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[1] One of the dominant characteristics of Arctic ice is the development and persistence
of leads. Leads are critically important for climate modeling since they are a source for
new ice and an avenue for heat exchange between the atmosphere and ocean. Therefore a
specific representation for leads in a constitutive model for pack ice is considered
essential. Presented here is an elastic-decohesive constitutive model whose purpose is to
specifically indicate when a lead is initiated, to provide the orientation of the lead, to give
the mode of failure, and to allow for the numerical determination of the width of leads.
Both laboratory and in situ data of sea ice provide the motivation for the basic structure of
the model. Sample paths in stress and strain space are used to illustrate how the model can
simulate failure. The model can predict multiple failure planes, a feature that is necessary
to simulate crack branching. Preexisting planes of weakness such as those formed from
previous leads can also be accommodated.
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1. Introduction

1.1. Background

[2] Within the Arctic sea-ice, stresses are formed from
wind, ocean currents and other sources. These stresses are
continuously changing and cause the opening and closing
of cracks (leads) in the pack ice that may be thousands of
kilometers in length. Large and small-scale photographs of
Arctic ice reveal the system of open leads. Leads are
important for climate modeling because an open lead
provides an avenue for heat transfer from the ocean to the
atmosphere. The formation of new ice within leads upon
refreezing is also noteworthy because of the large amounts
of energy required to create ice and of brine injected into
the ocean. Another obvious feature of the Arctic landscape
is ridges formed when leads are forced to close, crushing
new ice within the lead.
[3] One of the first attempts to provide a continuum

constitutive model for representing the composite effect of
the ice sheet with leads and ridges was that of Coon et al.
[1974] based on a two-dimensional elastic-plastic solid with
an associated flow rule. Ridging was included in the
approach with parameters chosen to provide an overall
energy balance [Rothrock, 1975] and evolution equations
were added for thickness distribution [Thorndike et al.,
1975]. It was envisioned that this model would be used in
numerical simulations where the resolved length scale was
hundreds of kilometers. On this scale there are many leads

within a computational element and their effect could be
modeled using an isotropic model with a compressive
failure strength associated with ridge formation. The basic
model was enhanced to reflect observed anisotropic features
when failure occurs [Coon et al., 1998].
[4] In the same vein, Hibler [1979] introduced a viscous-

plastic isotropic model for ice. Implicitly, the model con-
tains history parameters, the distribution of ice thicknesses
that evolve according to predictions of dilation or compac-
tion. Models of this type generally give an indirect measure
of lead opening through an integration of the divergence of
velocity, and infer the direction of leads through plots of
divergence over the spatial domain. However, these models
provide a computationally efficient scheme to predict the
motion of Arctic ice as well as an indication of the area of
open water and the amount of new ice created over a winter
season. For the original purpose, these models work admi-
rably well. Various modifications have been proposed
[Hibler and Schulson, 1997; Hibler, 2001] including one
in which nonphysical elasticity was introduced to enhance
further the computational speed [Hunke and Dukowicz,
1997; Hunke, 2001]. The models with a basic viscous-
plastic feature have been primarily isotropic. However
Hibler and Schulson [2000] and Wilchinsky and Feltham
[2004] have proposed anisotropic versions to reflect better
the oriented features associated with leads.
[5] In contrast to the preceding models, Hopkins [1996,

2001] discards the continuum hypothesis and uses an
approach based on discrete elements with frictional and
elastic-plastic flow laws between adjacent floes. The over-
all constitutive behavior is connected intimately with the
assumed forms for the interactions between floes. Although
this model might be entirely appropriate when the pack
breaks up with warm weather, there seems to be a question
as to whether or not it can represent pack ice during the
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winter when the observed number and orientation of active
leads is limited.
[6] As computers increase in power, it is possible to

consider simulations of the Arctic with a computational cell
size on the order of tens of kilometers. At this scale there no
longer are many leads in a computational cell and a model
needs to be developed that accounts for individual leads. It
is believed that a more precise constitutive equation can
bring significant improvements to detailed predictions of the
formation of leads and new ice and, consequently,
corresponding improvements in the prediction of ice motion
and deformation. The proposed approach is to model the
formation of a lead specifically through the use of a
constitutive equation that relates traction at a point on a
material surface to the amount of discontinuity in displace-
ment. Such models are referred to variously as discrete,
discontinuum, cohesive crack and decohesive constitutive
equations, of which the latter terminology will be used in
this text. Decohesion is defined to be the loss of strength
that occurs with an increase in a suitable norm of the
displacement discontinuity. Comprehensive versions of
such models provide the stress at which a crack initiates,
the orientation of the crack, the mode at which failure
occurs, and the criterion for which all traction-carrying
capability is lost. Classical models such as those of Rankine,
Tresca and Mohr-Coulomb provide some but not all of these
properties.
[7] Because of the importance of leads in simulating both

the dynamic and thermodynamic features of the Arctic ice
pack, the use of a decohesive constitutive equation is
warranted in an attempt to model explicitly the initiation
and evolution of leads. Schulson [2004] argues persuasively
that features exhibited by failure of Arctic ice are similar to
those shown by failure of experimental specimens and that
compressive failure of ice and rocks have similar features
[Renshaw and Schulson, 2001]. In fact, the similarity is
much more extensive since the failure modes for ice
described by Sammonds et al. [1998] are comparable to
those of concrete. Accordingly, aspects of the model and
some terminology are borrowed from these other fields.

1.2. Motivation

[8] Since there are several models of ice in the literature,
there must be a compelling reason to introduce the new one
that is the focus of this paper. The first point to be
emphasized is that decohesion is widely used in other fields
[Planas et al., 2003].
[9] Second, from the figures provided by Kwok [1998]

based on RGPS data, one cannot help but notice the
existence of long linear features that might reasonably be
interpreted as large active leads. Therefore, it would seem
that an attempt to explicitly include a constitutive formula-
tion for predicting the creation of leads ought to be met with
some enthusiasm. The alternative is to infer the presence of
a lead based on constitutive equations formulated under the
questionable assumption of displacement continuity or
compatibility.
[10] Third, current popular models used for basin-wide

simulations may not be appropriate for sea ice at scales of
10 km or less. It is yet to be seen if detailed features of sea
ice motion impact larger scale flow.

[11] In addition to their effects on climate, being able
to explicitly predict the creation of a lead on the scale of
10 kilometers, say, could be of great benefit in determin-
ing the susceptibility of fish and other wildlife to a large-
scale release of contaminants near a coast because such
substances often end up in leads. The sudden creation of
a lead, itself, near the coast may endanger humans who
may be inadvertently caught offshore. The motion of ice
is also important for determining the susceptibility of
offshore structures to damage, or the passage of ice into the
Atlantic. It seems plausible that a more accurate representa-
tion of the state of stress in the presence of leads, everything
else being equal, should result in a higher likelihood of
accurately predicting the motion of ice at scales of the order
of widths of leads. For example, a model specifically
designed to represent leads can allow for a normal stress
parallel to the leadwhereas a representation of a lead based on
some continuum models results in all components of stress
being zero. Furthermore, over the course of a season, many
regions of the ice cover undergo large deformations, so if
history variables such as those necessary to describe leads, are
to be accurately tracked a suitable numerical scheme such as
that described by Sulsky et al. [2006] must be used concur-
rently with an improved constitutive equation.
[12] Long-term climate predictions are coupled thermo-

dynamically with the thickness distribution of ice. It is not
clear that the existing models would predict the same
amount of ice production based on divergence. Koerner
[1973] and Kwok [2006] have estimated that 20–30% of the
sea ice added each year in the permanent ice zone is a result
of freezing within leads. In the seasonal ice zone, the
percentage is even higher. Therefore, it seems plausible to
assume that as climate models improve and numerical
algorithms become more efficient, it would make sense to
incorporate models that provide explicit representations for
widths of leads.
[13] A problem with many existing decohesion models is

that they are studied as academic exercises and often do not
reflect features shown by experimental data. The proposed
decohesion model is an attempt to reflect the essential
fracture characteristics of ice without the overwhelming
detail that would be impossible to handle numerically. Of
these characteristics, it is believed that the stress at which
failure initiates, the orientation of failure, and the fracture
energy represent the essential features. With the assumption
that the effect of a crack can be smeared over an element,
the result is a constitutive numerical algorithm that is both
efficient and that captures the induced anisotropy associated
with failure.

1.3. Outline of Paper

[14] Observations based on experimental data from
Schulson [2001] are described briefly in the first part of
the next section. Then the limitations of classical models are
provided to motivate the need for the proposed decohesive
model which is presented next. The model is phenomeno-
logical and relatively simple since applications to large-
scale numerical simulations represent the intended use.
Nevertheless, there is an attempt to reflect the essential
aspects of both experimental data and micro-structural
properties within the formulation. The primary focus is on
predicting correctly the stress at which a lead initiates or
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re-activates, and the orientation of the lead. Significant
modifications from laboratory-based material parameters
are necessary for large-scale simulations, and this point is
also discussed.
[15] Section 3 describes how leads open once failure is

detected and initiated. Then, based on the assumption that
the continuum deformation of Arctic ice is sufficiently small
so that elasticity can be invoked, Section 4 provides an
explanation of how decohesion can be combined with
elasticity to obtain a constitutive equation subroutine for
use in large-scale numerical simulations. The implications
of the elastic-decohesion model are shown through exam-
ples for selected stress and strain paths. An illustrative
example indicates how an initial oriented weakness can be
reflected in the model. In addition, it is demonstrated that
two or more planes of failure can be predicted at a point, a
feature that allows for the potential of predicting crack
branching in large-scale simulations.
[16] A slight addition to the elastic-decohesion model

provides a technique for modeling the closure and shear
of a frozen lead as described in section 5. Finally, the
summary emphasizes those aspects of the proposed model
that are not being included in current constitutive equations
used to represent Arctic ice.

2. Experimental Data and Classical Models for
Failure

2.1. Essential Aspects of Failure in Plane Stress

[17] Schulson [2001] provides a comprehensive experi-
mental study of the failure of specimens formed from both
fresh and salt water, and the study includes the effects of
strain rate and temperature on strength and mode of failure.
Although in situ ice is generally considered to be weaker
than laboratory ice, and in concurrence with the convincing
arguments of Schulson [2004], it is believed that modes of
failure for relatively small specimens are similar to those
observed on a large scale. Schulson is a strong advocate for

using the Mohr-Coulomb model; here it is argued that a
different approach is even better. The generic features of
these experimental data are used to motivate a particular
form of the proposed constitutive equation. The goal is to
get the correct qualitative behavior for applications to Arctic
ice, and not to provide a constitutive equation suitable for
modeling ice formed in a laboratory.
[18] Let s denote the stress tensor with components s11,

s22 and s12 for an orthonormal basis e1 and e2 in the plane
of the ice sheet. The principal directions of stress, p1 and p2,
also form an orthonormal basis associated with principal
values s1 and s2. Failure in plane stress is often described
by a failure surface in terms of principal stresses. A generic
failure surface representative of laboratory ice as indicated
by the data of Schulson is sketched in Figure 1. The figure
depicts the failure surface in stress space. That is, if ice is
loaded from zero stress with s1 proportional to s2, failure
will occur when s1 and s2 reach the values indicated on the
failure surface. Failure in equal biaxial tension is identified
as point (a), failure in uniaxial tension by point (b), failure
in pure shear at (c) (one principal value of stress is the
negative of the other), while failure in uniaxial compression
is identified as (d). The value of the uniaxial compressive
stress is typically an order of magnitude larger than the
failure stress in uniaxial tension. As the stress state is
extended into the regime where both principal stresses are
compressive, the failure surface extends from (d) to a
maximum at point (e). The remaining regime for compres-
sive stresses is given as the segment of the curve shown as a
dotted line from (e) to equal biaxial compression at point (f ).
With the assumption of initial isotropy in the plane, the
remainder of the curve is merely a reflection about the
symmetry line (a–f ).
[19] Schulson also provides the orientation of the normal

to the plane of material failure for states of stress at failure.
Again, only the generic features of this aspect of the data
will be summarized. As indicated in Figure 1, suppose a
unit normal vector n lies within the plane of stress, and

Figure 1. Generic aspects of a failure surface in plane stress and the orientation of the surface of
material cracking (failure).
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forms an angle, q, with respect to the first principal direction
p1. Define the normal vector to the surface of material
failure by the critical angle, qc. For the regime (a), (b),
(c)–(d), n is equal to p1, the direction of maximum
principal stress, or qc = 0. Such an orientation is typically
associated with brittle materials. In particular, if qc = 0
for uniaxial compression, the resulting feature is called
axial splitting and is seen in some experimental specimens
formed from concrete. However, in the regime (d)–(e), two
orientations of failure exist qc = ±a with a increasing
smoothly from zero at (d) to a maximum of about 30� at (e).
Finally, for the dotted segment of the failure curve, the normal
is out of the plane and, again, is in the direction of maximum
principal stress which is zero (from a three-dimensional
viewpoint) with the other two principal stresses in the plane
being negative.
[20] For pack ice, failure where the normal has a

component out of the plane is rarely, if ever, observed.
Although, failure stresses and the shape of the failure
curves will depend on factors such as salinity, temperature
and strain rate, it is not the purpose of this paper to provide a
detailed model that captures these effects. Instead the focus is
to provide a model that provides the essential features of the
solid line in Figure 1 for both the stress at failure and the
orientation of the surface of material failure.

2.2. Classical Models of Failure

[21] In order to describe various models in a succinct
manner, and for future use, a standard notation is now
introduced. Small deformations are assumed so there is no
need to differentiate among the various stress and strain
tensors. The traction on any surface with normal n is

t ¼ s � n ð1Þ

Introduce another orthonormal pair of base vectors consist-
ing of n and t, normal and tangential unit vectors to the
plane of material failure. Then tn = snn and tt = snt are the
normal and shear components of traction, respectively, and
the remaining component of stress is stt.
[22] In order to describe the classical models, it is

assumed that failure on a material surface with given
orientation, n, can be described through the use of a
decohesion function, Fn

D, which depends on material prop-
erties and the traction vector. The latter dependence implies
that the function depends on the orientation of the particular
material surface being considered. The function is con-
structed so that Fn

D < 0 indicates failure is not occurring,
Fn
D = 0 identifies the onset of failure, and Fn

D > 0 is not
allowed. To determine if failure is initiated at a point, all
possible orientations must be considered with the critical
direction being the one that maximizes Fn

D.
[23] As described for Figure 1, a point on the decohesive

surface, Fn
D = 0, can be obtained by incrementing radially

from the origin in stress space. Each point on the radial path
defines a state of stress which must be evaluated to
determine if decohesion has occurred. A search for the
critical orientation of n is performed by maximizing Fn

D with
respect to the angle q where

n ¼ cos q p1 þ sin q p2 0 � q < p ð2Þ

Once the stress path has been extended so that the
maximum value of Fn

D is zero, one point on the decohesion
surface has been defined. The unit vector n defined by the
corresponding critical value, q = qc, provides the orientation
of the physical surface where a crack initiates. The process
is repeated for different radial paths until the complete
decohesion surface is obtained.
[24] The classical criteria for failure are simple enough so

that analytical expressions are available for both the deco-
hesion surface and the orientation of crack initiation.
However, the general approach described above provides
a common framework for both classical models and the
alternative formulation that will be introduced later.
[25] In summary, a classical decohesion function, FD, is

defined as follows:

FD ¼ max
8n

FD
n FD

n � FD
n tð Þ ð3Þ

with failure indicated when FD = 0. The decohesion
functions of Rankine, Fn

R, and Tresca, Fn
T, each depend on

only one component of the traction, t, as follows:

FR
n ¼ tn

tRnf
	 1 FT

n ¼ t2t

tTsf
� �2

	 1 ð4Þ

The material parameters tnf
R and tsf

T are the critical values of
normal and shear traction, respectively, and are associated
with these specific criteria. The surface FR = 0 denotes the
maximum tensile stress criterion of Rankine and is shown in
Figure 2a for plane stress in terms of principal components.
The critical orientations for the surfaces of material failure
are unique and these directions are also given (qc = 0 for
plane stress). Similarly, the surface FT = 0, shown in
Figure 2b, is the maximum shear-stress criterion of Tresca.
However, now for each point of failure there are two possible
orientations of material surface whereby n makes equal
angles with the direction of maximum principal stress and
qc = ±45�. The two possible surfaces of material failure
are orthogonal to each other. On the dotted segment of
the surface, the normal does not lie in the plane of stress.
[26] Another criterion, which is often used for geological

materials, is that of Mohr-Coulomb which involves both the
normal and shear components of traction as follows:

FMC
n ¼ ttj j

tMC
sf

þ tn
tMC
nf

	 1 ð5Þ

The essential idea is a generalization of the Tresca criterion
in that failure in shear on a given surface is assumed to
depend on the amount of normal traction. If tnf

MC is infinite,
the criterion is that of Tresca; if tsf

MC is infinite, the result is
Rankine’s criterion. Similarly to the Tresca criterion, there
are two possible orientations for material failure but, instead
of qc = ±45�, the normal to the surface of failure is now
qc = ±a with respect to the direction of maximum
principal stress in the plane of maximum and minimum
principal directions of stress and tan 2a = tnf

MC/tsf
MC. The

surface FMC = 0 is shown in Figure 2c for plane stress.
For example, if tsf

MC = 1.4tnf
MC the positive intercept of

the s1 axis for s2 = 0 is s1 = 0.9tnf
MC. Similarly, if s1 = 0,
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the intercept is s2 = 	8.75tnf
MC which yields a ratio of

approximately 10 between the tensile and compressive
failure stresses, a ratio often observed for concrete and
geologicalmaterials. The orientation of the normal ofmaterial
failure with respect to the direction of maximum principal
stress is qc = ±18� for all points of failure. However, the
Schulson data, depicted in Figure 1, shows that the orientation
of the normalmay vary fromone point on the failure surface in
stress space to another point. The Mohr-Coulomb criterion,
which is often used for geological materials, predicts only one
value of a with qc = ±a for all states of stress that satisfy the
failure criterion. Although reasonable for some of the domain
of failure, such an angle is not representative for all states of
stress at the initiation of failure. Again, the dotted portion of
the surface in Figure 2 indicates that an out-of-plane
component exists for the normal vector.
[27] Each criterion has had considerable success in pre-

dicting failure, the Rankine criterion for brittle materials,
Tresca for ductile materials, and Mohr-Coulomb for con-
crete and geological materials such as rock and ice. How-
ever, as the Schulson data show for ice, and similarly for
many other materials, materials often fail according to one
criterion for one regime of stress, and to another criterion

for a different regime. Specifically, the Rankine criterion is
often suitable for tensile states of stress, Mohr-Coulomb for
intermediate states, and the Tresca criterion for large com-
pressive states. Not one of these classical criteria has the
flexibility to accurately reflect simultaneously both the state
of stress at failure and the orientation of the surface of
material failure for all paths in plane stress. In particular,
none predicts axial splitting. Next, a new model is proposed
that attempts to remedy this situation.

2.3. Proposed Form for Failure Criterion

[28] A mathematically attractive approach for indicating
when failure initiates is one based on loss of ellipticity as
indicated by Schreyer [2001]. Such a criterion might be
used to suggest when a decohesive model should be
implemented. However, it is considerably simpler to just
use the value of a decohesive function as an indicator when
failure initiates and this is the approach adopted here.
[29] The key new feature in the proposed decohesion

function is to allow for the possibility that, in addition to the
traction, failure may depend on the component of the stress
stt, as suggested but not implemented by Planas et al.
[2003]. The decohesion function is similar to the Mohr-

Figure 2. Sketches of curves showing failure initiation including orientations of the normal to surfaces
of material failure as predicted by classical models. (The normal lies within the plane only for the solid
portions of each curve.)
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Coulomb function in that both the shear and normal
components of the traction are included. The shear and
in-plane normal components of stress are included as
quadratic terms as follows:

F ¼ max
8n

Fn t;sttð Þ Fn ¼
t2t
t2sf

þ tn
tnf

þ s2
tt

f 02c
	 1 ð6Þ

The failure surface is defined by F = 0. The parameter tsf is
the shear failure strength when tn = 0 and stt = 0 and must
be interpreted differently from the corresponding parameters
in the Tresca and Mohr-Coulomb criteria. In particular, tsf is
not the maximum possible shear strength. As will be seen

later, the material parameter f 0c denotes the failure stress in
uniaxial compression. Although the full quadratic form of
the in-plane stress is selected for convenience, other forms
can be chosen equally well if warranted by experimental data.
For example, one possibility is to incorporate the in-plane
stress only in compression:

F ¼ max
8n

Fn1 t;sttð Þ Fn1 ¼
t2t
t2sf

þ tn
tnf

þ h	stti2

f 02c
	 1 ð7Þ

where hxi = x if x is positive; otherwise hxi is zero. The
term involving the in-plane stress could be linear, or any
other power if necessary to match experimental data. If it
is believed that the strength in shear should reach a
limiting value for large negative values of tn, then an
exponential form can be utilized to relate the ‘‘brittle’’
and shear contributions:

F ¼ max
8n

Fn2 t;sttð Þ Fn2 ¼
t2t
t2sf

þ e
k tn

tnf
þ hstt i2

f 02c
	1

� �
	 1 ð8Þ

with k an additional material parameter. The form (8) has
been used in numerical simulations by Sulsky et al.
[2006]. Here, (6) is used for analytical convenience and
simplicity in presenting the essential ideas.
[30] The classical surfaces and the proposed decohesion

surface of (6) are displayed in the space of tt and tn in
Figures 3a and 3b, respectively. Note that the shear
contribution must be zero for the Rankine criterion
because, by definition, the normal to the failure surface
is a direction of maximum principal stress so any shear
component associated with this surface is zero. As
indicated in Figure 3b, the quadratic term for shear in
(6) provides a smooth transition at tt = 0 whereas the
Mohr-Coulomb criterion introduces a discontinuity in
slope. When the normal component of traction is suffi-
ciently compressive, the quadratic form indicates a failure
stress in shear that is intermediate to those given by the
Mohr-Coulomb and Tresca criteria. Also, when the in-plane
stress becomes stt =	f 0c, failure is predicted even if tn and tt
are zero. Note that failure is also predicted for a tensile value
of stt = f 0c. However, for realistic values of material param-
eters, the tensile failure stress of tnf for a different orientation
of n would be activated and a tensile stress of f 0c can never be
realized.
[31] If the shear parameter, tsf, is infinite then (6) reduces

to

B ¼ max
8n

Bn Bn ¼
tn
tnf

þ s2
tt

f 02c
	 1 ð9Þ

The surface B = 0 is one for which n is always in the
direction of maximum principal stress and, consequently,
represents a brittle criterion. With the use of (9), the
decohesion function of (6) can be rewritten as the sum of
shear and brittle parts as follows:

Fn ¼
t2t
t2sf

þ Bn ð10Þ

Figure 3. Plots of failure surfaces in tn 	 tt space.
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Note that Bn � 0 because no solution to Fn = 0 exists for
Bn > 0.

2.4. Analytical Form of the Critical Direction

[32] Performing a numerical search to find the maximum
value of F with respect to q is computationally intensive and
might result in unacceptable run times for large-scale
simulations involving failure of Arctic ice. Because of the
relatively simple form of (6) it is possible to find analyti-
cally the critical value of q by setting @F/@q = 0. As a first
step, it is convenient to transform to the principal basis of
stress with principal stresses ordered such that s1 � s2.
Then the transformation relations for the components in the
local n-t system reduce to

tn ¼ s1 cos
2 qþ s2 sin

2 q
tt ¼ s2 	 s1ð Þ cos q sin q
stt ¼ s1 sin

2 qþ s2 cos
2 q

ð11Þ

After the derivatives with respect to q of the terms in (11)
have been obtained, it follows that

@Fn

@q
¼ s1 	 s2ð Þ sin 2q s1 	 s2ð Þ

t2sf
cos 2q	 1

tnf
þ 2stt

f 0 2c

" #
ð12Þ

Then @Fn/@q = 0 if q = qc where qc = 0 or qc = p/2. The
latter is associated with a maximum of Fn and will not be
considered further. Another solution for qc is obtained by
setting the square bracket to zero. The latter occurs if qc = a
and a is a solution to

tan2 a ¼

s1 	 s2ð Þ
t2sf

	 1

tnf
þ 2s2

f 02c
s1 	 s2ð Þ

t2sf
þ 1

tnf
	 2s1

f 02c

ð13Þ

A solution to (13) does not exist if the right side is less than
zero; otherwise there are actually two solutions qc = ±a.
[33] As an example, consider uniaxial tension with s1 = tnf

and s2 = 0. Then a solution other than qc = 0 does not
exist unless tsf < tnf.
[34] Similarly, for uniaxial compression with s1 = 0 and

s2 = 	f 0c, (13) yields

tan2 a ¼

f 0c
t2sf

	 1

tnf
	 2

f 0c
f 0c
t2sf

þ 1

tnf

ð14Þ

The critical orientation remains qc = 0, which corresponds to
axial splitting, unless

tsf � f 0c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tnf

f 0c þ 2tnf

r
ð15Þ

in which case two solutions exist and failure with a shear
component exists.

2.5. Effect of Material Parameters on Failure Surface

[35] The results of the previous subsection can be used as
a guide for choosing material parameters if sufficient
experimental data are available. First, suppose tnf = 0.1

and f 0c = 1.0 = 10tnf. Figure 4a shows a sequence of surfaces
based on different values for tsf as specified on the left side
of the plot. The orientation of the normal as defined by qc is
given on the right side. Only positive values are stated even
though negative signs for the values shown are also

Figure 4. Effects of material parameters on shape of
decohesion surface for plane stress.
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solutions. When tsf = 3.0, the outer surface is obtained
and qc = 0 for all points on the surface, i.e., the normal is
in the direction of maximum principal stress. When tsf = 0.3,
a value close to the result obtained from the right side of (15),
the next surface is obtained. For the regime from equal biaxial
tension down to uniaxial compression qc = 0 so uniaxial
compressive splitting is still predicted. However, when both
components become compressive, qc quickly increases from
zero. For the other two cases identified by tsf = 0.2 and
tsf = 0.1 the normal is still qc = 0 when both principal
stresses are tensile, but the transition to large values of qc
is rather abrupt.
[36] The situation is somewhat different when tnf and

tsf are fixed and f 0c is allowed to change as shown in
Figure 4b. For these surfaces, tnf = 0.1 and tsf = 0.3. For
the two innermost surfaces identified as f 0c = 0.5 and f 0c =
0.75, the normal is in the direction of maximum principal
stress (qc = 0). The fact that these surfaces come together
for large pressure is considered to be irrelevant for the
current application because there is no evidence of failure
in the icepack for a stress state in the regime of large
equal biaxial compressive stresses. Evidence of such a
failure would be a material failure surface with a normal
predominately out of the plane and no photographs of
failure within pack ice show such an orientation. Failure
of thin fresh ice formed within a lead is another matter
that is discussed in section 5. The last two surfaces
associated with f 0c = 1.0 and f 0c = 1.5 in Figure 4b show
rather abrupt transitions to nonzero values of qc as the
value of either principal stress decreases from the tensile
regime.

2.6. Selection of Values for Material Parameters

[37] The strength model of (6) contains three material
parameters tnf, tsf and f 0c. An example of values based on
laboratory data is given by Zubov [1943], who suggests a
tensile strength of tnf � 0.1 MPa, a compressive strength
of approximately 10 times the tensile strength, and a
shear strength of 1/2 the tensile strength. A tensile
strength of tnf � 0.2 MPa is given by Bazant [2002].
[38] Although laboratory data provide quantitative values

for material parameters, and indicate failure modes of ice,
there is no evidence that such data can be used directly in
large-scale simulations. Two reasons could be: (1) imper-
fections such as thermal bending cracks that exist on a scale
of a kilometer, and (2) preexisting leads that have closed
and have not attained the strength of the surrounding ice. If
laboratory data cannot be used, what values of material
parameters should be used?
[39] In an attempt to provide guidance, in situ measure-

ments of stress have been provided by Coon et al. [1998,
Figure 3] in the form of pressure and shear invariants of
stress:

P ¼ 1

2
s1 þ s2ð Þ Sh ¼

1

2
s1 	 s2j j ð16Þ

A reasonable failure criterion might be an upper bound or
envelope to these data. Coon et al. [1998] have provided
a Mohr-Coulomb envelope to these data and have made
the reasonable suggestion that this bound might serve as a

failure surface. Such an argument suggests that a lower bound
to the resultant shear strength is approximately 50 kN/m
when the pressure is zero. For a depth of ice estimated to
be 2.5 m, the lower bound to the shear strength becomes
20 kPa or 0.02 MPa which is an order of magnitude less
than the values suggested by Zubov and Bazant. A
further analysis of scale effects by Coon et al. [1999]
indicates that in order to obtain agreement between
predicted and observed motions for large scale simula-
tions, other researchers had to use even smaller values for
strength.
[40] One other observation is critical for our objective

of suggesting reasonable values for material parameters
for pack ice. Based on in situ data from oil pressure
sensors in a buoy, the data of Figure 7 in Coon et al.
[1998] suggest that large-scale axial splitting may occur.
For this case, a compressive failure stress of approxi-
mately f 0c = 100 kPa is reported. As one might expect,
after failure, the in-plane component stt did not go to
zero but remained at a significant value of around 60 kPa
in compression.
[41] For the proposed model, suppose the compressive

and tensile strengths are chosen to be tnf = 20 kPa and f 0c =
100 kPa. The assumption that axial splitting may occur
requires that tsf meets the condition of (15) and a value of
tsf = 38 kPa satisfies this inequality. Plots of the resulting
surface in principal stress space and in pressure-shear space
are given in Figures 5a and 5b, respectively.
[42] Also shown in Figure 5 are the corresponding

representations of the Mohr-Coulomb surface obtained by
using (5). The values for the material parameters (tnf

MC =
24 kPa and tsf

MC = 23 kPa) were chosen to provide the
surface in Figure 5b that replicates the surface provided by
Coon et al. [1999] with an adjustment from stress resultant
to stress. Although the shapes of the Mohr-Coulomb surface
and the proposed surface are similar in the region of most
interest for pack ice, Figure 5a shows that there is a large
difference in the prediction of the normal to the material
failure surface. To emphasize this point even further, if the
signs of both principal stresses are positive, then the Mohr-
Coulomb model predicts a normal with a component out of
the plane whereas the normal to the failure surface for the
proposed model lies in the direction of maximum principal
stress (qc = 0).
[43] The proposed model can be viewed as a generaliza-

tion of classical models with an important distinction. The
use of the in-plane normal stress in the proposed formula-
tion results in a prediction of the orientation of the surface
of material failure that can vary with the state of stress. Such
a variation is in accord with experimental evidence based on
specimens of both fresh and salt ice and is also true of
experimental data for other geological materials [Lade,
2001].
[44] For pack ice, when both principal stresses are large

and negative, failure is generally not observed so the model
makes no attempt to provide a closed surface for the regime
close to equal biaxial stress in compression. If such stresses
were developed, the failure would probably reflect a com-
ponent that is out of the plane, a feature purposely excluded
in the present model based on simplicity and on potential
application to pack ice. However, the model does provide
axial splitting under uniaxial compression a feature that is
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observed on both small and large scales. A reduction by an
order of magnitude of values of material parameters
obtained from laboratory specimens must be performed to
reflect the large-scale imperfections of thermal cracks and
frozen leads exhibited by pack ice.
[45] After determining the initiation of failure and the

orientation of the material surface of failure, the next issue is
that of determining the mode of failure and of providing a

method for describing the evolution of failure, the topic of
the following section.

3. Evolution of Failure

3.1. Displacement Discontinuity and Softening

[46] The basic assumption inherent with a decohesive
approach to modeling failure is that a discontinuity in
displacement, [u], develops simultaneously with a reduction
in traction. Decohesion is defined to be the loss of strength
that occurs with an increase in a suitable norm of the
displacement discontinuity. Such an approach is inherently
different from classical fracture mechanics for which a
stress singularity exists and the issue of whether or not a
crack propagates is associated with a critical stress intensity
factor. A decohesive or discrete framework implies that
propagation is identified with failure initiation provided by
a critical value of a decohesion function.
[47] For the planar problem considered here, it is conve-

nient to express the displacement discontinuity in terms of
normal and tangential components

u½ � ¼ un½ �nþ ut½ �t ð17Þ

In analogy with some models of plasticity, it is assumed that
a single scalar parameter, u, called the effective decohesion,
can be used to quantify the degree of decohesion that has
occurred. The parameter, u, is monotonically increasing and
obtained as an integral of its time derivative which is
defined in terms of the rate of the displacement disconti-
nuity as follows

_u ¼ _u½ � � D � _u½ �f g1=2 ð18Þ

The positive definite, second-order tensor, D, depends on
the material and is defined to yield the correct ratio of
fracture energy for Modes I (pure opening) and II (pure
shear).
[48] Under uniaxial tension, it is assumed that decohe-

sion does not begin until the traction tn attains the critical
value tnf. Then tn decreases as [un] increases until a
critical value [un] = u0 is reached at which all traction-
carrying capability is lost and two free surfaces have been
created. For ice, it is assumed that a purely shear mode
of failure does not exist or, in other words, [un] always
increases during failure. Then, for simplicity, D is chosen
so that, (18) yields an effective decohesion that involves
only the normal component

_u ¼ _un½ �=u0 ð19Þ

In this work, issues of closing when a crack has only
partially formed will not be considered so that [un] is, itself,
a monotonically increasing parameter.
[49] Again, for simplicity a linear decay is assumed so

that tn = tnf fn in which fn is a softening function associated
with the direction n as follows:

fn ¼ 1	 u if u � 1

fn ¼ 0 if u > 1
ð20Þ

Figure 5. Failure surfaces based on an envelope of ice
stress measured in situ by Coon et al. [1998].
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The result is that for uniaxial tension, the normal traction is
related linearly to the normal component of displacement
discontinuity as follows:

tn ¼ tnf 1	 un½ �
u0

� �
ð21Þ

[50] For the sake of simplicity, if the internal energy
associated with the material failure surface is ignored, then
the fracture energy, gf , is obtained from the relation

gf ¼
Zu0
0

tn dun½ � ¼ 1

2
tnf u0 ð22Þ

The parameter u0 can be determined if tnf and gf are given
as material constants. Schreyer et al. [2002] provide a more
general formulation.
[51] In order to consider any state of stress, not just

one of uniaxial tension, the softening function is included
in the decohesion function in such a manner that if tn is
positive, then both components of traction tn and ts
should approach zero as fn goes to zero. Such a property
is obtained if the decohesion function of (6) is changed to
the following:

F ¼ max
8n

Fn Fn ¼
t2t
t2sf

þ tn
tnf

þ fn
s2
tt

f 02c
	 1


 �
ð23Þ

The effect of fn on the decohesion surface, F = 0, in the
tn 	 tt space is shown in Figure 6 for (stt

2/f
0

c
2) = 0.5. In

particular, when failure is complete, then fn = 0, and
shear can still be sustained when tn is negative. Although
the increase in shear with negative tn appears to be
unbounded; in reality, another failure surface will be
activated when the stress gets large enough.

3.2. Evolution Equations

[52] The mode of failure, m, is defined to be the direction
of the discontinuity in displacement:

m ¼ u½ �= u½ �j j ð24Þ

An associated evolution equation is proposed with w
defined to be a monotonically increasing parameter that is
a measure of the amount of decohesion. With a scale factor
SF chosen to render w dimensionless, an associated rule is

_un½ � ¼ _wSF
@Fn

@tn
_ut½ � ¼ _wSF

@Fn

@tt
ð25Þ

in which superposed dots denote derivatives with respect
to time. Because the time derivative appears linearly on
both the left and right sides of each equation, any
variable that increases monotonically with time can also
be used as a time variable. Expressed another way, the
formulation is rate independent. Suppose the scale factor
is chosen to be

SF ¼ u0tnf ð26Þ

Then (25) becomes

_un½ � ¼ u0 _w _ut½ � ¼ 2u0 _w
tt
tsf

tnf
tsf

ð27Þ

[53] The use of (19) implies that

_w ¼ _u ð28Þ

so that the decohesion parameter, w, is dimensionless, as
desired, and has the physical interpretation associated
with u.
[54] An important attribute of the formulation is that the

normal component of displacement discontinuity continues
to increase for all states of stress satisfying the decohesion
condition, in particular for uniaxial compression is which
case the normal component of traction, tn, is zero. This is
considered to be a desirable and unique feature of the model
and is a consequence of incorporating tn as a linear function
in the expression for the decohesion function given by (23).
[55] In addition to (27), one equation is necessary for

determining _w. The equation necessary for closure is that of
consistency which states that the decohesion condition Fn = 0
must continue to be satisfied or, expressed in rate form,

_Fn ¼ 0 ð29Þ

[56] At this time, it is noted that if the normal to the
failure surface is in the direction of maximum principal
stress, then tt = 0 and (27) implies that the mode of
deformation is in the direction of the normal, a situation
that is typical for brittle failure. This is the reason why the
decohesion function of (9) is characterized as a brittle one.

Figure 6. Effect of the value of the softening function on the
decohesion surface in the tn 	 tt space for (stt/f

0
c)
2 = 0.5.
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[57] Once a complete crack, as reflected by fn = 0, has
been established the evolution equations of (27) can no
longer be applied. Instead, alternative equations must be
invoked. Nonzero traction is physically unacceptable if
the free surfaces of a lead have separated so the appro-
priate condition then is to adjust the components of
displacement discontinuity (or decohesive strains as will
be shown later) so that tn = 0 and tt = 0. If the lead is
forced closed so that tn < 0 then the value of the
modified decohesion function

Fn* � Fnjfn¼0¼
t2t
t2sf

þ tn
tnf

ð30Þ

must be checked. If Fn* � 0 no further action is required.
However, if Fn* > 0 then the shear decohesion strain should
be increased or decreased in order to adjust the magnitude
of tt and force Fn* back to zero.

4. Elastic-Decohesion Model

4.1. Combined Elasticity and Decohesion

[58] Any continuum constitutive equation that is consid-
ered appropriate prior to failure can be used to describe the
pack ice. For the sake of simplicity it is assumed that linear,
isotropic elasticity is adequate. For plane stress in the x1	 x2
plane, the relations between stress and strain rate in compo-
nent form are

_s11 ¼ E1 _e11 þ E2 _e22
_s22 ¼ E2 _e11 þ E1 _e22
_s12 ¼ 2G _e12

ð31Þ

in which the elasticity parameters are

E1 ¼ Y
1	 nð Þ
1þ nð Þ E2 ¼ Y

n
1	 n2ð Þ 2G ¼ Y

1

1þ nð Þ
ð32Þ

and Y denotes Young’s modulus, n Poisson’s ratio and G
the shear modulus.

[59] For a material point at which failure is occurring,
the object is to solve (31) subject to the constraint that
the consistency condition and the evolution equations of
(27) are satisfied. This combination of equations is what
is meant by the phrase ‘‘elastic-decohesion constitutive
equations’’.

4.2. Numerical Treatment of Elastic Decohesion
Constitutive Equations

[60] Although the constitutive equations have been given,
there remains the question of how these equations are
combined and implemented with an algorithm for solving
the equations of motion and of deformation. Discontinuities
in displacement represent a relatively new area of analysis
and a general consensus on the most appropriate method has
not been achieved.
[61] Even for the finite element method, which is widely

used in the engineering community, there are several
methods for kinematically representing jumps in displace-
ment. In what is called the extended finite element method,
one approach is to use enhanced basis functions so that the
discontinuity across element boundaries is modeled explic-
itly of which representative examples are given by Moës et
al. [1999], Wells and Sluys, [2001a, 2001b, 2001c], and
Alfaiate et al. [2003]. An alternative procedure is to
introduce a localized band within an element [Larsson
and Runesson, 1996]. A more elementary method is to
assume that a crack displacement field is constant over an
element and to smear the effect over the element [Rashid,
1968] an approach that is almost as old as the finite element
method itself. The smeared crack approach has been subject
to considerable criticism but it is believed that some of the
noted shortcomings should actually be attributed to limi-
tations of the constitutive equations and not the method
itself. Because the smeared crack method has many positive
attributes, not least of which is its simplicity, the procedure
described next is based on the method. For the limited range
of applications considered here, the method is considered to
be adequate.
[62] Consider an active crack with current components of

discontinuity [un] and [ut], assumed to be constant across a
square element of side h as indicated in Figure 7. For a

Figure 7. Relationship between original square element and equivalent element used to define
decohesive strains.
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crack with a normal n oriented at an angle q to the x1-axis,
the length of the crack is denoted by ht where

ht ¼
h

cos q
	p
4
� q � p

4

ht ¼
h

sin q
p
4
� q � 3p

4

ð33Þ

A general expression for the rate of decohesive strain tensor
within a representative strip of material of width Ldc

containing the crack is

_edc ¼ 1

Ldc
_u½ � � nf gsym _edcij ¼ 1

2Ldc
_u½ �inj þ _u½ �jni

n o
ð34Þ

The expression on the left is in direct notation and involves
the tensor product, �, which is defined such that the
corresponding expression in indicial notation is shown on
the right. For an element, the parameter, Ldc, is determined
by equating the rate of dissipation considering the effect of
the discontinuity as smeared over the element to the rate of
dissipation performed by the traction acting on the surface
discontinuity. If W denotes the area of the element, dA a
differential of area, and dr a differential of crack length,
equating dissipation rates yieldsZ

W

s :
1

Ldc
u½ � � nf gsymdA ¼

Z
ht

t � u½ �dr ð35Þ

Now, assume the discontinuity is constant along the crack
within an element, and the decohesive crack strain and
stress are constant over an element. The result is

Ldc � hn ¼
h2

ht
ð36Þ

and (34) yields specific expressions for components of
decohesive strain in the n-t basis as follows:

edcnn ¼
un½ �
hn

edcnt ¼
ut½ �
2hn

edctt ¼ 0 ð37Þ

An alternative way of viewing the development is to
visualize a rotated rectangular element (dotted lines in
Figure 7) with sides of length hn and ht and an area equal to
the original element. For this dotted element with the
deformation due only to a uniform discontinuity in
displacement, the displacement components at the nodes
for the local coordinate system are

u1x ¼ 0 u2x ¼ un½ � u3x ¼ un½ � u4x ¼ 0

u1y ¼ 0 u2y ¼ ut½ � u3y ¼ ut½ � u4y ¼ 0
ð38Þ

in which superscripts denote the node number and the
subscript indicates the component. The basis functions for a
4-noded, rectangular element are

N1 ¼ 1	 x

hn


 �
1	 y

ht


 �
N2 ¼

x

hn
1	 y

ht


 �

N3 ¼
x

hn

y

ht
N4 ¼ 1	 x

hn


 �
y

ht

ð39Þ

If the displacement field is smeared over the element in the
conventional continuous form, then

ux ¼ u1xN1 þ u2xN2 þ u3xN3 þ u4xN4

uy ¼ u1yN1 þ u2yN2 þ u3yN3 þ u4yN4

ð40Þ

The linear strain-displacement relations are

exx ¼
@ux
@x

eyy ¼
@uy
@y

exy ¼
1

2

@uy
@x

þ @ux
@y


 �
ð41Þ

If x and y are associated with the unit vectors n and t,
respectively, and the strain components are evaluated at the
center of the element after (38), (39) and (40) are substituted
in (41), the result is identical to the components of the
decohesive strain tensor given in (37).
[63] If there is no decohesion, the stress rates will simply

be those given by (31). If there is decohesion, the stress rate
must be relaxed in a manner such that traction continuity is
maintained across the crack within the element. The result is
an effective stress rate defined as follows:

_s11 ¼ E1 _e11 	 _edc11
� �

þ E2 _e22 	 _edc22
� �

_s22 ¼ E2 _e11 	 _edc11
� �

þ E1 _e22 	 _edc22
� �

_s12 ¼ 2G _e12 	 _edc12
� �

ð42Þ

in which the components of decohesive strain are obtained
through the transformation relations from the component
forms given in (37). Given the strain rates, _e11, _e22 and _e12,
it is the role of a constitutive equation subroutine to provide
the stress rates, and the decohesive rates [ _un], [ _ut] and _w
such that (27) and (42) are satisfied simultaneously. The
procedure is completely analogous to that used with
computational plasticity.
[64] With computational algorithms, time steps and,

hence, strain increments are finite and it is generally
not feasible to maintain consistency for all time. Instead
it is customary to assume that a step in prescribed strain
is elastic and obtain a ‘‘trial’’ stress. The decohesion
function is evaluated with the new values of stress
(traction). If the value of the decohesion function is
negative or zero, the step was truly elastic and no further
modifications are necessary. If, on the other hand, Fn > 0
then it is assumed to be satisfactory if displacement
discontinuity and decohesive strains are increased accord-
ing to the evolution equations until the value of the
decohesion function is forced to zero only at the end of
the step. One method for zero finding is the Newton–
Raphson procedure which states that increments in the
decohesion parameter are given by

Dw ¼ 	 Fn

@Fn=@w
ð43Þ

It has been assumed that w is a monotonically increasing
parameter, and since Fn is being forced to zero from
above, it follows that @Fn/@w must be negative, a
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condition called a ‘‘stability’’ criterion. To evaluate @Fn/@w,
the equation

_Fn ¼ _w @Fn=@wð Þ ð44Þ

is used. First, note that as a consequence of isotropy, the
elastic constitutive equations in the n-t system are of the same
form as (42), or

_tn ¼ E1 _enn 	 _edcnn
� �

þ E2 _ett 	 _edctt
� �

_stt ¼ E2 _enn 	 _edcnn
� �

þ E1 _ett 	 _edctt
� �

_tt ¼ 2G _ent 	 _edcnt
� �

ð45Þ

For this part of the algorithm, it is assumed that the total strains
are fixed with the result that _enn, _ett and _ent are zero.
Furthermore, ett

dc is identically zero so (45) reduces to

_tn ¼ 	E1 _e
dc
nn _stt ¼ 	E2 _e

dc
nn _tt ¼ 	2G _edcnt ð46Þ

The evolution equations of (27) and the decohesive strain
relations of (37) yield

_edcnn ¼
_un½ �
hn

¼ _w
u0

hn

_edcnt ¼
_ut½ �
2hn

¼ _w
u0

hn

tt
tsf

tnf
tsf

ð47Þ

The use of (20) and (28) yields _f n = 	 _w. It follows from (6),
(46) and (47) that

@Fn

@w
¼ 	A

A ¼ u0

hn
4
G

tsf

t2t
t2sf

tnf
tsf

þ E1

tnf
þ fn

2stt

f 0c

E2

f 0c

" #
	 1	 s2

tt

f 02c


 � ð48Þ

The stability criterion is A > 0.
[65] To consider the implications of the stability criterion,

first consider uniaxial tension so that tt = 0 and stt = 0.
Then stability is satisfied provided

u0

hn

E1

tnf
> 1 ð49Þ

with the implication that the element size hn must be less
than a critical value.
[66] For the case of tt = 0 and stt 6¼ 0, A is a minimum if

stt ¼ 	fn
u0

hn

E1

tnf

E2

E1

tnf ð50Þ

and

Amin ¼
u0

hn

E1

tnf
	 1	 f 2n

u0

hn

E1

tnf


 �2 tnf
f 0c


 �2
E2

E1


 �2

ð51Þ

The last term does have an adverse effect on stability but
since (E2/E1) < 1 and, typically, (tnf /f

0
c) ’ 0.1 the effect on

the critical value for hn will be small.

[67] Because the first term in the square bracket of (48) is
positive semi-definite, the addition of shear can only
increase the critical value for hn.

4.3. Behavior With One Failure Surface

[68] In this subsection representative paths in stress space
are chosen to illustrate further the features of the model and
to show implications of the evolution equations. Although
the initial shape of the decohesion surface is isotropic in
stress space, once a microcrack initiates, the decohesion
surface displays anisotropy.
[69] The choice of the following material parameters is

based on the assumption that f 0c is known. A Young’s
modulus of Y = 103 f 0c, a Poisson’s ratio of n = 0.36 and a
tensile strength of tnf = 0.1 f 0c are representative of a number
of geological materials. As indicated in Figure 4a, a value
for the shear-strength parameter of tsf = 3tnf provides a
transition point from brittle to ductile effects just slightly
below and to the left of the uniaxial compression point,
(s11 = 0, s22 = 	f 0c), within the compressive regime so
that axial splitting can be predicted. The result is an
initial decohesion surface (grey line) that is isotropic as
shown in Figure 8a for f 0c = 1. Also shown are two bar
charts, one to show shear stress and the other to plot one
or two softening functions. Even if restrictions are made
to consider paths only in principal strain space, shear
stress may develop once a microcrack initiates. Instead of
plotting stress in three dimensions, the choice has been
made to use the first bar chart to show explicitly the
development of a scaled value of shear stress. For certain
paths, a shear stress will not develop. For simplicity, a
restriction has been to limit the maximum number of
cracks at any one point to two so the remaining bar chart
is used to monitor the softening functions associated with
microcracks. An initial value for each softening function is
always unity. As a microcrack evolves, the value of its
associated softening function will decrease. Finally, in the
lower right corner is a coordinate axis on which is super-
imposed a schematic representation of a crack once it initiates.
[70] The first path of consideration is that of uniaxial tensile

stress obtained in the elastic regime by specifying monoton-

Figure 8a. Failure surfaces at the beginning of failure
(fn = 0.97) for uniaxial tensile stress.
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ically increasing values for the strain e11 with e22 = 	ne11.
Once microcracking initiates, the component of strain e11
continues to increase but the lateral strain is adjusted to
enforce uniaxial stress. In this manner, a strain-driven
algorithm can always be used whether the path is
prescribed in strain or stress space. Figure 8a shows the
initial decohesion surface, a shear stress of zero and the
start of failure since the stress has just reached the initial
decohesive surface and fn is slightly below one for the
first surface.
[71] As loading continues, a microcrack is initiated with

normal in the x1-direction as indicated by the appearance of
an arrow in the direction of the normal to the failure surface
located at the point of the current value of stress (Figures 8a
and 8b). The original isotropic decohesive failure surface
(grey line) is always included to provide a reference that
helps to indicate the amount of change in the failure surface
and to emphasize that the current surface is anisotropic. To
show the orientation of the microcrack, a vertical line (the
microcrack) is drawn in the lower right corner and a value
of fn slightly less than one in the bar chart indicates the
microcrack has just been initiated. Also shown in the stress
space is the segment of the decohesive surface for q = 0�
with fn < 1. When decohesion is initiated, the current
decohesive surface for a material point consists of a com-
bination of segments of decohesive surfaces closest to the
origin in stress space. For example, once decohesion occurs
for q = 0� with fn < 1, the top portion of the decohesive
surface consists of the grey line; then the dark line through
the point of uniaxial compression (s11/tnf = 0,s22/tnf =	10)
to the transition point; and then the grey line again for stress
points to the left and below the transition point s22/tnf <	10.
Therefore, Figure 8b shows the appearance of anisotropy
once a microcrack appears.
[72] Figures 8c and 8d show the continued development

of decohesion as the value of the softening function
decreases and the stress component s11 decreases to zero
at which time failure is complete and part of the decohesion
surface lies along the s22 axis. Note that the tensile and
compressive strengths of the material for s22 and the
compressive strength for s11 are unaffected.

4.4. Behavior With Two Possible Failure Surfaces

[73] There is a possibility of creating two or more failure
surfaces. As an illustration, suppose one specifies mono-
tonically increasing values of e11 with e22 = 	e11, which
represents a path of pure shear stress (Figure 9a) until failure
initiates as indicated in Figure 9b. Again, the failure surface
has a normal in the direction of maximum principal stress.
The microcrack evolves as shown in Figures 9a and 9b with
the softening function, fn, and s11 decreasing to zero while
s22 continues to increase in absolute value. With increased
loading, the stress point moves down the s22 	 axis as
shown in Figure 9c toward the limiting point of s22 = 	f 0c at
which time two other potential failure surfaces exist with
normals oriented at q = ±5� if it is specified that the normals
to surfaces of failure must be at least 5� apart. Suppose just
one of these surfaces is activated, q = 	5�, say. Then the
decohesion surfaces associated with this specific orientation
are shown in Figures 9c and 9d. Note that here again, the
strength in compression is essentially maintained even
though a second micro-crack has developed.

Figure 8b. Failure surfaces for uniaxial tensile stress
when fn = 0.68.

Figure 8c. Failure surfaces for uniaxial tensile stress when
fn = 0.3.

Figure 8d. Failure surfaces for uniaxial tensile stress at
separation (fn = 0).
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[74] The next path is one of monotonically decreasing
values of e22 with e11 = 	ne22 which corresponds to axial
compression in the x2-direction in the elastic regime. Figure
10a shows the stress path emanating from the origin and just
reaching the decohesion surface. A crack initiates with q = 0�
swhich, in this case, represents axial splitting as shown in
Figure 10b. Now, even if e22 (and s22) are held constant, e11
will continue to increase which indicates the crack is evolving
and fn continues to decrease until a complete crack is formed.
However, for the given strain path, the stress continues to
evolve into the compressive regime and a second crack is
formed as indicated in Figures 10c and 10d. Note that both the
compressive and tensile strengths in the x2-direction are
maintained.

4.5. Preexisting Partial Fracture (Frozen Lead)

[75] So far, loading paths have been considered under the
assumption that the ice is initially isotropic, and anisotropy
develops only when a lead is activated. An alternative and
more plausible scenario for ice is the situation where failure

is complete as indicated by the formation of a lead, the lead
has frozen, partially closed with the formation of a ridge,
and frozen again but not to the extent that the strength of the
original ice sheet has been fully recovered. The resulting
ridge can be modeled as a partial fracture with a prescribed
orientation of the normal to the ridge and an initial value
selected for the softening function deemed appropriate to
represent the strength of the ridge in tension. For large-scale
analyses, several ridges, intersecting ridges and open leads
can be constructed as initial conditions through the choice
of material parameters for material points used to define the
domain.
[76] To be specific, suppose an existing ridge is repre-

sented by a decohesion function associated with fn = 0.3,
and an orientation of q1 = 45�. The corresponding complete
decohesion surface is shown in Figure 11a which also
shows the stress path emanating from the origin along the
s11 	 axis as obtained from e22 = 	ne11 with prescribed
increasing values of e11. Figure 11b shows that the existing
failure surface is activated, a shear stress develops, the

Figure 9a. The beginning of material failure (fn1 = 0.9) for
a path of pure shear in strain space.

Figure 9b. The completion of the first complete crack
(fn1 = 0) for a path of pure shear in strain space.

Figure 9c. The beginning of a second microcrack
(fn2 = 0.98) for a path of pure shear in strain space.

Figure 9d. The development of the second microcrack
(fn2 = 0.29) for a path of pure shear in strain space.
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softening function decreases, and the stress path in s11	 s22
space branches down from the uniaxial path. Eventually,
another branch of the decohesion surface is activated
(Figure 11c) and a second microcrack is initiated. Note
that the orientation of the second microcrack is not q2 =
0� because of the presence of shear stress caused by the
first microcrack. For this strain path, the first crack
deactivates and the second crack evolves (Figure 11d)
until failure is complete.
[77] It can be shown that a slightly different initial

condition of q1 = 30� and the same loading path, only the
first crack will govern and a second crack will not appear.
Such results show the sensitivity of the prediction of crack
initiation to slight changes in initial conditions and in the
direction of a stress or strain path.

4.6. Alternative Method for Selecting Values for
Material Parameters

[78] With the previous development, there is now an
alternative approach for estimating values of material

parameters for pack ice and that is to use the measured
motion of grid points as given by satellite data for large
regions of Arctic ice. The procedure is described by Kwok
[1998] and data are available for several years. For this
study, a 50 km � 50 km region has been identified and the
location of material points within the ice obtained from two
consecutive satellite images18.5 hours apart on day 136 of
2002. This motion has been decomposed under the assump-
tion that all deformation is due to displacement discontinu-
ity in Coon et al. [2006]. This procedure gives an optimal
jump in displacement for the given deformation of an
element. The jump is optimal in the sense that it gives the
best fit to the observed strain. If it is believed that these
displacement discontinuities are representative of what is
actually observed, then when the same nodal displacements
are used to describe element deformations for the elastic-
decohesion model, the resulting crack deformation should

Figure 10a. Initiation of axial splitting (fn1 = 0.97) under
uniaxial compression in stress.

Figure 10b. Initiation of a second microcrack (fn2 = 0.98)
under uniaxial compression in stress.

Figure 10c. Growth of two microcracks (fn1 = 0.8 and
fn2 = 0.84) as the path diverts from uniaxial compression
in stress.

Figure 10d. Continued growth of two microcracks
(fn1 = 0.71 and fn2 = 0.69) as the path diverts further
from uniaxial compression in stress.
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not be altered significantly when the elastic-decohesion
constitutive equation is used.
[79] Figure 12 shows the predictions of crack displace-

ments with the use of the constitutive equation for a limited
range of material parameters. Only those cracks with [un]

2 +
[ut]

2 > u0
2 and u0 = 200 m are shown. Within each element, a

solid bar is meant to indicate a crack, with the width of the
bar proportional to the amount of normal displacement
discontinuity. Shear is indicated by the relative translations
of the opposite sides of the bar. The first point to make is
that results can be vastly different for different choices of
material parameters. The second point is that some results
look more ‘‘reasonable’’ than others although a definitive
error metric is necessary to say any one result is better than
another. After some iteration on the values of material
parameters, the tensile and compressive strengths of tnf =
20 kPa and f 0c = 100 kPa were selected. These values are
the same as those presented in section 2.6. If the results

shown in Figure 12a are assumed to be the ‘‘best’’ in
comparison with those of Coon et al. [2006], then the shear
parameter is considerably smaller than that proposed in
section 2.6. In light of the complex nature of the ice pack,
such uncertainty might be expected. One other important
aspect not considered is that the initial condition for the ice
in the analysis shown in Figure 12 is assumed to be
undamaged. It is quite possible that if initial values for
the orientation and the amount of softening for each element
could be determined, then the larger value for the shear
parameter obtained in section 2.6 might still be appropriate.
[80] In general, the effect of the initial conditions for ice

on predictions for any large-scale analysis is an important
subject matter that is rarely discussed, and will not be
pursued here. Another significant aspect of physical behav-
ior not included in the model is the closing of frozen leads

Figure 11a. Initial loading with a frozen ridge modeled as
an existing microcrack with reduced strength (fn1 = 0.3).

Figure 11b. Continued loading with the initiation of
failure of a frozen ridge modeled as an existing microcrack
(fn1 = 0.2).

Figure 11c. Continued loading of a frozen ridge modeled
as an existing microcrack (fn1 = 0.16) with the initiation of a
second microcrack (fn2 = 0.98).

Figure 11d. Continued loading of a frozen ridge modeled
as an existing microcrack (fn1 = 0.15) with the formation of
a new lead (fn2 = 0).
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whereby ridges are formed. This is the topic of the next
section.

5. Closure and Shear of a Frozen Lead

5.1. Initial Condition

[81] The situation being considered is one where a lead
has been formed, the lead has opened a distance, uL, and ice
motion has henceforth ceased allowing for new ice to be
formed within the lead to a depth hf. For the purpose of this
study, the details of freezing including freezing rate are not
considered. An idealized sketch of the geometry of the lead
is shown in Figure 13a.
[82] If external forces cause the lead to close, the fresh ice

may split in uniaxial compression, buckle, and break into
segments that slide over and under each other to eventually
form a thick conglomerate of blocks of ice called a ridge.
The ridge consists of an observable feature, the sail, and a
much larger segment underneath, the keel, as represented by
the sketch of Figure 13b. The details of the shape of the
ridge will also not be considered except to note that the total
quantity of fresh ice per unit length of lead is approximately
equal to the product of the width of the lead, uL, and the
depth of new or fresh ice, hf.
[83] With time, this ridge of ice blocks will freeze and

fuse together. Since a parallel set of independent leads is
rarely, if ever, observed, it is reasonable to assume that the
fused ice within a lead will not be as strong in tension and
shear as the adjacent pack ice during the first year. The
representation of the ridge as a line of weakened material
was the motivation for considering a ‘‘preexisting partial
fracture’’ in section 4.5.
[84] An appropriate value for the tensile strength of a

ridge is difficult to estimate. If the ridge is actively moving
by opening, closing or shearing, the tensile strength will be
zero. Only if a ridge is inactive for some time can a tensile
strength develop. The object of this section is to provide an
addition to the discrete constitutive model that will represent
in an approximate manner the compressive stress that arises
when a frozen lead closes.

5.2. Compressive Stress With Closure of a Lead

5.2.1. Observed Features
[85] Once a lead of width uL has formed, it is convenient

to define a dimensionless parameter, uc, as follows:

uc ¼ 1	 un½ �
uL

0 � uc � 1 ð52Þ

When the lead has formed and is stationary, then the initial
value of this parameter is uc = 0. As the lead closes, uc
increases. Complete closure is identified with uc = 1 which
represents an idealized condition that can only be attained if
no fresh ice is formed.
[86] Both experimental data and simulations based on

discrete elements [Hopkins, 1998] suggest that the closure
force is rather jagged as represented symbolically by the
dotted line in Figure 14. Initially, a rather large stress is
necessary to start closure and this is thought to be analogous
to a buckling stress. Because ice is brittle, once buckling
begins, a portion of the ice breaks into segments. Subse-
quently, these segments ride over and under the remaining
freshly frozen ice and cause further segments to break off
and pile up, as reflected by the subsequent peaks and drops
in stress with the peaks substantially smaller than the initial
one. Ultimately, a ridge is formed at a level of stress that
must be less than the failure stress in uniaxial compression,
f 0c, since a new lead orthogonal to the first is rarely
observed.
[87] It is customary to approximate the observed closing

stress as a function of closing displacement with a smooth

Figure 12. Constitutive prediction of crack opening for tnf = 20 kPa and f 0c = 100 kPa.

Figure 13. Idealized geometry of a frozen lead with
subsequent ridge formation.
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function that has an initial value tnc,0. Typically, data
indicate that the closing stress is a slowly increasing
function but, ultimately, the closing force must become
large to prevent one face of a lead from interpenetrating
or overlapping the opposite face.
[88] Several estimates have been made for the value of

the initial closing stress, all of which are of the form

tnc;0 ¼ tnc;ref hf =hp
� �h ð53Þ

where values for h range from 1 for an argument based on
crushing or shear rupture [Wilchinsky andFeltham, 2004], 3/2
if the ice is assumed to fail by buckling [Parmeter, 1974], to 2
based on gravitational potential energy within ridges
[Rothrock, 1975]. The term tnc,ref denotes a reference stress.
[89] In order to fit in smoothly with the decohesion

model, both stress parameters in (53) should be considered
as the total force per unit length of lead divided by the depth
of the pack ice, hp. If tnc,ref is not available, a simple
estimate for tnc,0 is obtained by scaling the strength of ice in
compression, f 0c, with the relative thicknesses of lead ice and
pack ice:

tnc;0 ¼ f 0c
hf

hp
ð54Þ

[90] As an example, in situ stresses were measured by
Coon et al. [1989] for lead ice of thickness hn = 40 cm and a
pack ice thickness of hp = 160 cm. If the value f 0c = 100 kPa
suggested in section 2.6 is used in (54), the result is a
predicted peak compressive stress in the pack ice for lead
closure of tnc,0 = 25 kPa, which is roughly the peak stress
given by Coon et al. [1989].
[91] Based on a series of numerical simulations of lead

forces averaged over a sufficiently long lead, Hopkins
[1998] suggests a force of 95(hf)

3/2 kN/m with hf in meters.
For hn = 0.4 m, and dividing the result by the thickness of
pack ice hp = 1.6 m, Hopkins’ formulation translates to an
equivalent initial closing stress of tnc,0 = 15 kPa on the
pack ice. This value is remarkably similar to the 25 kPa
deduced above considering the widely different approaches.
5.2.2. A Simple Model
[92] The initial average closure stress is of the order of the

tensile strength of the pack ice, and considerably smaller

than the compressive failure stress. Therefore, one might
reasonably adopt the simple representation indicated by the
heavy dashed line in Figure 14 of ignoring the closure stress
altogether. With this approach the effect of fresh ice is
ignored as far as the stress and motion analysis is
concerned. Once a lead forms, the traction is zero until
the two surfaces of the lead come together at which time the
material assumes the behavior of pack ice in compression
with zero tensile strength in the direction normal to the lead.
Such behavior is implied if the decohesion model is used
with no modifications made for freezing and ridge behavior.
Explicitly, if a lead is formed, the decohesion function
assumes the final anisotropic form displayed for the uniaxial
tensile case of Figure 8d. The decohesion surface does not
change if the edges of a lead drift apart. However, the
distance between the lead surfaces is known through the
displacement discontinuity [un]. The constitutive equation
for the lead reduces to that of enforcing zero traction as long
as [un] > 0, a condition that is enforced until [un] reduces to
zero (or uc = 1). Then the zero traction condition is dropped,
the elasticity constitutive equation is invoked and the
decohesion condition is checked to determine if an addi-
tional lead is formed at some angle relative to the existing
lead.
[93] It is possible for a number of simulations that such a

simple model may be perfectly adequate. However, if the
closure stress is considered to be significant, then a mod-
ification must be made to the decohesion formulation.
5.2.3. A More Complex Model
[94] Here, an addition to the model is proposed to provide

the current strength of the fresh ice in compression. No
attempt is made to represent the details of the observed
abrupt increases and decreases in stress that accompany
buckling and breaking of fresh ice into segments. Rather, an
‘‘average smoothed’’ stress is predicted that will, hopefully,
be adequate for large-scale numerical simulations of Arctic
ice in which some of the details of lead closure are included.
[95] Suppose a lead has been formed ([un] > u0) and

identified with a unit normal vector, n. An additional
decohesion function for lead closure and ridge formation
is defined for that orientation as follows:

FR ¼ 	tn 	 tnc ð55Þ

As before, FR > 0 is not allowed, FR < 0 implies that the
response is elastic and FR = 0 or tn = 	tnc is identified
with closing. The current strength of the fresh ice in
compression is identified with tnc, which is always
positive, so closure can be activated only if tn is negative
and sufficiently large.
[96] Suppose the current strength can be represented

through the use of an exponential function:

tnc ¼ tn;0ez uc ð56Þ

in which tnc,0 denotes the initial strength of fresh ice given
by (53). The parameter, z, in (56), provides the rate at which
strength increases with closure and, for the moment, its
value is considered to be chosen empirically based on in situ
evidence. In particular, a value for z must be selected to
ensure that full strength in compression is achieved prior to

Figure 14. Various representations of stress with lead
closure.
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complete closure (uc = 1) to prevent a prediction that the
faces of the lead will ‘‘overlap’’.
[97] If an associated evolution equation for closure is

adopted, then

_un½ � ¼ _wcuL
@FR

@tn
ð57Þ

in which uL is included to render the monotonically
increasing closing parameter wc dimensionless. The result
of combining (57) and the rate form of (52) is that

wc ¼ uc _un½ � ¼ 	 _ucuL ð58Þ

The consistency condition, _FR = 0, merely yields tn = 	tnc
in rate form. At this stage, only closing of the lead is
considered. Further modifications would be necessary to
handle the situation where closure is stopped, perhaps the
lead opens again, further freezing occurs and then the lead
resumes closing.
[98] To illustrate the model in more detail, Figure 15

shows various surfaces and paths in the space of traction
components tn and tt. The decohesion surface, Fn = 0, is
given by the line A-B-C with the softening function
assigned a value fn = 0 which corresponds to the complete
formation of a lead. With freezing some tensile strength
may be recaptured and this recapture can be reflected by
designating a small, but nonzero, value for fn. However,
once closure begins there is no tensile strength so, for
convenience, fn is fixed at zero.
[99] Once some new ice is formed, a compressive

strength is introduced through the use of the ridging
function. The corresponding surface in the space of tn
and tt is FR = 0 and designated by line D-E-F in Figure
15. Lead closure is reflected in the same space by a traction
path that goes from the origin to point E, an increase in the
normal component of traction until the initial value, tnc,0, of
the smooth form of the ice crushing strength is reached.
With closure, the ridging surface moves to the left with the
traction point moving to point E0. The new decohesion
surface for ridging is line D0-E0-F0, and the evolution
equation provides the exponential form of the stress versus
lead closure relation shown in Figure 14.

5.3. Modeling the Motion of a Lead in Shear

[100] Often the linear features displayed by Kwok [1998]
are accompanied by large measures of shear. Expressed
another way, it is not unusual for leads to be accompanied
by large relative tangential motions. Here, it is argued that
the existing model for decohesion, when combined with the
ridging formulation can also provide a representation for
shear motion.
[101] Photographs of leads often show that leads are not

straight but are jagged. Therefore, even after a lead has
formed, a significant shear stress is necessary to overcome
the surface asperities. When shear motion is initiated the
sawtooth shape of the lead will tend to force the lead
surfaces apart and increase the average normal compressive
traction component, tn. A possible path in the space of tn
and tt is that designated B-G-H in Figure 15. Until the
initial ridge closure stress tnc,0 is reached, the associated
flow rule indicates that [ _un] is positive and, hence, opening

continues to occur. However, when the traction moves to the
corner of the two surfaces representing both decohesion and
closure, it is possible to have the condition [ _un] = 0. This
equation implies that no additional opening is occurring and
the deformation is pure tangential motion. Alternatively, it is
entirely feasible to invoke more sophisticated models from
other areas of crack analysis such as the one described by
Carol et al. [1997].
[102] It should be mentioned that the essential ideas

reflected in the composite decohesion and closing surface
of Figure 15 have been suggested much earlier by Coon et
al. [1992, 1998] and Pritchard [1998].

6. Summary

[103] A decohesive approach has been proposed for
modeling the initiation and evolution of leads within the
Arctic ice pack which otherwise can be represented as an
elastic continuum. Such an approach is different from the
more common procedure of using a continuum constitutive
equation with a failure criterion to simulate leads, or from
modeling the complete ice pack as discrete floes. The
decohesive model offers advantages in that interpretation
of material parameters is simpler, the basic variables of the
formulation such as normal and tangential components of
lead-displacement discontinuity are more in tune with
observations, and weaknesses associated with previous
leads can be easily accommodated.
[104] Important features of the model include the follow-

ing: (1) A lead can initiate and evolve even if the stress is
one of uniaxial compression. (2) The orientation of the lead
and the mode of failure depend on the state of stress. (3) Lead
branching can be predicted. (4) Avariety of preexisting lines
of weakness can be accommodated through the choice of
initial values for material parameters.

Figure 15. Decohesion surface for ridging and possible
path involving shear.
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[105] With regard to lead closure, an elementary addition
to the model provides a method for predicting stress
resultants during ridge formation and shearing motion.
However, there are numerous issues that have not been
included. Specifically no attempt has been made to include
ice freezing and thawing, and multiple sequences of open-
ing and closing of leads with ice redistribution.
[106] In conclusion, it is believed that the ability to

specifically model the failure of ice as reflected by the
orientation and location of leads, lead opening, lead closing
and large shear motion represents a significant enhancement
to existing approaches. As indicated by preliminary analy-
ses performed by Sulsky et al. [2006], numerical solutions to
boundary value problems can be obtained at a computa-
tional cost comparable to the most efficient methods being
used currently.
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