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Progression of failure in fiber-reinforced materials
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SUMMARY

Decohesion is an important failure mode associated with fiber-reinforced composite materials. Analysis
of failure progression at the fiber-matrix interfaces in fiber-reinforced composite materials is considered
using a softening decohesion model consistent with thermodynamic concepts. In this model, the
initiation of failure is given directly by a failure criterion. Damage is interpreted by the development
of a discontinuity of displacement. The formulation describing the potential development of damage
is governed by a discrete decohesive constitutive equation. Numerical simulations are performed using
the direct boundary element method. Incremental decohesion simulations illustrate the progressive
evolution of debonding zones and the propagation of cracks along the interfaces. The effect of
decohesion on the macroscopic response of composite materials is also investigated. Copyright c©
2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

High-performance composite materials comprised of a dispersed phase (inclusions) suspended
in a matrix material combine the advantage of high structural strength with complementary
properties such as light weight, high or low thermal and electrical conductivity, and prescribed
coefficient of thermal expansion. The versatility and low unit cost of these materials make them
well-suited for lightweight structural components, shock and thermal insulators, encapsulants
for electronic components, and functionally graded materials (FGMs).

The performance of these materials is highly dependent on the interfacial characteristics
between the inclusions and the matrix material. There is a large body of literature on
the effective thermomechanical properties for this class of composite materials under the
assumption of perfect bonding, i.e., no jump in displacement and no contact resistance. Models
for these effective properties have been based on (i) semiempirical techniques [1, 14, 20], (ii)
variational approaches using extremum principles [11, 8, 2], (iii) self-consistent schemes [16,
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6, 19], and (iv) numerical experiments [12, 7, 13]. Several excellent review articles and books
have been written on this subject [9, 25, 18].

There have been some investigations of the effective properties of composite materials with
imperfect interfaces such as contact resistance for the thermal problem [5, 15] and debonding
for the elasticity problem [10, 23, 4]. However, these studies have assumed somewhat idealized
interfacial conditions. For example, Chati and Mitra [4] and Sangani and Mo [23] assume that
segments of the interface are either fully adhered or completely decohered (traction free). That
is, these studies have not accounted for the progression of failure along the interface.

Needleman [17] proposed a debonding mechanism based on interfacial ductility by allowing
two initially coincident points, one on the inclusion and one on the matrix material, to move
apart from each other when under load. The interfacial traction was then a function of the jump
in displacement. Needleman adopted a function that initially produced increasing traction as
the interfacial separation increased, went through a maximum, and subsequently decayed to
zero as the separation increased further.

Salvadori [22] proposed a similar approach in terms of a smoothing locking constitutive law,
which provided normal and shear tractions as a function of interface opening and sliding, i.e.,
the tangential and normal jump in displacement. Tractions and displacement discontinuities
were related through an exponential function which essentially spanned the region from
perfectly bonded to a stress free surface at the interface. The numerical implementation for
problems with traction-free cracks and rigidly bonded perfect interfaces was performed using
a symmetric Galerkin boundary element method (BEM).

The discrete constitutive equations of Needleman [17] and Salvadori [22] can be considered
special cases of a broad category that are analogous to both elastic-plastic and damage
constitutive equations for a continuum. Schreyer et al. [24] provides a fairly general formulation
of a discrete constitutive equation under the assumption that the displacement discontinuity
contains no elastic component. Both associated and non-associated forms were given to
illustrate the generality of the approach. A plastically softening decohesion formulation can
be used in conjunction with any continuum constitutive equation to provide a method for
modeling failure either interior to the matrix or along an interface.

In the current research, a particular form of the model with an associated flow rule of
Schreyer et al. [24] is extended to include the situation where the normal component of the
traction vector can be negative. The resulting formulation is combined with the boundary
element method (BEM) to investigate decohesion of fiber-reinforced composite materials.
The boundary element formulation for the multiply-connected zoned-homogenous domain is
presented in Section 2. The decohesion model along with its numerical implementation is
presented in Section 3. Several example problems are considered in Section 4 for both brittle
and ductile failure. Finally, conclusions are presented in Section 5.

2. BOUNDARY ELEMENT FORMULATION

In the current study, the computational domain is considered to be comprised of a matrix
material with embedded aligned long fibers allowing the governing equations to be reduced
to the plane strain equations. These equations can be recast in integral form by considering
the associated weak form, applying the Green-Gauss divergence theorem twice, and choosing
the fundamental solutions for displacement and traction as the weighting functions [3]. The
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appropriate expressions for the two-dimensional fundamental displacements and associated
tractions for plane strain are given by

u∗ij (x,y) =
−1

8π(1− ν)G
{(3− 4ν) log rδij − r,ir,j} (1)

t∗ij (x,y) =
−1

4π(1− ν)r

{
[(1− 2ν)δij + 2r,ir,j ]

∂r

∂n
− (1− 2ν)(r,inj − r,jni)

}
(2)

where r is the distance between x and y, ni is the component of the unit outward normal
vector to the boundary, G is the shear modulus, ν is the Poisson ratio and the comma denotes
differentiation with respect to the appropriate Cartesian coordinate. The resulting boundary
integral equation (BIE) for the displacement components is given by

cij (x) uj (x) =
∫

Γ

u∗ij (x,y) tj (y) dΓ(y)−
∫

Γ

t∗ij (x,y) uj (y) dΓ(y) (3)

where Γ is the boundary of the domain Ω, uj and tj are the components of displacement and
traction on the surface Γ, respectively. The coefficient cij can be determined from the equation

cij(x) = −
∫

Γ

t∗ij (x,y) dΓ(y) (4)

The boundary integral equation is discretized by subdividing the boundary Γ into boundary
elements. The boundary element used in this research is the three-node, isoparametric
quadratic element. Hence, within each element ui(y) and ti(y) are approximated as

ue
i (y) | Γe ≈

3∑
k=1

ue
ikΨk(y) (5)

tei (y) | Γe ≈
3∑

k=1

teikΨk(y) (6)

where ue
ik and teik represent the values of ui and ti, respectively, at the kth node within the eth

element, and Ψk represents the quadratic shape functions.
Using the above approximations, the discretized form of the boundary integral equation is

given by

cij(x)uj(x) =
ne∑

e=1

3∑
k=1

∫
Γe

tejku∗ijΨk(y)dΓ(y)−
ne∑

e=1

3∑
k=1

∫
Γe

ue
jkt∗ijΨk(y)dΓ(y) (7)

where ne is the total number of boundary elements used in the discretization.
In the current application where the domain consists of zoned-homogeneous regions

representing the fibers and the matrix material, a boundary integral equation is written for each
region. Collocating Eq. 7 at the boundary element nodes yields a system of linear equations
relating the components of traction to the components of displacement. These equations can
be represented symbolically as[

Hi
] {

ui
}

=
[
Gi

] {
ti

}
, i = 1, N + 1 (8)
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where N is the number of inclusions, the superscript i represents the region number, and{
ui

}
and

{
ti

}
represent the components of displacement and traction, respectively, at the

collocation nodes. The entries in the matrices
[
Hi

]
and

[
Gi

]
are determined by assembling

the numerical values for the integrals on the right-hand side of equation 7.
On the outer boundary of the matrix material, either the displacement or the traction is

prescribed. On the interfacial nodes between fiber and matrix, neither the displacement nor
traction components are known a priori. The system of equations is closed by setting the
following interfacial boundary conditions.{

ui
j

}
−

{
um

j

}
= [u] (9){

tij
}

= −
{
tmj

}
(10)

where [u] represents a jump in displacement along the interface as discussed in the next section,
the superscript i and m represent the zoned-homogeneous region, and the subscript represents
the global node.

3. THE DECOHESION MODEL

Initially, all interfaces between the matrix material and the inclusions are assumed to be
perfectly bonded, that is, continuity of traction and displacement is assumed along the
interface. The composite is then incrementally stressed by assuming displacements along the
outer boundary of the matrix material. At each increment of displacement, the boundary
integral equations are solved and the tractions along all interfaces are evaluated. The
development of damage (decohesion) is determined through the use of a damage function
F given by

F =

[(
τn

τnf

)2

+
(

τt

τtf

)2
] 1

2

− f when τn ≥ 0

F =
∣∣∣∣ τt

τtf

∣∣∣∣ − f when τn < 0 (11)

where τn is the normal component of traction, τt is the tangential component of traction,
τnf is the value of failure initiation traction in a pure tensile mode, τtf is the value of failure
initiation traction in a pure shear mode, and f is the so-called softening function. The function
F is defined so that no damage occurs if F < 0 and F > 0 is not allowed. Damage develops
only if F = 0. The softening function f is chosen so that f = 1 for an undamaged interface and
f = 0 for a fully decohered interface. For 0 < f < 1, a linear relationship is chosen between
the absolute value of the jump in displacement [u] at the interface so f is given by

f = 1− | [u] |
u0

(12)

where the model parameter u0 is the value of |[u]| at which complete decohesion has occurred.
Although the choice of f is somewhat arbitrary, in the special case of uniaxial tension, the
softening function translates into a curve of normal traction versus normal displacement
discontinuity in which case the area under the curve is the fracture energy, Gf defined by

Gf =
1
2
τnfu0 (13)
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PROGRESSION OF FAILURE IN FIBER-REINFORCED MATERIALS 5

where here u0 is interpreted as the magnitude of the jump in normal displacement [un] at
which separation occurs. A similar statement holds for a pure mode II (shear) response, and a
general statement can be made for mixed mode failure. Note that Eq. 11 could equally well be
replaced with a Coulomb model, especially if f = 0, if such a model is considered to be more
representative of physical behavior at debonded interfaces.

After each increment of displacement, the damage function F is evaluated at each interfacial
node. If F > 0, the threshold to initiate decohesion has been exceeded and is not allowed by
the decohesion model. As an example, if the traction at an interfacial node had no tangential
component, F > 0 would imply that τnf had been exceeded. In order to drive F to within a
specified tolerance ε of 0, the following algorithm is used. First, the node is identified at which
the largest positive value of F has been calculated. Next, a jump in displacement at that node
is determined by the following evolution equation

∆ [u] = ∆λg (14)

where [u] =
{

[u]2n + [u]2t
} 1

2
, g = ∂F

∂τ , and ∆λ = δλ1 + δλ2 + · · ·
The secant algorithm is applied to determine ∆λ in order to bring F to within a tolerance ε

of 0. An initial small value for δλ1 is assumed. This then provides the initial assumed value for
∆ [u] as shown in Eq. 14. This jump in displacement provides stress relief which is quantified
by performing the boundary element analysis with the modified boundary conditions (Eq. 9).
The damage function is re-evaluated at the node. If F is still positive and above the tolerance,
δλ2 is determined using the equation

δλ2 = δλ1
F1

F0 − F1
(15)

where the subscript on F indicates the interation number. The procedure is continued until
F < ε. In the majority of cases, 2 to 3 iterations were used in the secant method to drive F
below the tolerance. The maximum number of iterations required was 8. During any iteration,
if |[u]| reaches u0, the boundary condition at that node is set to traction free indicating that
the node is completely decohered.

Once the damage function F is reduced below the tolerance or the node becomes completely
decohered, a search is performed for the next highest positive value of F at the remaining
nodes, and the process is repeated to reduce F at that node to below the tolerance. Once the
damage function at all nodes is below the tolerance, the next increment in displacement is
applied.

4. RESULTS

The composite material considered in this research is composed of an aluminum matrix with
embedded boron fibers, which is widely used because of its light weight and versatility. The
phase properties are Eal = 67.51GPa, νal = 0.35557; Eboron = 413.04GPa, νboron = 0.2. The
two geometries shown in Fig. 1 are investigated. For each geometric configuration, the total
areal fraction of the fiber(s) is 20%. Both tensile and shear tests are performed. Two additional
configurations with embedded fibers were also considered, namely, two horizontally-alligned
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Figure 1. The geometry of one and two boron fiber inclusion(s) in an aluminum matrix at areal fraction
of 20%.

fibers and two vertically-alligned fibers. However, the results were similar to the two cases
shown in Figure 1 and are not included here.

In the tensile tests, an incremental uniform tensile displacement loading is applied to the
left and right lateral sides of the square domain while the top and bottom sides are traction
free. In the shear tests, the right lateral side of the domain is subjected to uniform upward
shear displacement loading, the left lateral side is subjected to a uniform downward shear
displacement loading, and the top and bottom sides are again traction free. In both the tensile
and shear tests, the increment of displacement is 0.0005a where a is the length of the sides of
the square specimen. Appropriate boundary constraints are imposed in the boundary element
formulation to remove the rigid body modes and maintain a well-posed problem.

For all tests considered, the normal failure parameter is chosen as τnf = 1.2. Two values
are chosen for the shear failure parameter, namely, τtf = 0.6 and τtf = 6.0. Hence, in one
case, τtf/τnf = 0.5 and, in the other case, τtf/τnf = 5.0. Roughly speaking, as the shear
failure parameter is increased, the dominant failure mode transitions from shear to normal, or
equivalently, from ductile to brittle failure. The value in jump displacement at which complete
decohesion is assumed to have occured is chosen as u0 = 0.01.

A series of convergence tests were run to insure the adequacy of the mesh density. As an
example for the single inclusion geometry, results were obtained for the tensile test using a
coarse mesh containing 68 nodes on the outer boundary of the matrix material and 64 nodes
on the interface between the inclusion and matrix material and using a fine mesh containg 164
nodes on the outer boundary and 128 nodes on the interface. Before the onset of decohesion,
relative errors between components of traction and displacement making up the solution vector
were on the order of 10−6. (Note that all computations were performed in double precision.)
Because of the discrete nature of the decohesion algorithm, a true convergence test after the
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PROGRESSION OF FAILURE IN FIBER-REINFORCED MATERIALS 7

onset of decohesion is problematic. However, the relative error between the integrated normal
traction on the right outer edge of the speciment between the two meshes was less that 3.8%
during the entire incremental procedure, and during most incremental steps was less than 1%.
This integrated normal traction is a relevant parameter to consider since, as discussed later, it
is used to determine the effective Young’s modulus. The actual plot of the normalized effective
Young’s modulus using the coarse and fine meshes is shown at the end of this section. Based
on the convergence tests, the coarse mesh was used in the subsequent results.

The first case considered is the single inclusion undergoing a tensile test. The progression
of failure for the two values of the shear failure parameter, τtf , are shown in Figs. 2 and
3. The arrows indicate the displacement jump along the interface between the matrix and
inclusion, and are magnified by a factor of 10. Although the geometry and loading are
symmetric, symmetry is lost as soon as the failure model is first implemented since any jump
in displacement is implemented only one node at a time as described in the previous section.

For the first case where τtf = 0.5τnf , the decohesion process starts at the leftmost node
(Fig. 2(a)). Since the dominant failure mode in this case is the shear mode, the failure progresses
predominantly along the left side of the inclusion towards the top and bottom of the inclusion
in the tangential (shear) directions (Fig. 2(b)). Near the top and bottom of the inclusion, the
stresses are compressive (normal) and the failure abates along the left side of the inclusion as
the debonding region approaches these compressive regions. Upon further loading, decohesion
progresses along the right side of the inclusion towards the compressive regions on the top and
bottom of the inclusion (Figs. 2(c,d)).

For the second case where τtf = 5.0τnf , the debonding process again starts at the leftmost
node. However, in this case since the shear (sliding) mode of failure is inhibited, the debonding
process is seen to occur far more symmetrically (Fig. 3). The failure progresses along both sides
of the inclusion almost simultaneously moving towards the top and bottom of the inclusion
until the compressive zones are reached.

The second case considered is a single inclusion undergoing a shear test. Results for the
two different values of τtf are shown in Figs. 4 and 5. For the case τtf = 0.5τnf (Fig. 4), the
debonding process starts along the interface at an angle of 45o from the center of the inclusion
and progresses towards the compressive regions in the second and fourth quadrants. When
the failure region reaches the compressive region, a new failure zone is initiated in the third
quadrant originating at an angle of 225o. This new failure region again progesses until reaching
the compressive zones in the second and fourth quadrants. For the case τtf = 5τnf (Fig. 5),
the failure pattern is seen to be far more symmetric about the line of symmetry angled at 135o

from horizontal similar to the symmetry seen in the tensile test. The failure progresses from the
initiation points at 45o and 225o towards the compressive zones more or less simultaneously
on both sides of the inclusion.

Effective elastic constants have been defined for a variety of composite materials containing
a dispersed phase ([25, 14, 21]). For the tensile case, an effective Young’s modulus can be
determined by first integrating the normal traction over either lateral side of the specimen to
determine the resultant normal force, Fn. The effective Young’s modulus Eeff of the composite
is then given by

Eeff =
Fn

a · d
(16)

where a is the length of the lateral side over which the normal displacement of d/2 is applied.
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(a) (b)

(c) (d)

Figure 2. The progression of failure for the tensile test with τtf/τnf = 0.5. The normal displacements
(nondimensionalized by the length of the side of the specimen) are given by (a) 0.0098, (b) 0.01, (c)

0.037, and (d) 0.039.

The effective Young’s modulus can then be normalized as follows

Enor =
Eeff

Emat
(17)

where Emat is the Young’s modulus of the matrix material.
The normalized Young’s modulus as a function of the imposed lateral normal displacement

for the two values of τtf is shown in Fig. 6. For the case of τtf = 0.5τnf , there are essentially
three plateau regions for the normalized effective Young’s modulus. The first plateau occurs
for small displacements where Enor ≈ 1.27 indicating the increase in the Young’s modulus
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PROGRESSION OF FAILURE IN FIBER-REINFORCED MATERIALS 9

(a) (b)

(c) (d)

Figure 3. The progression of failure for the tensile test with τtf/τnf = 5.0. The normal displacements
(nondimensionalized by the length of the side of the specimen) are given by (a) 0.013, (b) 0.016, (c)

0.022, and (d) 0.35.

caused by the boron reinforcement. The second plateau is a little less distinct and occurs at
Enor ≈ 0.65 which corresponds to the decohesion region along the left side of inclusion before
the onset of decohesion along the right hand side of the inclusion. The third plateau occurs
at Enor ≈ 0.56 and corresponds to decohesion along both sides of the inclusion. There is a
precipitous drop off from the first plateau to the second plateau corresponding to decohesion
progressing along the left hand side of the inclusion. There is a less severe drop off from the
second plateau to the third plateau corresponding to the decohesion progressing along the
right side of the inclusion.
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(a) (b)

(c) (d)

Figure 4. The progression of failure for the shear test with τtf/τnf = 0.5. The tangential displacements
(nondimensionalized by the length of the side of the specimen) are given by (a) 0.02, (b) 0.0235, (c)

0.03, and (d) 0.58.

For the case of τtf = 5.0τnf , there are essentially only two plateaus at Enor ≈ 1.28 and
Enor ≈ 0.68 corresponding to the initially undamaged material and the completely decohered
interface in the tensile regions, respectively. There is a far smoother transition between the
plateaus as compared to the case where τtf = 0.5τnf . This is a result of the fact that the
decohesion process occurs far more symmetrically.

In a similar manner, an effective shear modulus can be determined for the shear test by
integrating the shear traction over either lateral side of the specimen to determine the resultant
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(a) (b)

(c) (d)

Figure 5. The progression of failure for the shear test with τtf/τnf = 5.0. The tangential displacements
(nondimensionalized by the length of the side of the specimen) are given by (a) 0.041, (b) 0.042, (c)

0.054, and (d) 0.65.

shear force, Fs. The effective shear modulus Geff of the composite is then given by

Geff =
Fs

a · d
(18)

where, in this case, a tangential displacement of d/2 is applied. The effective shear modulus
can be normalized as follows

Gnor =
Geff

Gmat
(19)

where Gmat is the shear modulus of the matrix material.
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Figure 6. The normalized effective Young’s modulus as a function of displacement for the single
inclusion case undergoing a tensile test.

The normalized shear modulus as a function of the imposed lateral shear displacement for
the two values of τtf is shown in Fig. 7. For the case of τtf = 0.5τnf , the three plateaus are even
more distinct than seen in the corresponding tensile test (Fig. 6). These plateaus, occurring
at Gnor ≈ 1.31, Gnor ≈ 1.00, and Gnor ≈ 0.88, correspond to no decohesion, decohesion in
the first quadrant only, and decohesion in the first and third quadrant, respectively. For the
case of τtf = 5.0τnf , there are essentially only two plateaus at Gnor ≈ 1.32 and Gnor ≈ 0.98
corresponding to the initially undamaged material and the completely decohered interface in
the first and third quadrants. The second plateau is again eliminated in this case since the
decohesion progresses almost simultaneously in the first and third quadrants. Similar to the
tensile test, the augmentation of the shear modulus of the composite specimen due to the
boron inclusion deteriorates rapidly as the decohesion process progresses.

The next geometry considered is two inclusions with their line-of-centers making a 45o angle
with the horizontal. The results for the progression of failure in the tensile test is shown in Fig. 8
for the case τtf/τnf = 0.5 and in Fig. 9 for the case τtf/τnf = 5.0. For the case τtf/τnf = 0.5,
the decohesion is seen to progess first along the outer sides of the two inclusions, that is, the
two sides nearest the edges of the composite specimen. Once these decohered outer portions of
the interface reach the compressive regions on the top and bottom of the inclusions, the inner
portions of the interfaces begin to decohere. Similar to the case of one inclusion when the shear
failure mode is dominant, the decohered damaged portion of the interface slides along one side
of each inclusion before the decohesion process begins along the other side of the inclusion.
For the case in which τtf/τnf = 5.0, the decohesion progesses fairly simultaneously along
both sides of both inclusions from the tensile to the compressive regions along the interface
since the shear failure mode is inhibited as seen in Fig. 9. Unlike the single inclusion case, the
displacement jump is seen to be somewhat larger along the outer sides of the two inclusions
which is caused by the fact that the outer edge is far closer to the edge of the specimen where
the normal displacement is imposed.
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Figure 7. The normalized effective shear modulus as a function of displacement for the single inclusion
case undergoing a shear test.

For the shear test, the results for the progression of failure are shown in Fig. 10 for the
case τtf/τnf = 0.5 and in Fig. 11 for the case τtf/τnf = 5.0. As seen in Fig. 10 for the
mode dominated by shear failure, the decohesion progresses one side at a time. That is, the
decohesion starts in the third quadrant of the upper right inclusion and progesses towards the
compressive zones in the second and fourth quadrants, then sequentially continues in the first
quadrant of the lower left inclusion, the third quadrant of the lower left inclusion, and finally,
the first quadrant of the upper right inclusion. Once decohesion begins along a side, the sliding
failure takes over and decohesion continues exclusively along that side until the compressive
zones are reached. By contrast as seen in Fig. 11 for the mode dominated by normal failure,
the decohesion begins fairly simultaenously in the third quadrant of the upper right inclusion
and the first quadrant of the lower left inclusion, and subsequently, simultaneously in the first
quadrant of the upper right inclusion and the third quadrant of the lower left inclusion.

The normalized Young’s modulus as a function of the imposed lateral normal displacement
for the two values of τtf is shown in Fig. 12. Similar to the single inclusion specimen, for
the case τtf = 0.5τnf , there are essentially three plateau regions for the normalized effective
Young’s modulus. The first plateau region at small displacements where Enor ≈ 1.26 results
from the increase in the Young’s modulus caused by the two boron reinforcements. The second
plateau region at Enor ≈ 0.6 is less distinct and corresonds to the decohesion region along the
outside of the two inclusions but before the onset of decohesion along the inside of the two
inclusions. The third plateau occurs at Enor ≈ 0.5 and corresponds to decohesion along all
four sides of the two inclusions.

The normalized shear modulus as a function of the imposed shear displacement for the two
values of τtf is shown in Fig. 13. For the case τtf = 0.5τnf , there are four distinct plateaus
of the normalized shear modulus at Gnor ≈ 1.35, Gnor ≈ 1.15, Gnor ≈ 1.1, and Gnor ≈ 0.9.
The plateaus can be identified as corresponding to the undamaged material, decohesion in the
third quadrant of the upper right inclusion, decohesion in the third quadrant of the upper
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(a) (b)

(c) (d)

Figure 8. The progression of failure for the tensile test with τtf/τnf = 0.5. The normal displacements
(nondimensionalized by the length of the side of the specimen) are given by (a) 0.011, (b) 0.012, (c)

0.04, and (d) 0.045.

right inclusion and the first quadrant of the lower left inclusion, and decohesion in the first
and third quadrants of both inclusions, respectively. However, there appears to be a missing
plateau corresponding to decohesion in the first and third quadrants of the lower left inclusion
and in the third quadrant of the upper right inclusion as seen in Fig. 10(c). It is possible that
this missing plateau might only occur over a very small range of shear displacements and is
not seen in Fig. 13 because the increment of shear displacement was too large. For the case
τtf = 5.0τnf , the relationship between shear displacement and the normalized shear modulus
is more irregular resulting from the way in which the decohesion model is implemented. That
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(a) (b)

(c) (d)

Figure 9. The progression of failure for the tensile test with τtf/τnf = 5.0. The normal displacements
(nondimensionalized by the length of the side of the specimen) are given by (a) 0.014, (b) 0.016, (c)

0.02, and (d) 0.04.

is, the displacement jumps are imposed one node at a time depending on where the maximum
of the damage function exists.

Finally, as discussed at the beginning of this section, a comparison of the numerical results
for the normalized Young’s modulus is shown in Fig. 14 using the coarse and fine meshes.
The specific case considered is for the single inclusion geometry and τtf/τnf = 5.0. Again, the
coarse mesh contained 68 nodes on the outer boundary of the matrix material and 64 nodes on
the interface between the inclusion and matrix material and the fine mesh contained 164 nodes
on the outer boundary and 128 nodes on the interface. As seen in the figure, the two curves

Copyright c© 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 01:1–1
Prepared using nmeauth.cls



16 R. HAN, M. S. INGBER, H. L. SCHREYER

(a) (b)

(c) (d)

Figure 10. The progression of failure for the shear test with τtf/τnf = 0.5. The tangential displacements
(nondimensionalized by the length of the side of the specimen) are given by (a) 0.022, (b) 0.032, (c)

0.05, and (d) 0.58.

follow each other closely with the largest relative discrepancy being approximately 3.8%. This
shows that the solution using the coarse mesh has achieved an acceptable level of convergence
especially in light of the discrete nature of the decohesion algorithm.

Copyright c© 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 01:1–1
Prepared using nmeauth.cls



PROGRESSION OF FAILURE IN FIBER-REINFORCED MATERIALS 17

(a) (b)

(c) (d)

Figure 11. The progression of failure for the shear test with τtf/τnf = 5.0. The tangential displacements
(nondimensionalized by the length of the side of the specimen) are given by (a) 0.034, (b) 0.038, (c)

0.05, and (d) 0.99.

5. CONCLUSIONS

A softening decohesion model has been combined with linear elasticity to describe the evolution
of interfacial failure in fiber-reinforced materials. As softening occurs, the sum of the work
performed by the traction and the stored energy released by the material equals the energy
dissipated. Progressive evolution of the debonding zones and the propagation of decohesion
along the interface have been illustrated by incremental simulations. The material failure
parameters, τnf and τtf , play an important role in the decohesion process and may explain
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Figure 12. The normalized effective Young’s modulus as a function of displacement for the two inclusion
case undergoing a tensile test.
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Figure 13. The normalized effective shear modulus as a function of displacement for the two inclusion
case undergoing a shear test.

the difference between failure in ductile and brittle materials. In particular, if the ratio τtf/τnf

is small, then the material is more likely to fail in shear. In these cases once a portion
of the interface becomes partially decohered, the damage zone slides tangentially along the
interface until a compressive region is reached. On the other hand, if τtf/τnf is large, then this
shear mode failure is inhibited and damage tends to progress simultaneously on both sides of
the inclusion. Decohesion has significant effect on the macroscopic response of the composite
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Figure 14. The normalized effective Young’s modulus as a function of displacement for calculations
using the coarse and fine meshes.

materials. In particular, the effective composite properties are adversely affected to the point
where the partially decohered inclusion can actually diminish the effective shear and Young’s
moduli.
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