
9 REVIEW OF DISCRETE DATA ANALYSIS

9 Review of Discrete Data Analysis

The material in this section was covered last semester. Since Stata differs from Minitab in how
the methods are implemented, we will review those methods and see how to use Stata for them.
The huge difference from what we have been doing is that the response or outcome variable is now
categorical instead of continuous. Our goal is to extend all the t-test, regression, ANOVA, and
ANCOVA methods we have studied to the case of categorical outcomes.

Comparing Two Proportions: Independent Samples

The New Mexico state legislature is interested in how the proportion of registered voters that
support Indian gaming differs between New Mexico and Colorado. Assuming neither population
proportion is known, the state’s statistician might recommend that the state conduct a survey
of registered voters sampled independently from the two states, followed by a comparison of the
sample proportions in favor of Indian gaming.

Statistical methods for comparing two proportions using independent samples can be formulated
as follows. Let p1 and p2 be the proportion of populations 1 and 2, respectively, with the attribute
of interest. Let p̂1 and p̂2 be the corresponding sample proportions, based on independent random
or representative samples of size n1 and n2 from the two populations.

Large Sample CI and Tests for p1 − p2

A large sample CI for p1 − p2 is (p̂1 − p̂2)± zcritSECI(p̂1 − p̂2), where zcrit is the standard normal
critical value for the desired confidence level, and

SECI(p̂1 − p̂2) =

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)
n2

is the CI standard error.
A large sample p-value for a test of the null hypothesis H0 : p1 − p2 = 0 against the two-sided

alternative HA : p1 − p2 6= 0 is evaluated using tail areas of the standard normal distribution
(identical to 1 sample evaluation) in conjunction with the test statistic

zs =
p̂1 − p̂2

SEtest(p̂1 − p̂2)
,

where

SEtest(p̂1 − p̂2) =

√
p̄(1− p̄)

n1
+

p̄(1− p̄)
n2

=

√
p̄(1− p̄)

(
1
n1

+
1
n2

)

is the test standard error for p̂1 − p̂2. The pooled proportion

p̄ =
n1p̂1 + n2p̂2

n1 + n2

is the proportion of successes in the two samples combined. The test standard error has the same
functional form as the CI standard error, with p̄ replacing the individual sample proportions.

The pooled proportion is the best guess at the common population proportion when H0 : p1 = p2

is true. The test standard error estimates the standard deviation of p̂1 − p̂2 assuming H0 is true.

Example Two hundred and seventy nine French skiers were studied during two one-week periods
in 1961. One group of 140 skiers receiving a placebo each day, and the other 139 receiving 1
gram of ascorbic acid (Vitamin C) per day. The study was double blind - neither the subjects
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9 REVIEW OF DISCRETE DATA ANALYSIS

nor the researchers knew who received what treatment. Let p1 be the probability that a member
of the ascorbic acid group contracts a cold during the study period, and p2 be the corresponding
probability for the placebo group. Linus Pauling and I are interested in testing whether p1 = p2.
The data are summarized below as a two-by-two table of counts (a contingency table)

Outcome Ascorbic Acid Placebo
# with cold 17 31

# with no cold 122 109
Totals 139 140

The sample sizes are n1 = 139 and n2 = 140. The sample proportion of skiers developing colds
in the placebo and treatment groups are p̂2 = 31/140 = .221 and p̂1 = 17/139 = .122, respectively.
The pooled proportion is the number of skiers that developed colds divided by the number of skiers
in the study: p̄ = 48/279 = .172.

The test standard error is:

SEtest(p̂1 − p̂2) =

√
.172 ∗ (1− .172)

(
1

139
+

1
140

)
= .0452.

The test statistic is
zs =

.122− .221
.0452

= −2.19.

The p-value for a two-sided test is twice the area under the standard normal curve to the right of
2.19 (or twice the area to the left of -2.19), which is 2 ∗ (.014) = .028 At the 5% level, we reject the
hypothesis that the probability of contracting a cold is the same whether you are given a placebo
or Vitamin C.

A CI for p1 − p2 provides a measure of the size of the treatment effect. For a 95% CI

zcritSECI(p̂1 − p̂2) = 1.96

√
.221 ∗ (1− .221)

140
+

.122 ∗ (1− .122)
139

= 1.96 ∗ (.04472) = .088.

The 95% CI for p1 − p2 is (.122 − .221) ± .088, or (−.187,−.011). We are 95% confident that p2

exceeds p1 by at least .011 but not by more than .187.
On the surface, we would conclude that a daily dose of Vitamin C decreases a French skier’s

chance of developing a cold by between .011 and .187 (with 95% confidence). This conclusion was
somewhat controversial. Several reviews of the study felt that the experimenter’s evaluations of
cold symptoms were unreliable. Many other studies refute the benefit of Vitamin C as a treatment
for the common cold.

To implement this test and obtain a CI using Stata’s prtesti command (immediate from of
prtest command – uses data on the command line rather than in memory), we must provide the
raw number of skiers receiving ascorbic acid (139) along with the proportion of these skiers that got
a cold (p̂1 = 0.122), as well as the raw number of skiers receiving placebo (140) along with the pro-
portion of these skiers that got a cold (p̂2 = 0.221). I actually like using the GUI (Statistics ->
Summaries, tables & tests -> Classical tests of hypotheses -> Two sample proportion
calculator) instead of the command line for this, in which case it all looks just like Minitab. Op-
tions and entries are a little more obvious from the GUI.
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9 REVIEW OF DISCRETE DATA ANALYSIS

. prtesti 139 0.122 140 0.221
Two-sample test of proportion x: Number of obs = 139

y: Number of obs = 140
------------------------------------------------------------------------------

Variable | Mean Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

x | .122 .02776 .0675914 .1764086
y | .221 .0350672 .1522696 .2897304

-------------+----------------------------------------------------------------
diff | -.099 .044725 -.1866594 -.0113406

| under Ho: .045153 -2.19 0.028
------------------------------------------------------------------------------

Ho: proportion(x) - proportion(y) = diff = 0
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
z = -2.193 z = -2.193 z = -2.193

P < z = 0.0142 P > |z| = 0.0283 P > z = 0.9858

It actually is a little more direct to use counts instead of proportions you calculate, by typing
prtesti 139 17 140 31, count.

Example A case-control study was designed to examine risk factors for cervical dysplasia (Becker
et al. 194). All the women in the study were patients at UNM clinics. The 175 cases were women,
aged 18-40, who had cervical dysplasia. The 308 controls were women aged 18-40 who did not have
cervical dysplasia. Each women was classified as positive or negative, depending on the presence
of HPV (human papilloma virus).

The data are summarized below.

HPV Outcome Cases Controls
Positive 164 130
Negative 11 178

Sample size 175 308

Let p1 be the probability that a case is HPV positive and let p2 be the probability that a control
is HPV positive. The sample sizes are n1 = 175 and n2 = 308. The sample proportions of positive
cases and controls are p̂1 = 164/175 = .937 and p̂2 = 130/308 = .422.

For a 95% CI

zcritSECI(p̂1 − p̂2) = 1.96

√
.937 ∗ (1− .937)

175
+

.422 ∗ (1− .422)
308

= 1.96 ∗ (.03336) = .0659.

A 95% CI for p1− p2 is (.937− .422)± .066, or .515± .066, or (.449, .581). I am 95% confident that
p1 exceeds p2 by at least .45 but not by more than .58.

Not surprisingly, a two-sided test at the 5% level would reject H0 : p1 = p2. In this problem
one might wish to do a one-sided test, instead of a two-sided test. Can you find the p-value for the
one-sided test in the Stata output below?
. prtesti 175 0.937 308 0.422
Two-sample test of proportion x: Number of obs = 175

y: Number of obs = 308
------------------------------------------------------------------------------

Variable | Mean Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

x | .937 .0183663 .9010028 .9729972
y | .422 .0281413 .366844 .477156

-------------+----------------------------------------------------------------
diff | .515 .0336044 .4491366 .5808634

| under Ho: .0462016 11.15 0.000
------------------------------------------------------------------------------

Ho: proportion(x) - proportion(y) = diff = 0
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
z = 11.147 z = 11.147 z = 11.147

P < z = 1.0000 P > |z| = 0.0000 P > z = 0.0000
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9 REVIEW OF DISCRETE DATA ANALYSIS

Appropriateness of the Large Sample Test and CI

The standard two sample CI and test used above are appropriate when each sample is large. A rule
of thumb suggests a minimum of at least five successes (i.e. observations with the characteristic of
interest) and failures (i.e. observations without the characteristic of interest) in each sample before
using these methods. This condition is satisfied in our two examples.

Effect Measures in Two-by-Two Tables

Consider a study of a particular disease, where each individual is either exposed or not-exposed to
a risk factor. Let p1 be the proportion diseased among the individuals in the exposed population,
and p2 be the proportion diseased among the non-exposed population. This population information
can be summarized as a two-by-two table of population proportions:

Outcome Exposed population Non-Exposed population
Diseased p1 p2

Non-Diseased 1− p1 1− p2

A standard measure of the difference between the exposed and non-exposed populations is the
absolute difference: p1 − p2. We have discussed statistical methods for assessing this difference.

In many epidemiological and biostatistical settings, other measures of the difference between
populations are considered. For example, the relative risk

RR =
p1

p2

is commonly reported when the individual risks p1 and p2 are small. The odds ratio

OR =
p1/(1− p1)
p2/(1− p2)

is another standard measure. Here p1/(1− p1) is the odds of being diseased in the exposed group,
whereas p2/(1− p2) is the odds of being diseased in the non-exposed group.

Note that each of these measures can be easily estimated from data, using the sample proportions
as estimates of the unknown population proportions. For example, in the vitamin C study:

Outcome Ascorbic Acid Placebo
# with cold 17 31

# with no cold 122 109
Totals 139 140

the proportion with colds in the placebo group is p̂2 = 31/140 = .221. The proportion with colds
in the vitamin C group is p̂1 = 17/139 = .122.

The estimated absolute difference in risk is p̂1 − p̂2 = .122− .221 = −.099. The estimated risk
ratio and odds ratio are

R̂R =
.122
.221

= .55

and
ÔR =

.122/(1− .122)

.221/(1− .221)
= .49,

respectively.
In the literature it probably is most common to see OR (actually ÔR or adjusted ÔR) reported,

usually from a logistic regression analysis — that will be covered in the next section). We will be
interested in testing H0 : OR = 1 (or H0 : RR = 1). We will estimate OR with ÔR and will need
the sampling distribution of ÔR in order to construct tests and confidence intervals.
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9 REVIEW OF DISCRETE DATA ANALYSIS

Testing for Homogeneity of Proportions

Example The following two-way table of counts summarizes the location of death and age at
death from a study of 2989 cancer deaths (Public Health Reports, 1983):

(Obs Counts) Location of death
Age Home Acute Care Chronic care Row Total

15-54 94 418 23 535
55-64 116 524 34 674
65-74 156 581 109 846
75+ 138 558 238 934

Col Total 504 2081 404 2989

The researchers want to compare the age distributions across locations. A one-way ANOVA
would be ideal if the actual ages were given. Because the ages are grouped, the data should be
treated as categorical. Given the differences in numbers that died at the three types of facilities, a
comparison of proportions or percentages in the age groups is appropriate. A comparison of counts
is not.

The table below summarizes the proportion in the four age groups at each location. For example,
in the acute care facility 418/2081 = .201 and 558/2081 = .268. The pooled proportions are the
Row Totals divided by the total sample size of 2989. The pooled summary gives the proportions
in the four age categories, ignoring location of death.

The age distributions for home and for the acute care facilities are similar, but are very different
from the age distribution at chronic care facilities.

To formally compare the observed proportions, one might view the data as representative sample
of ages at death from the three locations. Assuming independent samples from the three locations
(populations), a chi-squared statistic is used to test whether the population proportions of ages at
death are identical (homogeneous) across locations. The chi-squared test for homogeneity of
population proportions can be defined in terms of proportions, but is traditionally defined in terms
of counts.

(Proportions) Location of death
Age Home Acute Care Chronic care Pooled

15-54 .187 .201 .057 .179
55-64 .230 .252 .084 .226
65-74 .310 .279 .270 .283
75+ .273 .268 .589 .312
Total 1.000 1.000 1.000 1.000

In general, assume that the data are independent samples from c populations (strata, groups,
sub-populations), and that each individual is placed into one of r levels of a categorical variable.
The raw data will be summarized as a r × c contingency table of counts, where the columns
correspond to the samples, and the rows are the levels of the categorical variable. In the age
distribution problem, r = 4 and c = 3. (SW uses k to identify the number of columns.)

To implement the test:

1. Compute the (estimated) expected count for each cell in the table as follows:

E =
Row Total ∗ Column Total

Total Sample Size
.
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9 REVIEW OF DISCRETE DATA ANALYSIS

2. Compute the Pearson test statistic

χ2
S =

∑

all cells

(O − E)2

E
,

where O is the observed count.

3. For a size α test, reject the hypothesis of homogeneity if χ2
S ≥ χ2

crit, where χ2
crit is the upper

α critical value from the chi-squared distribution with df = (r − 1)(c− 1).

The p-value for the chi-squared test of homogeneity is equal to the area under the chi-squared curve
to the right of χ2

S ; see Figure 1.

0 5 10 15
χCrit

2

α = .05 (fixed)

Reject H0 for χS
2 here

χ2 with 4 degrees of freedom

0 5 10 15
χCrit

2 χS
2

p − value (random)

χ2 with 4 degrees of freedom

χS
2 significant

Figure 1: The p-value is the shaded area on the right

For a two-by-two table of counts, the chi-squared test of homogeneity of proportions
is identical to the two-sample proportion test we discussed earlier.

Stata Analysis

One way to obtain the test statistic and p-value in Stata is to use the tabi command. The tables
put out from that command are too poorly labelled to be very useful, though, so it’s preferable to
put the data into the worksheet so that it looks like this:

Age Location Count
1. 1 1 94
2. 1 2 418
3. 1 3 23
4. 2 1 116
5. 2 2 524
6. 2 3 34
7. 3 1 156
8. 3 2 581
9. 3 3 109

10. 4 1 138
11. 4 2 558
12. 4 3 238

The Hills and De Stavola book explains the following sequence,
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9 REVIEW OF DISCRETE DATA ANALYSIS

. label define agemap 1 "15-54" 2 "55-64" 3 "65-74" 4 "75+"

. label define locmap 1 "Home" 2 "Acute Care" 3 "Chronic Care"

. label values Age agemap

. label values Location locmap

. list,clean
Age Location Count

1. 15-54 Home 94
2. 15-54 Acute Care 418
3. 15-54 Chronic Care 23
4. 55-64 Home 116
5. 55-64 Acute Care 524
6. 55-64 Chronic Care 34
7. 65-74 Home 156
8. 65-74 Acute Care 581
9. 65-74 Chronic Care 109

10. 75+ Home 138
11. 75+ Acute Care 558
12. 75+ Chronic Care 238

If I typed list,clean nolabel I would get the original listing.
Why am I bothering with this? I actually could put those labels in as variable values, and not

bother with labels. When I form tables, though, Stata wants to alphabetize according to variable
values which will force Home as the last column. By keeping values numeric I can get Stata to
order correctly and print the correct labels.

I find it easiest to go through the menu path Summaries, tables, & tests -> Tables ->
Two-way tables with measures of association to generate the following commands. Note in
particular the [fweight = Count] (frequency weight given by Count variable) syntax to tell Stata
that each line represents many observations. Minitab and SAS have similar options.

. tabulate Age Location [fweight = Count], chi2 column expected lrchi2 row
+--------------------+
| Key |
|--------------------|
| frequency |
| expected frequency |
| row percentage |
| column percentage |
+--------------------+

| Location
Age | Home Acute Car Chronic C | Total

-----------+---------------------------------+----------
15-54 | 94 418 23 | 535

| 90.2 372.5 72.3 | 535.0
| 17.57 78.13 4.30 | 100.00
| 18.65 20.09 5.69 | 17.90

-----------+---------------------------------+----------
55-64 | 116 524 34 | 674

| 113.6 469.3 91.1 | 674.0
| 17.21 77.74 5.04 | 100.00
| 23.02 25.18 8.42 | 22.55

-----------+---------------------------------+----------
65-74 | 156 581 109 | 846

| 142.7 589.0 114.3 | 846.0
| 18.44 68.68 12.88 | 100.00
| 30.95 27.92 26.98 | 28.30

-----------+---------------------------------+----------
75+ | 138 558 238 | 934

| 157.5 650.3 126.2 | 934.0
| 14.78 59.74 25.48 | 100.00
| 27.38 26.81 58.91 | 31.25

-----------+---------------------------------+----------
Total | 504 2,081 404 | 2,989

| 504.0 2,081.0 404.0 | 2,989.0
| 16.86 69.62 13.52 | 100.00
| 100.00 100.00 100.00 | 100.00

Pearson chi2(6) = 197.6241 Pr = 0.000
likelihood-ratio chi2(6) = 200.9722 Pr = 0.000
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9 REVIEW OF DISCRETE DATA ANALYSIS

The Pearson statistic is 197.6241 on 6 = (4-1)(3-1) df . The p-value is 0 to three places. The
data strongly suggest that there are differences in the age distributions among locations.

Testing for Homogeneity in Cross-Sectional and Stratified Studies

Two-way tables of counts are often collected either by stratified sampling or by cross-sectional
sampling.

In a stratified design, distinct groups, strata, or sub-populations are identified. Independent
samples are selected from each group, and the sampled individuals are classified into categories.
The HPV study is an illustration of a stratified design (and a case-control study). Stratified
designs provide estimates for the strata (population) proportion in each of the categories. A test
for homogeneity of proportions is used to compare the strata.

In a cross-sectional design, individuals are randomly selected from a population and classified
by the levels of two categorical variables. With cross-sectional samples you can test homogeneity
of proportions by comparing either the row proportions or by comparing the column proportions.

Example The following data (The Journal of Advertising, 1983, p. 34-42) are from a cross-sectional
study that involved soliciting opinions on anti-smoking advertisements. Each subject was asked
whether they smoked and their reaction (on a five-point ordinal scale) to the ad. The data are
summarized as a two-way table of counts, given below:

Str. Dislike Dislike Neutral Like Str. Like Row Tot
Smoker 8 14 35 21 19 97

Non-smoker 31 42 78 61 69 281
Col Total 39 56 113 82 88 378

The row proportions are

(Row Prop) Str. Dislike Dislike Neutral Like Str. Like Row Tot
Smoker .082 .144 .361 .216 .196 1.000

Non-smoker .110 .149 .278 .217 .245 1.000

For example, the entry for the (Smoker, Str. Dislike ) cell is: 8/97 = .082.

Similarly, the column proportions are

(Col Prop) Str. Dislike Dislike Neutral Like Str. Like
Smoker .205 .250 .310 .256 .216

Non-smoker .795 .750 .690 .744 .784
Total 1.000 1.000 1.000 1.000 1.000

Although it may be more natural to compare the smoker and non-smoker row proportions, the
column proportions can be compared across ad responses. There is no advantage to comparing
“rows” instead of “columns” in a formal test of homogeneity of proportions with cross-sectional
data. The Pearson chi-squared test treats the rows and columns interchangeably, so you get the
same result regardless of how you view the comparison. However, one of the two comparisons may
be more natural to interpret.

Note that checking for homogeneity of proportions is meaningful in stratified stud-
ies only when the comparison is across strata! Further, if the strata correspond to columns of
the table, then the column proportions or percentages are meaningful whereas the row proportions
are not.
Question: How do these ideas apply to the age distribution problem?
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Testing for Independence in a Two-Way Contingency Table

The row and column classifications for a population where each individual is cross-classified by two
categorical variables are said to be independent if each population cell proportion in the two-way
table is the product of the proportion in a given row and the proportion in a given column. One can
show that independence is equivalent to homogeneity of proportions. In particular, the two-way
table of population cell proportions satisfies independence if and only if the population column
proportions are homogeneous. If the population column proportions are homogeneous then so are
the population row proportions.

This suggests that a test for independence or no association between two variables based on a
cross-sectional study can be implemented using the chi-squared test for homogeneity of proportions.
This suggestion is correct. If independence is not plausible, I tend to interpret the dependence as
a deviation from homogeneity, using the classification for which the interpretation is most natural.

Example: Stata output for testing independence between smoking status and ad reaction is given
below. The Pearson chi-squared test is not significant (p-value = 0.559). The observed association
between smoking status and the ad reaction is not significant. This suggests, for example, that
the smoker’s reactions to the ad were not statistically significantly different from the non-smoker’s
reactions, which is consistent with the smokers and non-smokers attitudes being fairly similar. The
data were coded as opinion from 1 to 5 and smoke as 1 or 2, and then label define applied as before.

. tabulate Smoke Opinion [fweight=count],chi2 lrchi2 exp col row
+--------------------+
| Key |
|--------------------|
| frequency |
| expected frequency |
| row percentage |
| column percentage |
+--------------------+

| Opinion
Smoke | Str. Disl Dislike Neutral Like Str. Like | Total

-----------+-------------------------------------------------------+----------
Smoker | 8 14 35 21 19 | 97

| 10.0 14.4 29.0 21.0 22.6 | 97.0
| 8.25 14.43 36.08 21.65 19.59 | 100.00
| 20.51 25.00 30.97 25.61 21.59 | 25.66

-----------+-------------------------------------------------------+----------
Non-smoker | 31 42 78 61 69 | 281

| 29.0 41.6 84.0 61.0 65.4 | 281.0
| 11.03 14.95 27.76 21.71 24.56 | 100.00
| 79.49 75.00 69.03 74.39 78.41 | 74.34

-----------+-------------------------------------------------------+----------
Total | 39 56 113 82 88 | 378

| 39.0 56.0 113.0 82.0 88.0 | 378.0
| 10.32 14.81 29.89 21.69 23.28 | 100.00
| 100.00 100.00 100.00 100.00 100.00 | 100.00

Pearson chi2(4) = 2.9907 Pr = 0.559
likelihood-ratio chi2(4) = 2.9797 Pr = 0.561

One-sample procedures

Last semester we spent some time on the situation where we obtained a SRS of n observations
from a binomial population (binary outcome variable) with probability p of Success. We learned
how to calculate CIs for p and tests of H0 : p = p0 for some fixed p0. The large sample form of this
is also done with the prtesti command or through the GUI, and the (preferable) exact binomial
test is done through the bitesti command (or through the menus). The extension to 3 or more
categories was the chi-squared goodness of fit test, done in Stata using the csgof command. That
command is not automatically installed but you can locate and install it from the findit csgof
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command. Since we do these one sample procedures relatively infrequently, I am going to leave it
to you to learn them in Stata if you need them.

10 Logistic Regression - Two Introductory Examples

The chi-squared tests in the previous section are used very frequently, along with Fisher’s exact
test (asked for with the ,fisher option in tabulate – note that it is often feasible to calculate only
for small sample sizes). Those “classical” methods have been around a very long time and are often
the best choice for analysis. In order to consider problems with more complicated predictors we
need newer technology, so we now turn to logistic regression.

The data below are from a study conducted by Milicer and Szczotka on pre-teen and teenage
girls in Warsaw. The subjects were classified into 25 age categories. The number of girls in each
group (sample size) and the number that reached menarche (# RM) at the time of the study were
recorded. The age for a group corresponds to the midpoint for the age interval.

Sample size # RM Age Sample size # RM Age
376 0 9.21 106 67 13.33
200 0 10.21 105 81 13.58
93 0 10.58 117 88 13.83
120 2 10.83 98 79 14.08
90 2 11.08 97 90 14.33
88 5 11.33 120 113 14.58
105 10 11.58 102 95 14.83
111 17 11.83 122 117 15.08
100 16 12.08 111 107 15.33
93 29 12.33 94 92 15.58
100 39 12.58 114 112 15.83
108 51 12.83 1049 1049 17.58
99 47 13.08

The researchers were interested in whether the proportion of girls that reached menarche ( #
RM/ sample size ) varied with age. One could perform a test of homogeneity by arranging the data
as a 2 by 25 contingency table with columns indexed by age and two rows: ROW1 = # RM and
ROW2 = # that have not RM = sample size − # RM. A more powerful approach treats these
as regression data, using the proportion of girls reaching menarche as the “response” and age as a
predictor.

The data were imported into Stata using the infile command and labelled menarche, total,
and age. A plot of the observed proportion of girls that have reached menarche (obtained in Stata
with the two commands generate phat = menarche / total and twoway (scatter phat age))
shows that the proportion increases as age increases, but that the relationship is nonlinear.

The observed proportions, which are bounded between zero and one, have a lazy S-shape (a
sigmoidal function) when plotted against age. The change in the observed proportions for a
given change in age is much smaller when the proportion is near 0 or 1 than when the proportion
is near 1/2. This phenomenon is common with regression data where the response is a proportion.

The trend is nonlinear so linear regression is inappropriate. A sensible alternative might be to
transform the response or the predictor to achieve near linearity. A better approach is to use a
non-linear model for the proportions. A common choice is the logistic regression model.
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Figure 2: Estimated proportions p̂i versus AGEi, for i = 1, . . . , 25.

The Simple Logistic Regression Model

The simple logistic regression model expresses the population proportion p of individuals with a
given attribute (called a success) as a function of a single predictor variable X. The model assumes
that p is related to X through

logit(p) = log
(

p

1− p

)
= α + βX (1)

or, equivalently, as

p =
exp(α + βX)

1 + exp(α + βX)
.

The logistic regression model is a binary response model, where the response for each case
falls into one of 2 exclusive and exhaustive categories, often called success (cases with the attribute
of interest) and failure (cases without the attribute of interest). In many biostatistical applications,
the success category is presence of a disease, or death from a disease.

I will often write p as p(X) to emphasize that p is the proportion of all individuals with score
X that have the attribute of interest. In the menarche data, p = p(X) is the population proportion
of girls at age X that have reached menarche.

The odds of success are p/(1 − p). For example, the odds of success are 1 (or 1 to 1) when
p = 1/2. The odds of success are 2 (or 2 to 1) when p = 2/3. The logistic model assumes that the
log-odds of success is linearly related to X. Graphs of the logistic model relating p to X are given
in Figure 3. The sign of the slope refers to the sign of β.

There are a variety of other binary response models that are used in practice. The probit
regression model or the complementary log-log regression model might be appropriate when the
logistic model does not fit the data.

Data for Simple Logistic Regression

For the formulas below, I assume that the data are given in summarized or aggregate form:

104



10 LOGISTIC REGRESSION - TWO INTRODUCTORY EXAMPLES

X

Lo
g-

O
dd

s

-5 0 5

-5
0

5

- slope

+ slope

0 slope

Logit Scale

X
P

ro
ba

bi
lit

y

-5 0 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 slope

+ slope - slope

Probability Scale

Figure 3: logit(p) and p as a function of X
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where di is the number of individuals with the attribute of interest (number of diseased) among ni

randomly selected or representative individuals with predictor variable value Xi. The subscripts
identify the group of cases in the data set. In many situations, the sample size is 1 in each group,
and for this situation di is 0 or 1.

For raw data on individual cases, the sample size column n is usually omitted and D takes on
1 of two coded levels, depending on whether the case at Xi is a success or not. The values 0 and 1
are typically used to identify “failures” and “successes” respectively.

Estimating Regression Coefficients

The principle of maximum likelihood is commonly used to estimate the two unknown parameters
in the logistic model:

log
(

p

1− p

)
= α + βX.

The maximum likelihood estimates (MLE) of the regression coefficients are estimated itera-
tively by maximizing the so-called Binomial likelihood function for the responses, or equivalently,
by minimizing the deviance function (also called the likelihood ratio LR chi-squared statistic)

LR = 2
m∑

i=1

{
dilog

(
di

nipi

)
+ (ni − di)log

(
ni − di

ni − nipi

)}

over all possible values of α and β, where the pis satisfy

log
(

pi

1− pi

)
= α + βXi.
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The ML method also gives standard errors and significance tests for the regression estimates.
The deviance is an analog of the residual sums of squares in linear regression. The choices for

α and β that minimize the deviance are the parameter values that make the observed and fitted
proportions as close together as possible in a “likelihood sense”.

Suppose that α̂ and β̂ are the MLEs of α and β. The deviance evaluated at the MLEs:

LR = 2
m∑

i=1

{
dilog

(
di

nip̃i

)
+ (ni − di)log

(
ni − di

ni − nip̃i

)}
,

where the fitted probabilities p̃i satisfy

log
(

p̃i

1− p̃i

)
= α̂ + β̂Xi,

is used to test the adequacy of the model. The deviance is small when the data fits the model, that
is, when the observed and fitted proportions are close together. Large values of LR occur when
one or more of the observed and fitted proportions are far apart, which suggests that the model is
inappropriate.

If the logistic model holds, then LR has a chi-squared distribution with m−r degrees of freedom,
where m is the number of groups and r (here 2) is the number of estimated regression parameters.
A p-value for the deviance is given by the area under the chi-squared curve to the right of LR. A
small p-value indicates that the data does not fit the model.

Stata does not provide the deviance statistic, but rather the Pearson chi-squared test statistic,
which is defined similarly to the deviance statistic and is interpreted in the same manner:

X2 =
m∑

i=1

(di − nip̃i)2

nip̃i(1− p̃i)
.

This statistic can be interpreted as the sum of standardized, squared differences between the
observed number of successes di and expected number of successes nip̃i for each covariate Xi. When
what we expect to see under the model agrees with what we see, the Pearson statistic is close
to zero, indicating good model fit to the data. When the Pearson statistic is large, we have an
indication of lack of fit. Often the Pearson residuals ri = (di − nip̃i)/

√
nip̃i(1− p̃i) are used to

determine exactly where lack of fit occurs. These residuals are obtained in Stata using the predict
command after the logistic command. Examining these residuals is very similar to looking for
large values of (O−E)2

E in a χ2 analysis of a contingency table as discussed in the last lecture. We
will not talk further of logistic regression diagnostics.

Age at Menarche Data: Stata Implementation

A logistic model for these data implies that the probability p of reaching menarche is related to age
through

log
(

p

1− p

)
= α + β AGE.

If the model holds, then a slope of β = 0 implies that p does not depend on AGE, i.e. the proportion
of girls that have reached menarche is identical across age groups. However, the power of the logistic
regression model is that if the model holds, and if the proportions change with age, then you have
a way to quantify the effect of age on the proportion reaching menarche. This is more appealing
and useful than just testing homogeneity across age groups.

A logistic regression model with a single predictor can be fit using one of the many commands
available in Stata depending on the data type and desired results: logistic (raw data, outputs
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odds ratios), logit (raw data, outputs model parameter estimates), and blogit (grouped data).
The logistic command has many more options than either logit or blogit, but requires you to
reformat the data into individual records, one for each girl. For an example of how to do this, check
out the online Stata help at http://www.stata.com/support/faqs/stat/grouped.html. The
Stata command blogit menarche total age yields the following output:

Logit estimates Number of obs = 3918
LR chi2(1) = 3667.18
Prob > chi2 = 0.0000

Log likelihood = -819.65237 Pseudo R2 = 0.6911
------------------------------------------------------------------------------

_outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

age | 1.631968 .0589509 27.68 0.000 1.516427 1.74751
_cons | -21.22639 .7706558 -27.54 0.000 -22.73685 -19.71594

------------------------------------------------------------------------------

The output tables the MLEs of the parameters: α̂ = −21.23 and β̂ = 1.63. Thus, the fitted or
predicted probabilities satisfy:

log
(

p̃

1− p̃

)
= −21.23 + 1.63AGE

or
p̃(AGE) =

exp(−21.23 + 1.63AGE)
1 + exp(−21.23 + 1.63AGE)

.

The p-value for testing H0 : β = 0 (i.e. the slope for the regression model is zero) based upon the
chi-squared test p-value (P>|z|) is 0.000, which leads to rejecting H0 at any of the usual test levels.
Thus, the proportion of girls that have reached menarche is not constant across age groups.

The likelihood ratio test statistic of no logistic regression relationship (LR chi2(1) = 3667.18)
and p-value (Prob > chi2 = 0.0000) gives the logistic regression analogue of the overall F-statistic
that no predictors are important to multiple regression. In general, the chi-squared statistic pro-
vided here is used to test the hypothesis that the regression coefficients are zero for each predictor
in the model. There is a single predictor here, AGE, so this test and the test for the AGE effect
are both testing H0 : β = 0.

To obtain the Pearson goodness of fit statistic and p-value we must reformat the data and use
the logistic command as described in the webpage above:

generate w0 = total - menarche
rename menarche w1
generate id = _n
reshape long w, i(id) j(y)
logistic y age [fw=w]
lfit

We obtain the following output:

Logistic regression Number of obs = 3918
LR chi2(1) = 3667.18
Prob > chi2 = 0.0000

Log likelihood = -819.65237 Pseudo R2 = 0.6911
------------------------------------------------------------------------------

y | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

age | 5.113931 .3014706 27.68 0.000 4.555917 5.740291
------------------------------------------------------------------------------
Logistic model for y, goodness-of-fit test

number of observations = 3918
number of covariate patterns = 25

Pearson chi2(23) = 21.87
Prob > chi2 = 0.5281
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Using properties of exponential functions, the odds of reaching menarche is exp(1.632) = 5.11
times larger for every year older a girl is. To see this, let p(Age + 1) and p(Age) be probabilities of
reaching menarche for ages one year apart. The odds ratio OR satisfies

log(OR) = log
(

p(Age + 1)/(1− p(Age + 1))
p(Age)/(1− p(Age))

)

= log (p(Age + 1)/(1− p(Age + 1)))− log (p(Age)/(1− p(Age)))
= (α + β(Age + 1))− (α + β Age)
= β

so OR = eβ. If we considered ages 5 years apart, the same derivation would give us OR = e5β =
(eβ)5. You often see a continuous variable with a significant though apparently small OR, but
when you examine the OR for a reasonable range of values (by raising to the power of the range in
this way), then the OR is substantial.

You should pick out the estimated regression coefficient β̂ = 1.632 and the estimated odds ratio
exp(β̂) = exp(1.632) = 5.11 from the output obtained using the blogit and logistic commands
respectively. We would say that, for example, that the odds of 15 year old girls having reached
menarche are between 4.5 and 5.7 times larger than for 14 year old girls.

The Pearson chi-square statistic is 21.87 on 23 df, with a p-value of 0.5281. The large p-value
suggests no gross deficiencies with the logistic model.

Logistic Regression with Two Effects: Leukemia Data

Feigl and Zelen reported the survival time in weeks and the white cell blood count (WBC) at time
of diagnosis for 33 patients who eventually died of acute leukemia. Each person was classified
as AG+ or AG- (coded as IAG = 1 and 0, respectively), indicating the presence or absence of a
certain morphological characteristic in the white cells. The researchers are interested in modelling
the probability p of surviving at least one year as a function of WBC and IAG. They believe that
WBC should be transformed to a log scale, given the skewness in the WBC values. Where Live=0,
1 indicates whether the patient died or lived respectively, the data are

IAG WBC Live IAG WBC Live IAG WBC Live
---------------------------------------------
1 75 1 1 230 1 1 430 1
1 260 1 1 600 0 1 1050 1
1 1000 1 1 1700 0 1 540 0
1 700 1 1 940 1 1 3200 0
1 3500 0 1 5200 0 1 10000 1
1 10000 0 1 10000 0 0 440 1
0 300 1 0 400 0 0 150 0
0 900 0 0 530 0 0 1000 0
0 1900 0 0 2700 0 0 2800 0
0 3100 0 0 2600 0 0 2100 0
0 7900 0 0 10000 0 0 10000 0

As an initial step in the analysis, consider the following model:

log
(

p

1− p

)
= α + β1LWBC + β2IAG,
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where LWBC = log WBC. This is a logistic regression model with 2 effects, fit using the logistic
command. The parameters α, β1 and β2 are estimated by maximum likelihood.

The model is best understood by separating the AG+ and AG- cases. For AG- individuals,
IAG=0 so the model reduces to

log
(

p

1− p

)
= α + β1LWBC + β2 ∗ 0 = α + β1LWBC.

For AG+ individuals, IAG=1 and the model implies

log
(

p

1− p

)
= α + β1LWBC + β2 ∗ 1 = (α + β2) + β1LWBC.

The model without IAG (i.e. β2 = 0) is a simple logistic model where the log-odds of surviving
one year is linearly related to LWBC, and is independent of AG. The reduced model with β2 = 0
implies that there is no effect of the AG level on the survival probability once LWBC has been taken
into account.

Including the binary predictor IAG in the model implies that there is a linear relationship
between the log-odds of surviving one year and LWBC, with a constant slope for the two AG
levels. This model includes an effect for the AG morphological factor, but more general models
are possible. Thinking of IAG as a factor, the proposed model is a logistic regression analog of
ANCOVA.

The parameters are easily interpreted: α and α + β2 are intercepts for the population logistic
regression lines for AG- and AG+, respectively. The lines have a common slope, β1. The β2

coefficient for the IAG indicator is the difference between intercepts for the AG+ and AG- regression
lines. A picture of the assumed relationship is given below for β1 < 0. The population regression
lines are parallel on the logit (i.e. log odds ) scale only, but the order between IAG groups is
preserved on the probability scale.
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Figure 4: Predicted relationships on the logit and probability scales

The data are in the raw data form for individual cases. There are three columns: the binary
or indicator variable iag (with value 1 for AG+, 0 for AG-), wbc (continuous), live (with value
1 if the patient lived at least 1 year and 0 if not). Note that a frequency column is not needed with

109



10 LOGISTIC REGRESSION - TWO INTRODUCTORY EXAMPLES

raw data (and hence using the logistic command) and that the success category corresponds to
surviving at least 1 year.

Before looking at output for the equal slopes model, note that the data set has 30 distinct IAG
and WBC combinations, or 30 “groups” or samples that could be constructed from the 33 individual
cases. Only two samples have more than 1 observation. The majority of the observed proportions
surviving at least one year (number surviving ≥ 1 year/ group sample size) are 0 (i.e. 0/1) or 1
(i.e. 1/1). This sparseness of the data makes it difficult to graphically assess the suitability of the
logistic model (Why?). Although significance tests on the regression coefficients do not require large
group sizes, the chi-squared approximations to the deviance and Pearson goodness-of-fit statistics
are suspect in sparse data settings. With small group sizes as we have here, most researchers would
not interpret the p-values for the deviance or Pearson tests literally. Instead, they would use the
p-values to informally check the fit of the model. Diagnostics would be used to highlight problems
with the model.

We obtain the following modified output:

. infile iag wbc live using c:/biostat/notes/leuk.txt

. generate lwbc = log(wbc)

. logistic live iag lwbc

. logit

. lfit
Logistic regression Number of obs = 33

LR chi2(2) = 15.18
Prob > chi2 = 0.0005

Log likelihood = -13.416354 Pseudo R2 = 0.3613
------------------------------------------------------------------------------

live | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iag | 12.42316 13.5497 2.31 0.021 1.465017 105.3468
lwbc | .3299682 .1520981 -2.41 0.016 .1336942 .8143885

------------------------------------------------------------------------------
Logit estimates Number of obs = 33

LR chi2(2) = 15.18
Prob > chi2 = 0.0005

Log likelihood = -13.416354 Pseudo R2 = 0.3613
------------------------------------------------------------------------------

live | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iag | 2.519562 1.090681 2.31 0.021 .3818672 4.657257
lwbc | -1.108759 .4609479 -2.41 0.016 -2.0122 -.2053178
_cons | 5.543349 3.022416 1.83 0.067 -.380477 11.46718

------------------------------------------------------------------------------
Logistic model for live, goodness-of-fit test

number of observations = 33
number of covariate patterns = 30

Pearson chi2(27) = 19.81
Prob > chi2 = 0.8387

The large p-value (0.8387) for the lack-of-fit chi-square (i.e. the Pearson statistic) indicates
that there are no gross deficiencies with the model. Given that the model fits reasonably well, a
test of H0 : β2 = 0 might be a primary interest here. This checks whether the regression lines
are identical for the two AG levels, which is a test for whether AG affects the survival probability,
after taking LWBC into account. The test that H0 : β2 = 0 is equivalent to testing that the odds
ratio exp(β2) is equal to 1: H0 : eβ2 = 1. The p-value for this test is 0.021. The test is rejected
at any of the usual significance levels, suggesting that the AG level affects the survival probability
(assuming a very specific model). In fact we estimate that the odds of surviving past a year in the
AG+ population is 12.4 times the odds of surviving past a year in the AG- population, with a 95%
CI of (1.4, 105.4); see below for this computation carried out explicitly.
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The estimated survival probabilities satisfy

log
(

p̃

1− p̃

)
= 5.54− 1.11LWBC + 2.52IAG.

For AG- individuals with IAG=0, this reduces to

log
(

p̃

1− p̃

)
= 5.54− 1.11LWBC,

or equivalently,

p̃ =
exp(5.54− 1.11LWBC)

1 + exp(5.54− 1.11LWBC)
.

For AG+ individuals with IAG=1,

log
(

p̃

1− p̃

)
= 5.54− 1.11LWBC + 2.52 ∗ (1) = 8.06− 1.11LWBC,

or
p̃ =

exp(8.06− 1.11LWBC)
1 + exp(8.06− 1.11LWBC)

.

Using the logit scale, the difference between AG+ and AG- individuals in the estimated log-
odds of surviving at least one year, at a fixed but arbitrary LWBC, is the estimated IAG regression
coefficient:

(8.06− 1.11LWBC)− (5.54− 1.11LWBC) = 2.52.

Using properties of exponential functions, the odds that an AG+ patient lives at least one year is
exp(2.52) = 12.42 times larger than the odds that an AG- patient lives at least one year, regardless
of LWBC.

Although the equal slopes model appears to fit well, a more general model might fit better. A
natural generalization here would be to add an interaction, or product term, IAG ∗LWBC to the
model. The logistic model with an IAG effect and the IAG ∗ LWBC interaction is equivalent to
fitting separate logistic regression lines to the two AG groups. This interaction model provides an
easy way to test whether the slopes are equal across AG levels. I will note that the interaction
term is not needed here.
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