHDS data. The ANCOVA model constrains the slopes of the regression lines for the 3 groups to
be identical, so we should check if this is sensible. We can fit three completely different lines (to
see if we do any better than by forcing them to be parallel) by adding a smoking group by mweight
interaction (crossed effect) to the ANCOVA model.

Pages 4-5 of the Stata output show results, as well as three separate linear regressions for the
three groups. Let us spend some time in class making sure we see what the parameter constraints
have done for us, and that the resulting lines are identical to separate linear regressions.

The p-value of .2491 for the test of no Smoke group * mweight interaction indicates there
is no significant improvement by allowing different slopes, so the original ANCOVA model looks
reasonable in that regard. The plot of all three fitted lines does not suggest much difference in
slopes. The residual plot was not very suggestive of problems – there appears to be little difficulty
with this model.

You should note that there is a huge disadvantage to needing a Group*covariate interaction
term. With parallel lines we know what group differences mean – the distances between lines.
With non-parallel lines the distance between lines depends upon what value of the covariate you
are considering, and that distance thus can be anything you want it to be. Confirm this with a plot.

Extending the Analysis of Covariance

In the CHDS study, there are several possible effects in addition to mother’s pre-pregnancy weight
(mweight) that we may wish to consider when assessing whether mother’s smoking impacts a child’s
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8 ANALYSIS OF COVARIANCE

birth weight. For example, the mother’s height and age, and the gestation length, may be important
features to account for in the analysis.

The natural way to account for each effect is through a multiple regression model with a group
effect:

weightij = µ + αi + β1mweightij + β2AGEij + β3HTij + β4GLij + εij .

As before, weightij is the birth weight for the jth child born to a mother in group i (i = 1, 2, 3)
with pre-pregnancy weight mweightij , age AGEij , height HTij , and gestation length GLij .

The multiple regression model has 4 four predictors (mweight, AGE, HT, GL) and 1 factor
(groups). The model assumes that the effect of each predictor is the same across groups, leading
to a multiple regression model with identical regression effects for each predictor in each group. In
words:

weight = Grand Mean + Group Effect + mweight Effect + Age Effect

+HT Effect + GL Effect + Residual.

A primary interest is testing the hypothesis of no group effects: H0 : α1 = α2 = α3 = 0. If H0 is
true then the relationship between weight and mweight, AGE, HT, and GL does not depend on the
smoking group to which the mother belongs, that is, there is no effect of mother’s smoking on the
child’s weight, after adjusting for mweight, AGE, HT, and GL (by including them as predictors in
the model). More generally, the model could include other factors (group variables) or predictors.

Stata Implementation

Six variables are needed to fit this model in Stata: child’s weight (continuous), smoking group (1-3,
categorical), mother’s mweight (continuous), mother’s age (continuous), mother’s height (continu-
ous), and gestation length (continuous). The command
anova weight Smoke mweight mage mheight gest,cat(ms_gp) fits the model. Results are on
p. 6 of the output.

The F-tests show all effects but age are important in this model. Confirm that intercepts are
-5.838, -6.159, and -6.244 for, respectively, groups 0, 1, and 2. What is of interest of course is the
actual group differences. Notice that they are smaller than when ignoring covariates altogether
(group differences are the _b[ms_gp[i]] terms as before).

Further Thoughts

The approach that I have taken here is consistent with the way epidemiologists assess the impact
of a risk factor on a response, adjusting for the effects of confounders. In our analysis, the response
is child’s weight, mother’s smoking habits play the role of a risk factor, and the other features play
the roles of confounders (even if they are not strictly so).

A sensible further step in the analysis would be to eliminate, one at a time, the unimportant
predictors of weight (i.e. backward elimination). This is easily automated. Once AGE is omitted,
the remaining effects are significant at the 1% level. Furthermore, the differences for the smoking
groups are nearly identical to those obtained with the previous model, so omitting AGE has little
impact on our conclusions. Another reasonable question to examine is whether the smoking groups
interact with any of the predictors in the model.

I will note that epidemiologists often adjust for all confounders (at least all that they have
measured), regardless of their statistical significance.
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8 ANALYSIS OF COVARIANCE

Two Simulated Examples

Just to see how much difference covariates can make, I simulated two extreme examples. In the
first, the group effect is not at all significant using a simple one-way ANOVA, yet introducing
a covariate makes the group effect extremely significant. In this case the covariate is crucial for
finding group differences.

In the second example, group differences seem clear from a one-way ANOVA, yet disappear
completely when the covariate is introduced. Differences in covariate values completely explain
apparent group differences.

We will discuss these examples in class.

Adjusted means

It is very common to report adjusted means in ANCOVA problems. Let us consider the second
simulated data set. The table of (raw) means is obtained as follows:

. tabstat y,by(group) stat(mean semean)

Summary for variables: y
by categories of: group

group | mean se(mean)
---------+--------------------

1 | 4.472125 .1028853
2 | 5.50423 .1216309
3 | 6.472919 .0959465

---------+--------------------
Total | 5.483091 .1203481

------------------------------

We can obtain a table of means adjusted for the covariate x as follows:

. adjust x, by(group) se
----------------------------------------------------------

Dependent variable: y Command: anova
Covariate set to mean: x = 3.4761906

----------------------------------------------------------
----------------------------------

group | xb stdp
----------+-----------------------

1 | 5.04042 (.227786)
2 | 5.50423 (.101776)
3 | 5.90462 (.227785)

----------------------------------
Key: xb = Linear Prediction

stdp = Standard Error

What is the adjust command doing? Match its results with the following:

. tabstat x
variable | mean

-------------+----------
x | 3.47619

------------------------

. lincom(_b[_cons] + _b[group[1]]+_b[x]*3.47619)
( 1) _cons + group[1] + 3.47619 x = 0
------------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | 5.040422 .2277854 22.13 0.000 4.584625 5.49622
------------------------------------------------------------------------------
. lincom(_b[_cons] + _b[group[2]]+_b[x]*3.47619)
( 1) _cons + group[2] + 3.47619 x = 0
------------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
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-------------+----------------------------------------------------------------
(1) | 5.50423 .1017763 54.08 0.000 5.300576 5.707883

------------------------------------------------------------------------------
. lincom(_b[_cons] + _b[x]*3.47619)
( 1) _cons + 3.47619 x = 0
------------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | 5.904621 .2277856 25.92 0.000 5.448823 6.360419
------------------------------------------------------------------------------

The problem is that when groups differ on covariate values, the differences in raw means may
possibly be attributed just to that, not to real group differences. How can we devise a single
summary of a group that is as simple as a mean yet does not suffer this limitation? We fix a single
value of the covariate and take the point on the predicted least squares line at that value for each
group. This is the estimated mean of the group for that value of the covariate. The default is to
take the mean covariate value, but Stata will allow you to take any other value. In this case we are
estimating the mean of each population at a value of x = 3.47619

Note that differences in adjusted means are just differences in intercepts, and those are the
group differences we have been calculating. If we fit an interaction term it is no longer so simple,
however. We still can calculate adjusted means, but differences are very specific to the x-value fit.

SAS does the same thing but uses the term LSMEANS (Least Squares Means) instead of
adjusted means. The marginal means calculated at the end of the last chapter of notes are more
easily obtained using SAS’s approach, but can be calculated as adjusted means in Stata as well.

Returning to the preceding example, we see that the adjusted means are not nearly as different
as are the raw means. The differences in covariate values explain the apparent differences in groups.
The analysis in the separate output is the proper approach, but the table of adjusted means is easier
for quick group comparisons on a familiar scale (assuming y has a familiar scale).

Now consider the first simulated data set:

. tabstat y,by(group) stat(mean semean)
Summary for variables: y

by categories of: group
group | mean se(mean)

---------+--------------------
1 | 4.398373 .2309875
2 | 4.62633 .2657725
3 | 4.417013 .2081521

---------+--------------------
Total | 4.480572 .1347717

------------------------------
. adjust x, by(group) se
---------------------------------------------------

Dependent variable: y Command: anova
Covariate set to mean: x = 3.5

---------------------------------------------------
----------------------------------

group | xb stdp
----------+-----------------------

1 | 5.41749 (.135878)
2 | 4.62633 (.114672)
3 | 3.3979 (.135878)

----------------------------------
Key: xb = Linear Prediction

stdp = Standard Error

The very small differences in raw means become very large (and have much smaller standard errors
when adjusted by x.

You should compute adjusted means in the CHDS data set as an exercise.
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