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[1] The material-point method (MPM) is a numerical method for continuum mechanics
that combines the best aspects of Lagrangian and Eulerian discretizations. The material
points provide a Lagrangian description of the ice that models convection naturally. Thus
properties such as ice thickness and compactness are computed in a Lagrangian frame and
do not suffer from errors associated with Eulerian advection schemes, such as artificial
diffusion, dispersion, or oscillations near discontinuities. This desirable property is
illustrated by solving transport of ice in uniform, rotational and convergent velocity fields.
Moreover, the ice geometry is represented by unconnected material points rather than a
grid. This representation facilitates modeling the large deformations observed in the
Arctic, as well as localized deformation along leads, and admits a sharp representation of
the ice edge. MPM also easily allows the use of any ice constitutive model. The versatility
of MPM is demonstrated by using two constitutive models for simulations of
wind-driven ice. The first model is a standard viscous-plastic model with two thickness
categories. The MPM solution to the viscous-plastic model agrees with previously
published results using finite elements. The second model is a new elastic-decohesive
model that explicitly represents leads. The model includes a mechanism to initiate leads,
and to predict their orientation and width. The elastic-decohesion model can provide
similar overall deformation as the viscous-plastic model; however, explicit regions of
opening and shear are predicted. Furthermore, the efficiency of MPM with the
elastic-decohesive model is competitive with the current best methods for sea ice
dynamics.
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1. Introduction

[2] Ice dynamics models are used to generate short-term
forecasts for waterways [Sayed and Carrieres, 1999], to
predict the ice-edge position for offshore operations [Flato,
1993] and to understand the global climate in long-term
studies [Maslowski et al., 2001]. A continuum model of
pack ice dynamics involves a mathematical description of
the physical laws, such as momentum balance. The balance
laws must be augmented by constitutive relations in order to
distinguish a particular type of continuum, in this case, ice.
The appropriate balance laws for our model are presented in
section 2. Constitutive models for the pack ice are presented
in section 4.
[3] Once the mathematical equations have been specified,

one must decide on a numerical procedure to approximately

solve these equations, since ordinarily analytical solutions
are not available. Two mathematically equivalent forms of
the balance laws are possible. One form is based on an
Eulerian description, observing the solution at fixed points
in space; or a Lagrangian description, following points in
the flow or deformation of the material. These two descrip-
tions suggest different numerical approaches. Solids are
more typically modeled with Lagrangian finite elements
[Belytschko et al., 2000; Hughes, 2000] while fluids are
more often modeled in an Eulerian frame [LeVeque, 1990;
Roache, 1985]. Each approach has advantages and disad-
vantages. Eulerian methods are traditionally used to model
ice because they can handle large deformations [Hibler,
1979; Hunke and Dukowicz, 1997]; however advection
algorithms within the Eulerian framework have artificial
numerical diffusion and tend to smear regions of thick and
thin ice that should have sharp boundaries and to smear the
ice edge [Flato, 1993]. Lagrangian methods do not have the
advection errors but the mesh moves in the computed
velocity field, so there is a limit to how much deformation
can be accommodated without remeshing [Morland and
Staroszczyk, 1998; Wang and Ikeda, 2004]. It is remeshing
that causes diffusion in a Lagrangian scheme. However,
Lagrangian methods are better suited to constitutive models
that depend on the deformation history of a material point,
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such as elastic-plastic models, since the integration is done
along material-point trajectories.
[4] The smoothed particle hydrodynamics (SPH) method

has also been applied to sea ice. SPH is a fully Lagrangian
method that has been used with viscous-plastic rheologies
[Gutfraind and Savage, 1997; Lindsay and Stern, 2004].
Lindsay and Stern [2004] note that the Lagrangian descrip-
tion in SPH is also desirable in order to assimilate material-
point trajectories from RADARSAT Geophysical Processor
System (RGPS) data. Another option for examining sea-
ice dynamics is discrete-particle methods [Gutfraind and
Savage, 1997; Hopkins et al., 1991; Hopkins and Hibler,
1991; Hopkins, 1998]. In these methods the ice is modeled
as a collection of floes and equations are solved for the
interactions between the floes. These methods are formu-
lated directly as discrete models rather than by discretizing a
continuum model.
[5] The material-point method (MPM) is a numerical

technique for solving continuum problems in fluid and solid
mechanics. Its origins are the particle-in-cell (PIC) method
developed at Los Alamos in the 1950s [Harlow, 1957;
Evans and Harlow, 1957] to model highly distorted fluid
flow - such as the splash of a falling drop. The original PIC
method was successful for its time, but was eventually
replaced by Eulerian methods with sophisticated advection
schemes that have less numerical dissipation. In the late
1980s, Brackbill and Ruppel [1986] and Brackbill et al.
[1988] revived the PIC technology with simple modifica-
tions that reduced the numerical dissipation and made PIC
competitive with current technologies for simulating hydro-
dynamics. MPM [Sulsky et al., 1994, 1995; Sulsky and
Schreyer, 1996] is an extension of this technology to solids
with strength and stiffness. In some formulations, numerical
dissipation is eliminated entirely [Burgess et al., 1992; Love
and Sulsky, 2006]. MPM has been used to model diverse
applications such as impact, penetration, fracture, metal
forming, granular media and membranes.
[6] In order to combine the advantages of Eulerian and

Lagrangian methods, MPM uses two representations of the
continuum. First, a set of material points (or particles) is
identified in the body of fluid or solid that is tracked
throughout the deformation process. Each material point
has a mass, position, velocity and stress, as well as material
parameters and internal variables as needed for constitutive
models or thermodynamics. These material points provide a
Lagrangian description of the material that is not subject to
mesh tangling because no connectivity is assumed between
the points. This Lagrangian frame models convection and
transport in a natural manner since the trajectory and history
of each material point is followed. Each point carries
material properties without error and history variables can
be integrated along the trajectory. However, computing
gradients for solution of the momentum equation is com-
plicated in this representation since the neighbors of a given
point are not known a priori, and can change during a
simulation. In order to keep the computational work linear
in the number of material points, a second description is
used for solving the momentum equation. This description
is an often regular, background mesh that covers the
computational domain. Information is transferred from the
material points to the background mesh, the momentum
equation is solved on the background mesh, and then

information from the mesh solution is used to update the
material points, at which time the background mesh can be
modified if desired and then the cycle is begun again. The
MPM algorithm is presented in section 3 with a particular
emphasis on its application to simulating the dynamics of
pack ice.
[7] Other forms of PIC methods [Flato, 1993; Zhang and

Savage, 1998; Sayed and Carrieres, 1999] have been used
previously to model sea ice. Flato [1993] makes the case
that PIC methods are better suited to predicting the location
of the ice edge because the artificial diffusion associated
with pure Eulerian methods is removed. MPM shares
this advantage, as does any Lagrangian formulation. The
Lagrangian description in MPM may also aid in data
assimilation [Lindsay and Stern, 2004]. MPM has another
advantage in its method for evaluating constitutive equa-
tions that easily allows the use of any solid (or fluid) model
for ice in addition to the traditional viscous-plastic
models that are normally used in numerical simulations
of ice dynamics. Even models with history dependence can
be employed without incurring convection errors of an
Eulerian method when convecting internal variables used
in the model. Section 5 of this paper contrasts previous PIC
implementations to MPM. Section 6 presents numerical
simulations that demonstrate the effectiveness of the
MPM advection algorithm and uses MPM to simulate
wind-driven ice. Finally, section 7 contains concluding
remarks.

2. Equations of Motion

[8] Since the pack ice is thin compared to its horizontal
extent, it can be modeled in two spatial dimensions with a
position vector indicated by x, velocity by v, mass density
(per unit volume) by r, and thickness by h. The mass
density per unit area is m = rh.
[9] In the plane of motion of the sea ice, the linear

momentum balance is given by [Coon, 1980]

m _v ¼ Fext þ Fint: ð1Þ

The superposed dot denotes the material time derivative of
the velocity (acceleration). The internal forces arise from the
divergence of the depth-integrated, extra-stress, N [Gray
and Morland, 1994]

Fint ¼ div Nð Þ: ð2Þ

The external forces are due to air drag, water drag, Coriolis
force, and sea surface tilt. Specific forms used in the
simulations are given in section 6.
[10] In order to solve the preceding equations in a region

W, we need to specify the initial ice thickness, h(x, 0) =
h0(x), the initial displacement u(x, 0) = u0(x), and the initial
velocity, v(x, 0) = v0(x) in this region. We also need
conditions specified on the region boundary @W. Typical
boundary conditions might be prescribed displacement on
part of the boundary @Wu and prescribed traction on the
remaining part of the boundary @Wt, with @W = @Wu [ @Wt

and @Wu \ @Wt = ;. The depth-integrated traction is given
by N % n where n is a unit, outward normal to the boundary.
Specifying the traction would imply specifying an applied
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force per unit length on the boundary of the ice. Specified
inflow or outflow are also possibilities. To complete the
model, we must also specify a constitutive equation for the
stress N. We postpone the detailed description of constitu-
tive models until section 4.

3. Material-Point Method for Pack Ice

[11] MPM partitions the ice into material elements that
are followed in a Lagrangian sense throughout the compu-
tation. Specifically, for the two-dimensional ice cover,
assume the ice occupies a region W0 = W(0) & R

2 initially
and W(t) & R

2 for t > 0. In a continuum, material points in
the original configuration are labeled with coordinates X.
At time t > 0 the current position of the point that started
at X is x = 8(X, t) with 8(X, 0) = X. In the discretization,
a finite set of material points is tracked. Divide the initial
region W0 into Np disjoint subdomains, W0 =

SNp

p¼1Wp(0).
Associate a position Xp with the centroid of Wp(0).
The position of the material point initially located at the
centroid of each subdomain is tracked in time. A mass,
thickness and area associated with this point are also
tracked. Let hp(0) be the initial average thickness of the
ice in Wp(0). The initial mass of the material point is then

mp 0ð Þ ¼
Z

Wp 0ð Þ
r0 Xð Þhp 0ð ÞdA ' r0 Xp

! "

hp 0ð ÞWp 0ð Þ; ð3Þ

where r0(X) is the original mass density and we use Wp(0)
also to indicate the area of the region. Without melting or
freezing, the mass mp would be constant in time, and the
total mass (sum of all material-point mass) would be
trivially conserved. The area and thickness may change with
time, even if the mass is fixed. Material points can be
eliminated from the computation if their mass goes to zero
due to melting and points can be added or the mass of
existing points increased in regions where ice is forming. In
this paper, the material-point mass is kept constant.
[12] The deformation gradient is a key quantity in con-

tinuum mechanics and is defined as the derivative of the
current position with respect to the original position,

F X; tð Þ ¼ @8 X; tð Þ=@X ¼ Grad 8: ð4Þ

The deformation gradient is a linear transformation with
positive determinant and has a 2 ( 2 matrix representa-
tion for the two-dimensional ice cover. The Jacobian of
the transformation from original to current coordinates is
J(X, t) = det(F(X, t)) > 0. The Jacobian transforms area
elements in the original configuration, dA, to area elements
in the current configuration, da = JdA. Thus, if the
deformation gradient is known at a material-point location,
the initial area associated with the material point can be
transformed to the current area through the transformation

Wp tð Þ ¼ J Xp; t
! "

Wp 0ð Þ: ð5Þ

[13] The average thickness associated with a material
point might change due to mechanical forces, for example,
through ridging, or due to melting or freezing of the ice. The
thermodynamic effects are taken into account by a model of

the ice growth rate. The growth rate can be parameterized by
the ice thickness [Hibler, 1979; Thorndike and Maykut,
1973], or by freezing degree days [Anderson, 1961; Lebedev,
1940], for example. More sophisticated thermodynamic
modeling is also possible [Bitz and Lipscomb, 1999]. In
any case, an ordinary differential equation can be formulated
for obtaining the current value of the ice thickness for a
material point.
[14] The material points move according to the velocity

computed as the solution to the momentum equation. In
contrast to discrete particle methods [Gutfraind and Savage,
1997; Hopkins et al., 1991; Hopkins and Hibler, 1991;
Hopkins, 1998], or SPH [Gutfraind and Savage, 1997;
Lindsay and Stern, 2004], the material points do not interact
directly with one another. Instead information from the
current state of the material points is used to initialize
points on a background computational grid, and then the
momentum equation is solved on that grid. The background
grid points are allowed to move with the flow, and therefore
the grid solution is Lagrangian over the time step. The use
of a background grid makes the computational work scale
linearly with the number of material points.

3.1. Spatial Discretization of the Momentum Equation

[15] One approach to obtaining discrete equations for the
momentum balance on the background grid is the finite
element method with an updated Lagrangian formulation.
The background grid is subdivided into elements, We, e = 1,
2, . . ., Ne. The nodes of this mesh are xI, I = 1, . . ., Nn. For
definiteness, consider a mesh made up of quadrilateral
elements in two-dimensions, each with four nodes. In the
finite element method, approximations to functions are
constructed by interpolating from the nodal values using
shape functions (see Appendix A). In terms of global shape
functions, the motion of the ice, x = 8(X, t), can be
approximated by

xh ¼
X

Nn

I¼1

xINI xð Þ: ð6Þ

The superscript h is used throughout to denote finite
element approximations to the corresponding continuum
quantity.
[16] The discrete displacement field is defined from the

nodal positions

uh x; tð Þ ¼ xh ) X ¼
X

Nn

I¼1

xI tð Þ ) XIð ÞNI xð Þ

¼
X

Nn

I¼1

uI tð ÞNI xð Þ: ð7Þ

The shape function is defined by a mapping from a master
element so that its material time derivative is zero
(Appendix A). Accordingly, the velocity can be approxi-
mated as

vh x; tð Þ ¼ _uh x; tð Þ ¼
X

Nn

I¼1

_uI tð ÞNI xð Þ

¼
X

Nn

I¼1

vI tð ÞNI xð Þ: ð8Þ
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Likewise, the acceleration is approximated by

ah x; tð Þ ¼ _vh x; tð Þ ¼
X

Nn

I¼1

_vI tð ÞNI xð Þ

¼
X

Nn

I¼1

aI tð ÞNI xð Þ: ð9Þ

[17] These approximations are used in the weak form of
the momentum balance to obtain semidiscrete equations
of motion. The weak form is equivalent to the principle of
virtual work which states that the solution to the momentum
balance equation must satisfy the following integral equa-
tion for any admissible, smooth, virtual displacement w

Z

W tð Þ
mw % _vda ¼)

Z

W tð Þ
grad w : Ndaþ

Z

@Wt tð Þ
w %!t ds

þ
Z

W tð Þ
w % Fextda; ð10Þ

where !t = N % n is the prescribed traction on the part of the
boundary @Wt(t). An advantage of the weak form is that less
smoothness is required of solutions than with the strong
form, equation (1). The virtual displacement is also called a
test function, and it is admissible if it is zero on @Wu where
displacement boundary conditions are prescribed. The test
function has a representation similar to the other fields
above

wh xð Þ ¼
X

Nn

I¼1

wINI xð Þ: ð11Þ

The test function is arbitrary except at points on the
boundary @Wu where the displacement is prescribed, in
which case the test function is zero.
[18] Substitute the representations (8) and (11) into (10)

to obtain

Z

W tð Þ
mwh % _vhda

¼
X

Nn

I¼1

wI %
X

Nn

J¼1

Z

W tð Þ
m x; tð ÞNI xð ÞNJ xð Þ _vJ tð Þda

¼
X

Nn

I¼1

wI %
X

Nn

J¼1

MIJ tð Þ _vJ tð Þ; ð12Þ

)
Z

W tð Þ
grad wh : Nda

¼ )
X

Nn

I¼1

wI %
Z

W tð Þ
gradNI xð Þ % N x; tð Þda ð13Þ

Z

@Wt tð Þ
wh %!tds ¼

X

Nn

I¼1

wI %
Z

@Wt tð Þ
!t x; tð ÞNI xð Þds ð14Þ

Z

W tð Þ
wh % Fextda ¼

X

Nn

I¼1

wI %
Z

W tð Þ
Fext x; tð ÞNI xð Þda: ð15Þ

In order to complete the spatial discretization a quadrature
rule must be given to evaluate the integrals in equations
(12)–(15). The material points are used as quadrature points
and the integrals become sums over material points. For
example, equation (12) discretizes the inertial term. The
consistent mass matrix MIJ has components

MIJ tð Þ ¼
Z

W tð Þ
m x; tð ÞNI xð ÞNJ xð Þda

'
X

Np

p¼1

m xp tð Þ; t
! "

NI xp tð Þ
! "

NJ xp tð Þ
! "

Wp tð Þ

¼
X

Np

p¼1

mp tð ÞNI xp
! "

NJ xp
! "

; ð16Þ

where the material-point mass is mp(t) = m(xp(t), t)Wp(t) =
r(xp(t), t)hp(t)Wp(t). Note that conservation of mass can
be expressed by the equation, r(X, t)J(X, t)h(X, t) =
r0(X)h(X, 0). If mass is conserved, then using equation (5)
in the conservation equation, shows that the current material
point mass is the same as its initial mass, mp(t) =mp(0)* mp,
where the initial mass is given in equation (3).
[19] Equation (13) provides the nodal values of the

internal forces

Fint
I tð Þ ¼ )

Z

W tð Þ
grad NI xð Þ % N x; tð Þda

' )
X

Np

p¼1

GIpNp tð ÞWp tð Þ:
ð17Þ

In the above equation, simpler notation has been introduced
for the gradient of the shape function, GIp = grad NI (x)jx=xp,
as well as for the stress at the material point position,
Np(t) = N(xp(t), t).
[20] Finally, the nodal values of the external forces arise

from the external body forces, equation (15), plus the
applied traction, equation (14)

Fext
I tð Þ ¼

Z

W tð Þ
Fext x; tð ÞNI xð Þdaþ

Z

@Wt tð Þ
NI xð Þ!t x; tð Þds: ð18Þ

[21] The weak form of the momentum balance equates
(12) to the sum of the forces (equations (13)–(15)). Since
the weak form must hold for arbitrary wI, except at con-
strained nodes on the boundary where the displacement is
prescribed, we obtain the semidiscrete equation for the
nodal acceleration at unconstrained nodes

X

Nn

J¼1

MIJ tð Þ _vJ tð Þ ¼ Fint
I tð Þ þ Fext

I tð Þ: ð19Þ

The momentum equation is solved for the acceleration at
unconstrained nodes, which is then integrated in time to
obtain the corresponding velocity and displacement. Nodes
constrained by the displacement boundary conditions move
according to those prescribed constraints.

3.2. Time Discretization

[22] The semidiscrete equation (19) can be discretized in
time using any scheme. Perhaps the simplest scheme is an
explicit method with a lumped mass matrix. Lumping the
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mass is standard practice for explicit finite element methods
[Belytschko et al., 2000; Hughes, 2000]. This matrix is
diagonal with the diagonal entries obtained by summing
over the corresponding row of the consistent mass matrix

and using the property
XNn

J¼1
NJ (x) = 1,

MI tð Þ ¼
Z

W tð Þ
m x; tð ÞNI xð Þda '

X

Np

p¼1

mpNI xp
! "

: ð20Þ

With the lumped mass matrix equation (19) becomes

MI tð Þ _vI tð Þ ¼ Fint
I tð Þ þ Fext

I tð Þ: ð21Þ

The advantage of mass lumping is that a simple explicit
time-integration method does not require a time consuming
matrix inversion in each step.
[23] A superscript n is used to indicate the computed

solution at time tn. Then, for an explicit scheme, the
discretized momentum equation is

Mn
I a

n
I ¼ Fn;int

I þ Fn;ext
I : ð22Þ

This equation is solved for aI
n, the acceleration at time tn. In

order to solve this equation, the elements of the lumped
mass matrix must be computed. Equation (20) defines the
mass at a node at time tn,

Mn
I ¼

X

Np

p¼1

mpNI xnp

# $

: ð23Þ

The internal forces at time tn come from (17),

Fn;int
I ¼ )

X

Np

p¼1

Gn
IpN

n
pW

n
p: ð24Þ

The external forces are computed as in (18).
[24] A method that is formally second order in time is

obtained by staggering the velocity and displacement in
time. Let tn+1/2 = 1

2(t
n+1 + tn), Dtn = tn+1/2 ) tn)1/2, and

Dtn+1/2 = tn+1)tn. A centered difference formula for the
acceleration is

anI ¼
v
nþ1=2
I ) v

n)1=2
I

tnþ1=2 ) tn)1=2
¼ 1

Dtn
v
nþ1=2
I ) v

n)1=2
I

# $

: ð25Þ

This formula can be converted into an integration formula
for the velocity

v
nþ1=2
I ¼ v

n)1=2
I þDtnanI : ð26Þ

Similarly, the velocity can be obtained by differencing the
displacement

v
nþ1=2
I ¼ unþ1

I ) unI
tnþ1 ) tn

¼ 1

Dtnþ1=2
unþ1
I ) unI

! "

: ð27Þ

Likewise, this formula can be converted into an update for
the displacement

unþ1
I ¼ unI þDtnþ1=2v

nþ1=2
I : ð28Þ

[25] In order to solve these equations, the velocity field

vI
n)1/2 must be initialized from the material points. The
nodal mass is defined in equation (23). In a similar manner,
we can define the momentum at a node on the current
background mesh from the material points

Mn
I v

n)1=2
I ¼

X

Np

p¼1

mpv
n)1=2
p NI xnp

# $

: ð29Þ

Divide the momentum (29) by the mass (23) to obtain the
velocity vI

n)1/2. Now equation (26) can be used to find vI
n+1/2,

given the acceleration from (22). It is actually not necessary
to explicitly update the nodal displacement.
[26] Once the solution on the background grid is

obtained, the information must be used to update the
material points. Over the time step, we imagine the grid
nodes to move in the computed velocity field (i.e., the grid
is Lagrangian). The material points move in this flow in a
manner consistent with the grid solution and the interpola-
tion to the interior of the elements via the shape functions.
Thus the material points move according to

xnþ1
p ¼ xnp þDtnþ1=2

X

Nn

I¼1

v
nþ1=2
I NI xnp

# $

vnþ1=2
p ¼ vn)1=2

p þDtn
X

Nn

I¼1

anI NI xnp

# $

:

ð30Þ

Information from the grid is also used to update the
material-point stress state. Some models are based on the
rate of deformation (symmetric part of the velocity
gradient), other models rely on the deformation gradient.
The rate of deformation is computed as

gradxnvjx¼xp

# $

sym
¼
X

Nn

I¼1

Gn
Ipv

nþ1=2
I

# $

sym
ð31Þ

and the deformation gradient is updated by

Fnþ1
p ¼ gradxnx

nþ1
! "

Fn
p

¼ IþDtnþ1=2
X

Nn

I¼1

Gn
Ipv

nþ1=2
I

 !

Fn
p; ð32Þ

where I is the second order identity tensor. This informa-
tion is used along with any required internal variables to
update the material-point stress. Details are given in
section 4. We have already noted how the determinant of
the deformation gradient is also needed to update the
material-point area.
[27] Once the material points have been updated the

possibly distorted Lagrangian grid is no longer needed. A
new grid can be defined (possibly a regular square grid),
and the solution procedure is repeated for the next compu-
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tational time step. Having the mesh under user control avoids
mesh distortion associated with solutions on Lagrangian
meshes.
[28] In summary, the steps of the MPM computational

cycle are as follows:
[29] 1. In the first step of the computational cycle,

information carried by the material points is projected on
to the background mesh. Material-point mass is interpolated
to the nodes of a background mesh (23), as is the momen-
tum (29). The ratio of mass to momentum gives the velocity
on the background mesh. Internal forces at the nodes of the
background mesh are determined directly from the material-
point stress using a gradient weight and the material-point
volume (24).
[30] 2. External forces on the nodes of the background

mesh (18), for example due to wind or ocean drag, Coriolis
or tilt forces, are added to the internal forces (the stress
divergence), and the momentum equation is solved on the
background mesh. During this step, the mesh is assumed to
distort in the flow. The Lagrangian formulation means that
the acceleration does not contain the convection term which
can cause significant numerical error in purely Eulerian
approaches. During this Lagrangian phase of the calcula-
tion, each element is assumed to deform in the flow of
material so that points in the interior of the element move in
proportion to the motion of the nodes. That is, given the
velocity at the nodes, element shape functions are used to
map the nodal velocity continuously to the interior of the
element (8).
[31] 3. The mesh solution computed in the last step is

used to update the solution for each material point. The
positions of the material points are updated by moving
them in the single-valued, continuous velocity field that
arises from the mapping through element shape functions
(30). Similarly, the velocity of a material point is updated
by mapping the nodal accelerations to the material point
position (30). Because the velocity field is single-valued,
interpenetration of material is precluded, and also no-slip
contact between impinging bodies is automatic. In its
simplest form, strain increments are obtained from gra-
dients of the nodal velocities on the background mesh,
evaluated at the material point positions (31). Then, given
a strain increment at a material point, along with current
values of history variables and material parameters, con-
tinuum constitutive routines are used to update the stress
and history variables. Constitutive routines are always
evaluated separately for each material point, so there is
no artificial numerical mixing of materials as in Eulerian
schemes.
[32] 4. The material points now carry all information

about the solution; therefore, one can choose whether to
continue the calculation in the Lagrangian frame or map
information from the material points to another grid. Most
often MPM is used with a fixed, regular grid at the start of
each time step, as is the case in this paper.
[33] With this method, the background mesh does not

need to conform to the boundary of the ice. Instead, a grid
is constructed to cover the potential domain for the
boundary-value problem being solved. Then each body
of ice is defined by a collection of material points.
Complicated geometry is easily modeled by filling regions
with material points. This process is much easier than

standard meshing. Land mass boundaries can also be
represented by material points and treated as rigid bodies
in the calculation. An interface to atmosphere and ocean
codes should also be relatively straightforward since the
MPM data can be interpolated to any grid. The coupling to
these codes can be done through fluxes or with the
primitive quantities.
[34] The basic method described above will be augmented

with a description of thermodynamics modeled by tracking
the local ice thickness and compactness. These will be
material-point variables and their evolution will follow
similar equations to those in Thorndike et al. [1975] and
Coon et al. [1998] for the convection and rate of growth (or
melting). More sophisticated models and accounting of the
heat budget are possible within our framework but are left
for future studies.

4. Constitutive Models

[35] A variety of models have been proposed for the
behavior of sea ice, including isotropic plastic [Rothrock,
1975], isotropic elastic-plastic [Coon et al., 1974; Pritchard,
1975], isotropic viscous-plastic [Hibler, 1977b, 1979; Flato
and Hibler, 1989; Ip et al., 1991], isotropic elastic-viscous-
plastic [Hunke and Dukowicz, 1997; Hunke, 2001], as well
as some anisotropic models [Hibler and Schulson, 2000;
Wilchensky and Feltham, 2004]. The continuum model
most often applied to sea ice is an isotropic, viscous-plastic
model [Hibler, 1979] or a modification based on an elastic-
viscous-plastic model [Hunke and Dukowicz, 1997]. The
latter model is introduced for numerical efficiency rather
than to model specific elastic aspects of sea ice. Section 4.1
describes the implementation of the former model in MPM.
Section 4.2 describes another constitutive model, a new
elastic-decohesive model that allows ice to deform elasti-
cally to a point, but with sufficient loading the ice fractures
and leads form. The result is that ice with leads behaves
anisotropically. For example, an element of ice with a lead
offers no resistance to opening motion perpendicular to the
lead, but does offer resistance if motion is parallel to the
lead. It is worth noting that any of the aforementioned
constitutive models could be implemented in the MPM
framework.
[36] As described previously, MPM evaluates the consti-

tutive model independently for each material point. Thus, to
simplify the notation, the subscript p indicating a material
point quantity is omitted in this section but is assumed.

4.1. Viscous-Plastic Rheology

[37] The classical viscous-plastic model [Hibler, 1979]
computes the depth-integrated, extra stress N from the strain
rate _e = 1

2(rv + (rv)T) according to the formula

N ¼ 2h _eþ z ) h½ ,tr _eð ÞI) 1

2
PI: ð33Þ

The notation tr(%) indicates the trace of a tensor. The strain
rate at a material point is obtained from formula (31). The
viscosity coefficients h and z in this formulation are
nonlinear functions of the strain rate and the maximum ice
strength Pmax. Specifically, z = Pmax/2D, and h = z/e2 where
e is the ratio of the principal axes of the elliptical yield
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curve [Hibler, 1977a], and D depends on e and the strain
rate

D ¼
h

_e211 þ _e222
! "

1þ e)2
! "

:

þ 4e)2 _e212 þ 2 _e11 _e22 1) e)2
! "

i1=2
: ð34Þ

[38] As currently defined, the viscosity coefficients can
become arbitrarily large for small strain rates. To avoid
this difficulty, these coefficients are chosen to be the
minimum of the values specified above and some large
limiting values that depend on the ice strength. The limiting
values are taken to be zmax = (2.5 ( 108 s) Pmax and then
hmax = zmax/e

2. To insure that there is no stress at zero strain
rates, a replacement pressure P is used in equation (33),
where P = 2Dz1, z1 = min[Pmax/2D, zmax].
[39] The maximum ice strength, Pmax, is taken to be a

function of the average ice thickness, h, and its com-
pactness, A, according to the formula Pmax = P* hA
exp()C(1 ) A)) which includes the fixed empirical con-
stants P* and C. The ice thickness and compactness evolve
due to thermodynamics and ice dynamics. Thermodynamics
causes changes due to melting and freezing of ice. Dynam-
ics causes changes through the creation of leads during
divergent flow and closing of open water or ridging of ice
during convergent flow. Thus, in MPM, the thickness and
compactness become material-point quantities and are nat-
urally advected as the material points move. With these
variables, it is possible to keep track of two ice categories,
thin and thick ice.
[40] A simple model [Hibler, 1979] for the evolution of

!h = hA and A consists of

_!h ¼ ) r % vð Þ!hþ Sh; _A ¼ ) r % vð ÞAþ SA: ð35Þ

These equations are simple continuity equations for !h and
A with thermodynamic source terms Sh and SA. In this
paper, we neglect thermodynamic changes and take Sh =
SA = 0.

4.2. Elastic-Decohesive Rheology

[41] Wewill also use a newly developed elastic-decohesive
model for the numerical simulations presented in section 6.
This model is described fully by Schreyer et al. [2006], so
only a summary is presented. The most salient feature of
this model is the explicit representation of lead formation.
The basic idea is that the ice is modeled as an isotropic,
elastic solid until failure begins. Failure begins when some
measure of the traction on a failure surface reaches a critical
value. During decohesive failure, the traction on the failure
surface is reduced from non-zero to zero. At complete
separation, there is no traction on the new free surface,
however, other stress components can still be nonzero.
There are three aspects of the model that need to be
examined: (1) the criterion to initiate failure, (2) the
determination of the failure direction (i.e., orientation of
the crack or lead), and (3) the mechanism for traction
reduction. These aspects are discussed briefly below.
[42] Given the current, extra Cauchy stress at a material

point, s, the criterion to initiate failure is expressed by a

failure function F(s). The elastic region in stress space is
given by the condition F < 0. Failure occurs when F = 0
and F > 0 is not allowed. This failure function is similar to
a yield function in plasticity theory. Figure 10 shows an
example of the failure function for the decohesion model
used in this work. Let n be a vector normal to the lead and t
be a vector tangent to the lead, so that n and t form a right-
handed coordinate system. The functional form of F is
expressed in terms of the normal and tangential compo-
nents of the traction on the failure surface, tn = n % s % n
and tt = t % s % n, and the tangential stress, stt = t %s % t.
The function F combines a brittle decohesion function with
a ductile failure function to allow for multiple modes of
failure including mixed modes [Schreyer et al., 2006], as
observed experimentally [Schulson, 2001].
[43] Specifically, the stress at which failure occurs is the

envelope in stress space defined by F(s) = maxnFn(s, n),
where Fn(s, n) is the failure function for a crack oriented
with a normal to its surface given by n

Fn ¼
tt

smtsf

% &2

þekBn ) 1

Bn ¼
tn
tnf

) fn 1) h)stti2

f 02c

 !

:

ð36Þ

In this expression, tnf is the tensile failure stress, f 0
c is the

failure stress in uniaxial compression, and tsf is the failure
stress in shear. The McCauley bracket, h%i indicates that the
tangential stress term only appears when stt is negative.
The shear magnification factor, sm, magnifies tsf when the
ice is under compression. The softening parameter, fn, is a
function of the normal component of the jump in
displacement, un and has a value of one at the initiation
of decohesion and decreases to zero as the lead opens.
Specifically, fn = h1 ) un/u0i. The lead is fully opened
when un, reaches a predetermined value, u0. In pure shear,
the only nonzero term in Fn is the tangential component of
traction, tt. By the definition of tsf and fn, failure initiates
when tt = tsf and fn = 1, giving the relation sm

2 (1 ) e)k) = 1
to define the parameter k.
[44] The orientation of the lead is determined as the n that

maximizes F. The softening parameter forces the traction on
the crack surface to zero as the crack opens (un increases).
Thus when the crack is fully open, there is no traction on the
surface. In this manner, the parameter fn accounts for the
reduction of traction as decohesion proceeds. At each
loading step we find the critical direction n for which F is
largest. As a lead with a particular orientation begins to
open, the softening makes it likely that this orientation will
remain the critical direction. However, it is possible that a
changing stress state will make another direction critical, in
which case a second lead can form intersecting the first. In
this manner, the model accommodates multiple leads at a
point, representing crack branching. If weak areas are
known to exist in the ice, the softening parameter fn can
be initialized with a value less than one to account for this
information. The numerical implementation of the elastic-
decohesive constitutive model is similar to to that for an
elastic-plastic constitutive model [Schreyer et al., 2006].

C02S90 SULSKY ET AL.: MATERIAL-POINT METHOD

7 of 18

C02S90



Note, the depth-integrated, extra stress N = sh, is used in
the momentum equation.

5. Other Particle-in-Cell Methods for Pack Ice

[45] Flato [1993] applied PIC technology to sea ice for
operational sea-ice forcasting using the traditional viscous-
plastic rheology. His primary concern was obtaining a more
accurate prediction of the ice edge. He used material points
(particles) with fixed volume to advect the ice thickness and
compactness. The gridwas a square C-grid. The x-component
of the velocity was located at the midpoint of vertical edges
and the y-component of velocity was located at the midpoint
of horizontal edges. The same interpolation scheme was
used as in MPM, so the C-grid velocity components were
averaged to obtain nodal values and then interpolated to the
material-point positions. The material-point trajectories
were computed using a mid-point rule in time. This rule
required two interpolations of the grid velocity to the
material points per time step, rather than just one in
MPM. These details aside, Flato made minimal use of the
material points. He basically used the Zhang and Hibler
[1997] approach to solve the momentum equation on the
grid and used the material points only to obtain values of
thickness and compactness on the grid for use in that
solution technique. Thus the principal difference between
Flato [1993] and the current work is the evaluation of the
constitutive equation on the grid rather than on the material
points. This change makes it easier to implement constitu-
tive models for solids with history-dependent, internal
variables.
[46] Zhang and Savage [1998] use essentially the same

method as Flato [1993], except their grid is a square,
staggered, B-grid. Thus the grid velocity is located at the
nodes as in MPM. Thickness and compactness are interpo-
lated to cell centers and a pseudo-time stepping algorithm
similar to Zhang and Hibler [1997] is used to solve the
momentum equation on the grid. A similar approach is used
by Sayed and Carrieres [1999], except the material points
are assigned volume and area, rather than thickness and
compactness. The particle area is used to obtain grid
compactness, and then grid compactness and particle
volume are used to determine grid ice thickness. A simple
ridging model is included as follows. If the ice area (from
the particles) divided by grid cell area is greater than one,
the total ice area is reset to unity. The reduction in area is
used to reduce the area of the particles in the cell by a
constant factor. The thickness is then increased in order to
maintain a constant volume. Sayed et al. [2002] modified
this ridging model to reduce the particle area according to
the particle thickness, essentially ridging the thinnest ice
first. These authors have also begun to apply thermody-
namics to the particles by interpolating thickness calcula-
tions on the grid to specific particle thicknesses.
[47] Savage [2002] andKubat et al. [2005] have continued

investigating thickness models for their PIC method. The
approach has been to use a large number of particles in the
simulation and to use the particle statistics to obtain a
thickness distribution for a cell on the grid. We propose a
different method where each material point has an associated
thickness distribution. This approach should reduce the
number of material points necessary in a simulation and cut

the computational cost, although it is yet to be implemented
and tested.

6. Examples

[48] The purpose of this section is to illustrate properties
of MPM by considering some idealized problems. First, we
examine the benefits of solving transport equations for sea
ice models using the Lagrangian description provided by the
material points. Next, we consider a wind-driven pack with
low strength, using both the viscous-plastic and elastic-
decohesive rheologies. This simulation shows the ability of
MPM to handle large deformations and different rheologies.

6.1. Convection Tests

[49] Sea ice models contain transport equations for quan-
tities such as the area and various ice-thickness categories.
For example, in standard runs of the Los Alamos sea ice
model, CICE, there are 46 such transported fields [Lipscomb
and Hunke, 2004]. Thus there is a need for an accurate and
efficient transport algorithm. Equations (35) with SA = Sh = 0
are generic transport equations for the compactness A and
volume !h = hA. These equations together imply an equation
for transport of the thickness, _h = 0. Thus thickness is
unchanged for a material point. Recall that the material time
derivative is

_h ¼ @h

@t
þ v % gradh ¼ 0: ð37Þ

The required discretization of the nonlinear convective term
v % grad h on an Eulerian grid leads to undesired results such
as numerical diffusion, oscillations near discontinuities or
dispersion errors. These errors are completely avoided in
MPM since each material point is assigned a thickness and
transport is accomplished by moving the material point.
[50] To illustrate transport in MPM, we consider three test

problems also solved in Lipscomb and Hunke [2004]. The
first is uniform advection of a square mesa. The second
problem is a rigid-body rotation of a cylinder, and the final
problem involves transport in a converging flow field.
These convection problems are all solved in MPM using a
uniform, square, background grid. Since the velocity field
should not be advected for these problems, we skip the first
step of MPM and do not map the material-point velocity to
the grid. Instead, the velocity is a prescribed function of the
current position and the grid values are set. The second step
of MPM, solution of the momentum equation, results in no
change to the velocity because there are no internal or
external forces acting on the ice. The third step of MPM
moves the material points in the given velocity field and
updates their properties. In this step, ordinary differential
equations in time are solved for A and !h, or for any other
material-point quantity. The fixed background grid is
retained for the entire calculation.
[51] For the first problem, the square grid is 32 ( 32 with

side length 4. Thus the entire computational domain lies
between 0 - x - 128 and 0 - y - 128. A square region of
ice is defined that has initial height, h = 1. The lower left
corner of the ice is located at (x, y) = (20, 20), with side
length 20. The velocity field is directed northeastward at a
45! angle to the x-axis, v = (1, 1). The model is stepped
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forward 72 units in time. The exact solution is the same
square of ice with height one, displaced 72 units in each of
the x and y directions. Since this velocity field is diver-
gence-free, the area, A, and the volume, !h, satisfy the same
equation as h, and will have similar solutions. Figure 1
shows the MPM solution. The initial configuration, shown
in Figure 1a, is discretized using four material points per
computational element. Figure 1b shows the final configu-
ration of the ice. Since bilinear shape functions are used to
map quantities between the grid and material points, linear
fields are mapped without error. Thus the velocity field in
which the material points move is exact. The time integra-
tion scheme computes the position of the material points
without error for this constant velocity field, and therefore
the exact solution to this problem is obtained using MPM
since the material points carry a thickness one. Figure 2
shows the solution carried by the material points projected
onto the background mesh. The only error in the mesh
representation comes at the edges of the ice where a
transition from a value of h = 1 to h = 0 must occur over
one mesh width. Figure 2 shows how this transition
becomes sharper as the mesh is refined. Eulerian, grid-
based solutions have several undesirable properties when
applied to this problem. The simplest, first-order, upwind
scheme is highly dissipative. The peak thickness decreases
over time and the width of the mesa increases. More
sophisticated schemes like MPDATA have less diffusion,
and therefore maintain a shaper profile. However, MPDATA
is not monotonicity preserving so the peak ice thickness
increases with time beyond the value one [Lipscomb and
Hunke, 2004]. The incremental remapping algorithm does
not create spurious peaks and has reduced diffusion com-
pared with the upwind scheme. However, even this method
rounds the corners of the square profile [Lipscomb and
Hunke, 2004]. The proficiency of the method also depends
on the mesh resolution. MPM results are independent of
mesh size, size of the ice, or its speed.
[52] The second test problem involves moving a cylinder

of ice in a velocity field given by a rigid-body rotation. This
velocity is spatially varying, but constant in time, and has

the form v(x, t) = we3 ( (x ) xc) where xc is the center of
rotation and w is the angular speed. We use the same
computational domain and grid as in the last problem, also
with 4 material points per element. The center of rotation is
taken to be the center of the domain, xc = (64, 64), and w =
1/64 so that the speed at the midpoints of the edges of the
domain is unity. A cylinder of ice with initial height h = 1
and radius 10 units, is placed in this domain with its center
at (106,64). The time step is chosen so that the cylinder
makes one revolution in 1000 steps. Again, the velocity
field is divergence free so the exact solution consists of the
cylinder transported without change in shape. As in the last
example, as long as the material point trajectories are
computed accurately, the thickness will be exactly correct.

Figure 1. (a) Original and (b) final configuration of material points making up a square region of ice on
a 32 ( 32 background grid. The ice has been transported in a uniform velocity field, v = (1, 1), to the
northeast.

Figure 2. Cross-section through elements at y = 100
showing the final thickness profile of a square region of ice,
as in Figure 1b. The thickness is interpolated onto the
background grid. Profiles are compared for three simula-
tions on mesh sizes with Dx = Dy = 4, Dx = Dy = 2 and
Dx = Dy = 1.
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Figure 3 shows the solution using MPM after one full
rotation of the cylinder on three different mesh sizes. The
finest mesh is the one used in Lipscomb and Hunke [2004]
to solve this problem. Again, Eulerian schemes either
spread the cylinder or produce unphysical peaks in the
thickness. The MPM solution gives the exact ice thickness.
As the mesh is refined, the cylinder geometry is better
represented.
[53] The third test problem involves transport in a con-

vergent flow field given by v(x, y) = ()x, 0). Because of the
nonzero divergence, A and !h evolve differently than h. This
example illustrates compatibility of the fields; namely if A
and !h are obtained numerically and then h = !h/A is
computed by division when A 6¼ 0, unphysical peaks in
h are not produced [Lipscomb and Hunke, 2004]. For
arbitrary initial conditions, A(x, y, 0) = A0(x, y), !h(x, y, 0) =
!h0(x, y), and h(x, y, 0) = h0(x, y), the solution at time t is

A x; y; tð Þ ¼ etA0 xet; yð Þ

!h x; y; tð Þ ¼ et!h0 xet; yð Þ

h x; y; tð Þ ¼ h xet; yð Þ:

ð38Þ

We solve this problem as in Lipscomb and Hunke [2004]
using a background mesh with size Dx = Dy = 0.05 and a
time step Dt = 0.025. The model is integrated in time for

40 steps, giving a final time, t = 1. The initial conditions,
and thus the solutions, are independent of y

A0 xð Þ ¼

1þ x for ) 1 - x - 0;

1 for 0 - x - 1;

0 otherwise:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

h0 xð Þ ¼
1 for jxj . 0:75;

0:2 otherwise:

8

>

<

>

:

ð39Þ

Since the solutions are independent of y, we use a
computational domain wider in the x direction than in the
y direction, given by )1.6 - x - 1.6 and 0 - y - 0.5. The
ice initially occupies )1.5 - x - 1.5, 0 - y - 0.5 and
contracts in the flow with time to about 1/3 of its initial
length in the x direction. The vertical edges are stress free
and the top and bottom boundaries are allowed to slip freely
tangentially. The computed solution is also independent of y
and we display the x-variation in the solution in Figure 4. If
the x-coordinates are scaled by et and A(x, t) and !h(x, t) are
multiplied by e)t, the analytical solution, equation (38),
shows that the solution at time t should be the same as the
initial conditions. Figure 4 compares the scaled numerical

Figure 3. Final configuration of a cylinder of ice after one full rotation through (a) 32 ( 32, (b) 64 ( 64
and (c) 128 ( 128 meshes. The material-point thickness is projected onto the background grid to
construct the surface.

Figure 4. Exact (solid line) and computed (dashed line and circles) scaled solutions at t = 1 for (a) area,
(b) volume and (c) thickness using a mesh size Dx = Dy = 0.05 and a time step Dt = 0.025.
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and analytical solutions at time t = 1. Note that the linear
velocity is interpolated to the material points exactly using
the bilinear shape functions. Also, derivatives of a linear
field are computed exactly in MPM. The time integration of
the material-point positions and the material-point values of
A and !h should also be exact, since the equations are linear.
The only errors are associated with projecting the the
computed material-point profiles onto the background grid.
The figure shows that these errors are small. Initially there
are 60 grid points of the background mesh in the x-direction
and 10 in the y-direction over the ice. At time t = 1, there are
only about 16 grid points covering the ice in the x-direction.
The low resolution of the final configuration is apparent,
especially in the plot of !h. For comparison, the solution
is shown computed with mesh sizes Dx = Dy = 0.025 and
Dx = Dy = 0.0125 in Figure 5. These meshes are able to
resolve the variations in !h and produce high fidelity solutions.

6.2. Wind-Driven Ice

[54] The purpose of this section is to demonstrate the full
MPM algorithm using the two constitutive models de-
scribed in section 4. Schulkes et al. [1998] identify a simple
test problem that seems to distinguish properties of various
viscous and viscous-plastic ice rheologies. In that work, a
simple rectangular region of ice is subjected to wind forcing
and ocean drag. Two adjacent boundaries of the rectangle
represent free surfaces and the other two boundaries repre-
sent shorelines. Along the shore, the ice has no normal
component of velocity but is allowed to slip freely, relative
to the shore, in the tangential direction. For the MPM

Figure 5. Exact (solid line) and computed (dashed line and circles) scaled solutions at t = 1 for (a) area,
(b) volume and (c) thickness using a mesh sizeDx =Dy = 0.025 and a time stepDt = 0.0125; and (d) area,
(e) volume and (f) thickness using a mesh size Dx = Dy = 0.0125 and a time step Dt = 0.00625.

Figure 6. The ice is a 25 km by 50 km region discretized
using 4 material points per element. The background grid
consists of 2.5 km square elements.
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calculation, a 25 km by 50 km region of ice is placed so that
the left and bottom ice boundaries coincide with the left and
bottom background-grid boundaries. The left and bottom
grid boundaries are identified with the straight shoreline.
The ice is initially at rest and has a thickness of 2 m. A plot
of the grid and ice region is shown in Figure 6. The
background grid has 2.5 km square elements The ice is
discretized using four material points per element. The
simulation is run for three days.
[55] To begin, we compare a simulation using MPM and

the viscous-plastic rheology to the same simulation in
Schulkes et al. [1998] using a finite element method. A
uniform surface wind stress is applied so that ta = (0, )Ca).
A linear drag relation is assumed between the base of the ice
and underlying water, tw =)rwCwv, with rw representing the
water density, andCw the water drag coefficient. The velocity

v is the ice velocity and the water velocity is assumed to be
zero. The initial area fraction is a uniform constant, A0 = 0.9
and the initial ice thickness is h0 = 2 m. These quantities
evolve according to equations (35) with zero thermodynamic
source terms SA = Sh = 0. Table 1 lists all of the parameters
used in the simulation. The time step, Dt, is chosen for
numerical stability of an explicit update so that, for all
elements, Dt < mWe/(2h), where We is the area of the
computational element. The critical time step is about 0.01 s.
[56] Figure 7 shows the computed mesh velocity in one-

day intervals. The dots in these plots represent the current
material-point positions. Notice that the material points
represent the geometry and a sharp edge can be maintained
even when computations are performed on a square back-
ground mesh. As expected, the ice is driven towards the
bottom solid boundary and flows out, away from the shore-
line along this boundary. The ice deforms substantially over
three days. The velocity and shape of the ice are quite similar
to the velocity and deformed shapes shown in Schulkes et al.
[1998], although it is impossible to make a quantitative
comparison because coordinates are not marked, and the
velocity scale is not given in the reference. The deformation
on the third day differs slightly, but detectably, from the
published results in Schulkes et al. [1998]. The MPM profile
on day three is a bit less sloped at the top and right
boundaries, and is thus a bit wider at the top. The maximum
velocity is about 0.11 m and occurs at the lower right corner.
[57] Figure 8a shows the compactness of the ice after the

first day. The ice is slightly more compact than the initial
value of 0.9 along the bottom boundary. The largest changes
in compactness occur along the upper left boundary, and the
bottom right boundary. There is about a 20% reduction from
0.9 to 0.7 in these regions. The upper left boundary is also a
region of divergence (Figure 8b). However, the predominant
deformation pattern is a region of shear shown in Figure 8c
that separates a low velocity region at the lower left corner
from a high velocity region above and to the right. These
fields also agree with data presented by Schulkes et al.
[1998].
[58] The next simulation changes the rheology from

viscous-plastic to elastic-decohesvie. In line with Schreyer
et al. [2006], we use the first set of material parameters

Table 1. Simulation Parameters

Name Symbol Value

Physical parameters
Ice density r 918 kg m)3

Air density ra 1.20 kg m)3

Air drag coefficient Ca 5 ( 10)2 kg m)1 s)2

Seawater density rw 1026 kg m)3

Seawater drag coefficient Cw 5 ( 10)4 m s)1

Initial conditions
Initial ice thickness h0 2 m
Initial ice compactness A0 0.9

Viscous-plastic parameters
Ice strength parameter P* 5 ( 103 kg m)1 s)2

Ice strength-compactness parameter C 15
Eccentricity of ellipse e 2
Viscosity cutoff zmax 2.5 ( 108 s

Decohesion parameters (set 1)
Young’s modulus E 1 MPa
Poisson’s ratio n 0.36
Failure strength in tension tnf 15.0 KPa
Failure strength in shear tsf 9.0 KPa
Decohesion length scale u0 100 m
Shear magnification factor sm 4
Compressive strength f 0

c 75 KPa

Figure 7. The mesh velocity and material-point positions shown after (a) 1 day, (b) 2 days, and (c) 3 days
using the viscous-plastic rheology.
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given in Table 1 for intact ice. The isotropic elastic
properties are characterized by the Young’s modulus and
Poisson’s ratio, and the remaining parameters govern the
decohesion. The time stepping is explicit, with the time step
controlled by the CFL condition, Dt <

ffiffiffiffiffiffi

We
p

/c, based on the
elastic wave speed, c '

ffiffiffiffiffiffiffiffi

E=r
p

, and the background element
area, We. For this problem, the time step is about Dt = 30 s.
It is worth noting that this time step is about four orders of
magnitude larger than the time step required for the stable,
explicit viscous-plastic simulation with the same mesh size.
[59] In this calculation the ice did not deform significantly

over the three days. The maximum stress in the ice is not
sufficient to initiate decohesion and the ice response to

forcing is purely elastic. After a brief transient period, the
motion is quasistatic and the momentum balance is primarily
a balance of the wind stress and the internal forces. An
approximate solution is obtained by assuming the ice veloc-
ity is zero and the only nonzero Cauchy stress component is
the yy-component, syy. In order to balance the wind stress,
syy is linear in y, zero at the top of the ice and )1250 Pa at
the bottom. The two-dimensional simulation with slip
boundary conditions shows this general behavior with an
approximately linear stress profile along the y-direction, as
shown in Figure 9.
[60] The calculation with the viscous-plastic constitutive

model shows more flow than the elastic model. The uniaxial

Figure 8. Material-point values of (a) compactness, A, (b) divergence, r % v, and (c) shear strain rate

invariant, g, after one day, using the viscous-plastic rheology; g2 = 1
2 tr(d̂ : d̂), d̂ =

1
2(rv + (rv)T)) 1

2(r % v)I.
The divergence and g are measured in units of 10)5 s)1.

Figure 9. Element values of the yy-component of the extra Cauchy stress using parameter set 1 from
Table 1 in the elastic-decohesive rheology.
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compressive strength, per unit thickness, based on this
elliptical yield curve in the viscous-plastic model is 2P* A
exp()C(1 ) A))/(1 + e2). For the parameters in Table 1, the
uniaxial compressive strength is about 400 Pa, which is
much smaller than the 75 KPa used in the elastic-decohesive
model. In the next MPM calculation, the parameters defin-
ing the failure function are reduced to more closely match
the viscous-plastic yield surface to the decohesion surface.
Specifically, tnf is reduced to 300 Pa, tsf = 180 Pa, and f 0c =
1500 Pa. The other parameters are unchanged. Figure 10
compares the decohesive failure function and the yield
function associated with the viscous-plastic model plotted
in principal stress space.
[61] To better resolve the large deformation, the back-

ground grid is reduced to a 1.25 km square mesh. The
calculation is explicit in time, with the time step determined
by the CFL condition, as before. Due to the finer mesh, the
time step is about Dt = 15 s. Figures 11a–11c show the

velocity vectors after one, two and three days, respectively,
for this calculation. The maximum velocity is about 0.14 m
and occurs at the lower right. At the bottom boundary there
is considerable deformation of the ice as the free surface
moves out to the right. The velocity is smaller in the lower
left corner of the domain than elsewhere. The region of
lower velocity is separated from the main flow by a zone of
high shear. These observations are qualitatively similar to
the results using the viscous-plastic rheology; however,
details of the shape are different. The decohesive model
shows more of a dip in the top surface and more of a bulge
on the right, compared with the viscous-plastic model.
Figures 12a and 12b show plots of the normal and tangential
components of the displacement jump, respectively. These
components are scaled by u0 = 100 m. Thus the largest
normal opening is about 600 m and occurs near the left side
of the domain. There is also a similarly large opening along
a crack roughly normal to the right side of the ice cover. The
tangential component of the displacement jump has a larger
maximum magnitude, almost 2 km. It is apparent that the
shear zone seen in the velocity field corresponds to a lead
where there is a large tangential displacement between the
sides of the lead. Thus two main leads appear in the
simulation. The first lead opens and is accompanied by
relatively large shear, and the second lead mainly opens
with relatively little shear. The opening of the second lead
does not seem to correspond to any feature of the viscous-
plastic simulation. The combination of fractures indicates
that a block of ice at the lower right breaks away, and the
region just above this block falls in a shear motion relative
to the comparatively stationary ice in the lower left corner of
the domain.

6.3. Discussion

[62] The first calculation where the ice cover remains
elastic provides a simple test of the numerical method since
an approximate analytical solution can be used for compar-
ison. The values of tnf, tsf and f0c used in this first
calculation did not result in significant deformation under
the prescribed wind stress. Experiments and kinematic
studies [Schreyer et al., 2006] indicate that the parameters

Figure 10. The dashed line is a viscous-plastic yield
surface and the solid line is a decohesive failure surface.
The axes show the values of principal stresses.

Figure 11. Ice velocity after (a) 1 day, (b) 2 days, and (c) 3 days plotted on the background grid, using
the reduced strength parameters in the elastic-decohesive rheology.
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used in this simulation are characteristic of an intact ice
cover. In contrast, there is significantly more deformation
seen in computations with a viscous-plastic model shown in
Schulkes et al. [1998]. In those simulations, the nominal
strength P* is low, and the initial compactness of 0.9
implies that the ice cover is not intact, but contains 10%
open water. The presence of water reduces the strength of
the intact ice cover. Note that this reduction occurs uni-
formly and isotropically throughout the domain.
[63] The second calculation, where the decohesion

parameters are reduced, is an isotropic approximation to
the case where the ice has multiple leads throughout that
reduce its strength. This is analogous to having a low
strength and a compactness less than one for the viscous-
plastic model. Under these conditions the extent of the
deformation using the elastic-decohesive model is similar
to that observed using a viscous-plastic model. Using the
elastic-decohesive model, the deformation is seen to result
from the formation of two principal leads. One lead opens
and shears while the failure mode for the second lead is
primarily an opening mode. This simulation provides an
example of the information that is available through the
decohesion model. It should be noted that once decohesion
initiates the ice is no longer an isotropic material. The
traction on the surface of a lead goes to zero as it opens,
but components of stress orthogonal to the lead can be
nonzero. Although not done in this paper, the area associ-
ated with the open lead can be calculated. Future studies can
add thermodynamic effects that would allow the exposed
water to freeze and grow new ice. Standard methods that
track ice thickness distributions can also be added to give a
more complete model of the ice cover.
[64] Instead of uniformly reducing the strength of the ice

cover when water is present, it is possible, using the elastic-
decohesive model, to initialize water concentrated in leads
that would provide directional weaknesses at various loca-
tions. The ice would have material parameters associated
with intact ice, as used in the first calculation. Using this
approach, the weakness in the ice would no longer be
isotropic and the response to wind loading would depend

on the orientation of the preexisting leads. One can imagine
two simple cases. In the first case, preexisting leads are
oriented parallel to the wind velocity, and in the second case
preexisting leads are oriented perpendicular to the wind
velocity. In the first case, the parallel leads would not evolve
under the loading and the ice would have a purely elastic
response as in the first calculation. There would be rather
little deformation. In the second case, the loading would
initially result in the leads closing, but once the leads closed
an elastic response similar to that shown in the first
calculation would occur and any significant deformation
of the ice would be due to the closing leads.

7. Conclusion

[65] The material-point method has been examined for
modeling sea-ice dynamics. The tests in section 6 show that
the transport of conserved quantities and material constants
can be performed accurately and efficiently using the
material points. The representation of ice by a collection
of unconnected Lagrangian material points also can handle
the large deformations observed in the Arctic ice pack and
can predict the location of the ice edge. MPM easily allows
the use of any solid (or fluid) model for ice in addition to the
traditional viscous-plastic models that are normally used in
numerical simulations of ice dynamics. Even models with
history dependence, such as elastoplasticity, can be
employed. As examples, a viscous-plastic model and an
elastic-decohesion model were used in this paper.
[66] The newly developed elastic-decohesion constitutive

equation is a natural approach for modeling material failure
and lead formation. The implementation in MPM through
the jump in displacement as an internal variable along with
weak compatibility provides a simple, efficient algorithm
that does not exhibit pathologies associated with distorted
finite elements or artificial anisotropies due to orientation
effects on the computational mesh. A simple mechanism for
the initiation of a new lead has been designed and tested as
part of this work. We also suggest an algorithm to track
thickness distributions and ice compactness that conforms

Figure 12. Material-point values of the (a) normal and (b) tangential components of the displacement
jump after 3 days using the reduced strength parameters in the elastic-decohesive rheology.
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with the information available through the decohesion
constitutive model.
[67] As has been noted in the literature, an explicit

solution of the viscous-plastic model is too costly for
practical basin-scale simulations. In practice, either an
implicit method, such as Zhang and Hibler [1997], or the
elastic-visccous-plastic model [Hunke, 2001] is used. In the
latter case, two-hour time steps are usual, with 120 sub-
cycles on a 5 km square mesh. Thus the time interval
between subcycles is about 1 min. The explicit time step for
the elastic-decohesion model is roughly the same as the
subcycle time used in the elastic-viscous-plastic model for
the same mesh size. Thus the cost of the elastic-decohesion
model is comparable to the elastic-viscous-plastic model.
Overall, the elastic-decohesion model shows promise as a
method for explicitly representing leads and their effect on
ice motion. The solution algorithm in MPM is cost effective
and is a plausible alternative to current basin-scale simula-
tion techniques.

Appendix A: Shape Functions

[68] Shape functions are used in the MPM to interpolate
between the background mesh and the material points, as
well as to construct approximations for the finite element
method on the background mesh. The background grid is
subdivided into elements, We, e = 1, 2, . . ., Ne. The nodes of
this mesh are xI(t), I = 1, . . ., Nn. If each element We has m
nodes then we can refer to the nodes belonging to an
individual element with the notation xI

e(t), I = 1, . . ., m.
For definiteness, consider a mesh made up of quadrilateral
elements in two-dimensions with four nodes, m = 4.
[69] The shape functions can be constructed through a

mapping from a master element. There are two domains
under consideration, the master element 5 and the element
in the current configuration We(t). There is a map connecting
these two domains, the map from the master element to the
current configuration, x = x(x, t). Figure A1 illustrates these
domains and map.
[70] For a four-node, quadrilateral mesh, the master

element is a square and the natural coordinates are denoted

by x = (x1, x2), 0 - x1 - 1, 0 - x2 - 1. The map between
the master element and a finite element is

xh x; tð Þ ¼ ½xe1 1) x1ð Þ þ xe2x1, 1) x2ð Þ
þ ½xe4 1) x1ð Þ þ xe3x1,x2

¼ xe1 1) x1ð Þ 1) x2ð Þ þ xe2x1 1) x2ð Þ
þ x3x1x2 þ xe4 1) x1ð Þx2

¼
X

4

I¼1

Ne
I xð ÞxeI tð Þ; on We tð Þ

ðA1Þ

where

Ne
1 xð Þ ¼ 1) x1ð Þ 1) x2ð Þ Ne

2 xð Þ ¼ x1 1) x2ð Þ

Ne
3 xð Þ ¼ x1x2 Ne

4 xð Þ ¼ 1) x1ð Þx2
ðA2Þ

These element shape functions have the property that nodes
get mapped to nodes and also, edges in the master element
get mapped to the corresponding edge in the finite element.
[71] The element shape functions NI

e can be assembled
into a global shape function. For node J the shape functions
from the surrounding elements contribute to the global
shape function NJ, as illustrated in Figure A2. Specifically,

the formula is NJ =
XNe

e¼1

X4

I¼1
NI
e LIJ

e , where the 4 ( Nn

matrix Le is the connectivity matrix. The connectivity
matrix has zeros and ones. The IJ entry is one if element
node number I = 1, 2, . . ., 4 corresponds to the global node,
J = 1, 2, . . ., Nn, and is zero otherwise. In the figure, global
node J corresponds to node one of element one, node two of
element two, etc. In terms of the global shape functions, the
motion is approximated by

xh x; tð Þ ¼
X

Nn

I¼1

xI tð ÞNI xð Þ: ðA3Þ

The map xh(x, t) is one-to-one and continuous in the spatial
variable.
[72] The integrals (12)–(15) are over the current con-

figuration W(t) but the shape function is defined in (A1)
as a function of the master element coordinates. We must

Figure A1. Quadrilateral element with mapping from the
master element indicated.

Figure A2. The global shape function associated with
node J is assembled from shape functions defined on the
surrounding elements.
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view NI as a function of the current configuration
through the composition of maps, NI(x, t) = NI(x(x, t)),
where x(x, t) is the inverse of (A1). Hence, the term
grad NI(x) is computed using the chain rule, grad NI(x) =
gradx NI(x)F5

)1(x, t), where F5(x, t) is the deformation
gradient for the map between the master element and the
current configuration, F5(x, t) = @x/@x. The components
of this deformation gradient are easy to compute over an
element from (A1), and then the 2 ( 2 matrix is easily
inverted to obtain F5

)1(x, t).
[73] Over a time step on a Lagrangian grid, the shape

function defined on the master element does not change
with time. This fact is significant since then a time deriv-
ative of the shape function is not required in the formulas
for velocity and acceleration (8)–(9). Also, the natural
coordinates for a material point in an element remain
constant over the Lagrangian time step. The natural coor-
dinates of a material point, xp = x(xp, t), are determined by
inverting (A1) at the beginning of a time step. These
coordinates are then used throughout the Lagrangian step
to evaluate the shape function NI(xp) = NI(x(xp, t)) = NI(xp).
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