Stat 345 Solutions - Section 2.6

Problem 2-84

 $P(A \cap B) = \frac{80}{100}, P(A) = \frac{82}{100}, P(B) = \frac{90}{100}$ Since $P(A \cap B) \neq P(A)P(B)$ then A and B are not independent.

Problem 2-87

Let H_i denote the event that the i^{th} specimen contains high levels of contamination.

- (a) $P(H'_1 \cap H'_2 \cap H'_3 \cap H'_4 \cap H'_5) = P(H'_1)P(H'_2)P(H'_3)P(H'_4)P(H'_5)$ by independence. $P(H'_i) = 0.9$, so the answer is $(0.9)^5 = 0.590$.
- (b) $A_1 = H'_1 \cap H_2 \cap H_3 \cap H_4 \cap H_5$ $A_2 = H_1 \cap H'_2 \cap H_3 \cap H_4 \cap H_5$ $A_3 = H_1 \cap H_2 \cap H'_3 \cap H_4 \cap H_5$ $A_4 = H_1 \cap H_2 \cap H_3 \cap H'_4 \cap H_5$ $A_5 = H_1 \cap H_2 \cap H_3 \cap H_4 \cap H'_5$ We want $P(A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5)$. By independence $P(A_i) = (0.9)^4 (0.1) = .0656$ for each of the A_i . The A_i also are mutually exclusive, so $P(A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5) = \sum_{i=1}^5 P(A_i) = 5(.0656) = 0.328.$
- (c) If B is the event in part (a), i.e. B is the event no sample contains high levels of contamination, then P(B) = .059. We want P(B') = 1 P(B) = 1 0.59 = 0.41.

Problem 2-90

Let A = event all upper devices function, B = event all lower devices function. Everything operates independently, so P(A) = (0.9)(0.8)(0.7) = 0.504, P(B) = (0.95)(0.95)(0.95) = 0.8574, and $P(A \cap B) = (0.504)(0.8574) = 0.4321$. The circuit operates is the event $A \cup B$ and $P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.504 + 0.8574 - 0.4321 = 0.9293$