Section 2.1

- 2.2 Let 1 represent an error, 0 represent a correct transmission. There are $2^4 = 16$ outcomes in S in the form (4th bit, 3rd bit, 2nd bit, 1st bit). S={(0000), (0001), (0010), (0011), (0100), (0101), (0110), (0111), (1000), (1001), (1010), (1011), (1100), (1111)}
- 2.6 Each of three spaces can be filled by any of 10 digits (0,1,2,3,4,5,6,7,8,9)

So there are $10 \ge 10 \ge 10^3$ elements in S (the three digit numbers from 000 to 999).

2.23 This is the same setup as 2.2. Let 1 represent an error, 0 represent a correct transmission. There are $2^4 = 16$ outcomes in S in the form $(4^{th} \text{ bit}, 3^{rd} \text{ bit}, 2^{nd} \text{ bit}, 1^{st} \text{ bit})$.

a. S={(0000), (0001), (0010), (0011), (0100), (0101), (0110), (0111), (1000), (1001), (1010), (1011), (1100), (1101), (1110), (1111)}

b. Clearly not mutually exclusive since two or more bits may be distorted.

c. $A_1 = \{(0001), (0011), (0101), (0111), (1001), (1011), (1101), (1111)\}$ (all the odd numbers in binary representation).

d. $A_1 = \{(0000), (0010), (0100), (0110), (1000), (1010), (1100), (1110)\}$ (all the even numbers in binary representation)

e. $A_1 \cap A_2 \cap A_3 \cap A_4 = \{(1111)\}$ all bits distorted

f. $(A_1 \cap A_2) \bigcup (A_3 \cap A_4) = \{(0011), (0111), (1011), (1111), (1100), (1101), (1110)\}$. Either 1st two or last two (or all) distorted

Section 2.2

2.34
$$S=\{a,b,c,d,e\}, A=\{a,b,c\}, B=\{c,d,e\}, P(a) = P(b) = .1, P(c) = P(e) = .2, P(d) = .4$$

a) $P(A) = P(a) + P(b) + P(c) = .1 + .1 + .2 = .4$
b) $P(B) = P(c) + P(d) + P(e) = .2 + .4 + .2 = .8$
c) $P(A') = 1 - P(A) = 1 - .4 = .6$
d) $P(A \cup B) = P(S) = 1$
e) $P(A \cap B) = P(c) = .2$

- 2.37 Let C_1, \ldots, C_8 be the 8 cavities.
 - a) $S = \{C_1, C_2, C_3, C_4, C_5, C_6, C_7, C_8\}$ b) $P(\{C_1, C_2\}) = P(C_1) + P(C_2) = \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$ c) $P(\{C_3, C_4\}') = 1 - P(\{C_3, C_4\}) = 1 - \frac{1}{4} = \frac{3}{4}$

b) $P({Minor, Major}) = P(Minor) + P(Major) = .7 + .05 = .75 (=1 - P(Correct))$

Section 2.3

- 2.50 A, B, C mutually exclusive with P(A) = .2, P(B) = .3, P(C) = .4
 - a) $P(A \cup B \cup C) = P(A) + P(B) + P(C) = .2 + .3 + .4 = .9$ (The only reason you can add is because they are m.e. !)
 - b) $P(A \cap B \cap C) = P(\emptyset) = 0$ (m.e.!)
 - c) $P(A \cap B) = P(\emptyset) = 0$
 - d) $P[(A \cup B) \cap C) = P(\emptyset) = 0$ (C does not share anything with A or B)
 - e) De Morgan's laws state that $\frac{(A \cup B)' = A' \cap B'}{(A \cap B)' = A' \cup B'}$

so

$$P(A \cap B \cap C') = P[(A \cup B \cup C)'] = 1 - P(A \cup B \cup C) = 1 - .9 = .1$$

 $A' \cap B' \cap C'$ is just whatever is not in any of them, so this is easy to get directly, too.

2.52

Shock Resistance
H L
Scratch H 80 9 89
Resistance L 6 5 11
86 14 100
a)
$$P(ScrH \cap ShkH) = \frac{80}{100} = .8$$

b) $P(ScrH \cup ShkH) = \frac{89}{100} + \frac{86}{100} - \frac{80}{100} = \frac{95}{100} = .95$

c) No, a disk can be both highly shock resistant and highly scratch resistant at the same time.

Surface finish Yes 350/ No Rondess 20 345/ Yes No No 12/ 5 Tool Tool Tal Tool 1/ 1007 4 Shafts: 200 145 8 4 6 2 a) Surface Yes U Rounders Yes U Tool 1 $\frac{350 + 12 + 2}{370} = \frac{364}{370}$ 6) Surface Yes U Roundness No U Tool 2 345 + 8 + 5 + 8 = 366370 C) (Surfyes (Round Yes) U Tool 2 $\frac{345+4+8+6}{370} = \frac{363}{370}$ d) (Sorf Yes U To d2) $\frac{350 + 8 + 6}{370} = \frac{369}{370}$

2.56

An alternative method is:

a)
$$P(Aurf Yeo U Round Yeo U Tool 1)$$

= $P(Surf Yeo) + P(Round Yeo) + P(Tool 1) - P(Surf Yeo O Round Yeo) - P(Surf Yeo O Round Yeo) - P(Surf Yeo O Round Yeo) - P(Round Yeo O Tool) + P(Surf Yeo O Round Yeo O Tool) - P(Round Yeo O Tool) + P(Surf Yeo O Round Yeo O Tool) - P(Round Yeo O Tool) + P(Surf Yeo O Round Neo O Tool) - 204 + 200 = 364
= $350 + 357 + 207 - 345 + 201 - 204 + 200 = 364$
 370
b) $P(Surf Yeo U Round No U Tool 2) = P(Surf Yeo O Round No) - P(Surf Yeo O Tool 2) - P(Round NotTool2) + P(SVORM OT2) = $350 + 13 + 163 - 5 - 149 - 10 + 4 = 366$
 370
c) $P[(SY \cap RY)UT2] = P[ST \cap RY] + P[Tc] - P[SY \cap RY \cap Tc] = 345 + 163 - 145 = 363$
 370
d) $P[SY UT2] = P[SY] + P[Tc] - P(SY \cap Tc) = 350 + 163 - 149 = 364$
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 $37$$$