Stat 345 Solutions - Section 8.3

Problem 8-20

This is just a direct lookup in the table, giving values of (a) 2.179, (b) 2.064, (c) 3.012, (d) 3.733

Problem 8-22

Since σ is unknown and the sample size is small, we will assume that the distribution of tire life is normal. Then, the general form of the confidence interval will be

$$(\bar{x} - t_{\alpha/2,n-1}\frac{\sigma}{\sqrt{n}}, \bar{x} + t_{\alpha/2,n-1}\frac{\sigma}{\sqrt{n}})$$

Here, $\bar{x} = 60, 139.7, s = 3645.94, n = 16$, and $t_{0.05/2,15} = 2.131$ since we want to construct a 95% CI. Thus, we have

$$\begin{array}{rrrr} (60139.7 - (2.131) \frac{3645.94}{4} & , & 60139.7 + (2.131) \frac{3645.94}{4}) \\ & (58, 197.33 & , & 62, 082.07). \end{array}$$

Problem 8-23 A one sided CI puts all of α in one tail, so compute $\bar{x} - t_{0.1}s/\sqrt{n} = 1.25 - 2.539(0.25)/\sqrt{20}$

Problem 8-24

With the small n we need to assume the population we sampled from (microamp levels of all TV tubes of this type) is normally distributed. Without specifying otherwise, CI's are two-sided, so compute $\bar{x} \pm t_{0.005} s/\sqrt{n} = 317.2 \pm 3.250(15.7)/\sqrt{10}$

Problem 8-25 (b)

Since σ is unknown and the sample size is small, we will assume that the distribution of polyunsaturated fatty acid level is normal. Then, the general form of the confidence interval will be

$$(\bar{x} - t_{\alpha/2,n-1}\frac{\sigma}{\sqrt{n}}, \bar{x} + t_{\alpha/2,n-1}\frac{\sigma}{\sqrt{n}})$$

Here, $\bar{x} = 16.98$, s = 0.1017, n = 6, and $t_{0.01/2,5} = 4.032$ since we want to construct a 99% CI. Thus, we have

$$(16.98 - (4.032) \frac{0.1017}{\sqrt{6}}$$
, $16.98 + (4.032) \frac{0.1017}{\sqrt{6}})$
(16.81, 17.15).

We are 99% *confident* that this interval covers the true mean level of polyunsaturated fatty acid. i.e. In order to get data like this we must have sampled from a population with a mean in this range. We are right 99% of the time when we make such claims.

8.26

(a) There is nothing in this boxplot to suggest a problem with assuming we sampled from a normal distribution. We have near-perfect symmetry (more than we need to support the assumption).

(b)

One-Sample T: Comp. Strength

Variable		Ν	Mean	StDev	SE Mean	95%	CI
Comp.	Strength	12	2259.92	35.57	10.27	(2237.32,	2282.52)

(c) One-Sample T: Comp. Strength

					95%
					Lower
Variable	Ν	Mean	StDev	SE Mean	Bound
Comp. Strength	12	2259.92	35.57	10.27	2241.48

8.27

(a) This boxplot does not show perfect symmetry, but there are no outliers or other reasons to worry much about assuming we sampled from a normal distribution.

(b)

One-Sample T: Rod Diameter

Variable	Ν	Mean	StDev	SE Mean	95%	CI
Rod Diameter	15	8.23400	0.02530	0.00653	(8.21999,	8.24801)

8.28 One-Sample T: Rod Diameter

					95%
					Lower
Variable	Ν	Mean	StDev	SE Mean	Bound
Rod Diameter	15	8.23400	0.02530	0.00653	8.22250

Why are they different?