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This paper presents a theoretical study of the effect of nonassociativity of the plastic flow rule on the crit-
ical plastic modulus for discontinuous bifurcation in an glastic-plastic material. Nonassociativity in both
the spherical and the deviatoric spaces are considered, with an emphasis on the effect of nonassociativity
in the deviatoric space. A particular form of nonassociativity in the deviatoric space is introduced, where
the projections of the plastic flow direction and the normal to the yield surface are assumed to have the
same length but the projection of plastic flow direction is allowed to lag that of the normal by an angle. It
is shown that even for the simple yield surface of von Mises, nonassociativity in the deviatoric space can
lead to a bifurcation for a load parameter significantly lower than the value predicted with an associated

© 2010 Published by Elsevier Ltd.

1. Introduction

Due to its close connection with the failure prediction of inelas-
tic materials and structures, the study of strain location and insta-
bility of /e\lastic—plastic materials has remained as an active
research topic in recent years (Rudnicki and Rice, 1975; Rice,
1976; Needleman and Tvergaard, 1982; Ottosen and Runesson,
1991a,b,c; Larsson et al., 1993; Neilsen and Schreyer, 1993; Schre-
yer and Neilsen, 1996a,b; Szabo, 2000; Schreyer, 2007). Researches
on material instability analysis date back to the classical work of
Hadamard (1903) on the stability of elastic motion. Hill (1958,
1962), Mandel (1966), Rudnicki and Rice (1975), Rice (1976) fol-
lowed that line and developed a criterion for localization in /e\las—
tic-plastic solids by assuming that the deformation localizes into
a planar band and that the jump in strain rate field across the band
satisfies the Maxwell kinematic compatibility conditions. The
criterion states that localization occurs when the lowest eigen-
value of the acoustic tensor, which depends on both the direction
and the tangent modulus of the material, reduces to zero (Rudnicki
and/gice, 1975; Rice, 1976). For the static problem, the existence of
a zero eigenvalue of the acoustic tensor corresponds to the loss of
ellipticity of the incremental governing differential equation,
which in turn causes nonuniqueness of the solution of the bound-
ary value problem (Kreiss and Lorenz, 1989; Belytschko et al.,
2000). For the dynamic problem, on the other hand, the existence
of a zero eigenvalue of the acoustic tensor corresponds to a zero

* Corresponding author. Tel.: +1 256 824 6893; fax: +1 256 824 6758.
E-mail address: zuo@eng.uah.edu (Q.H. Zuo).

0020-7683/$ - see front matter © 2010 Published by Elsevier Ltd.
doi:10.1016/j.ijsolstr.2010.02.015

plastic wave speed, which implies that any perturbation to the
problem will not vanish after any period of time. In the analysis,
it has been assumed that the materials on both sides of the band
have the same constitutive relation. The essential idea behind all
this work is that, for a static equilibrium or dynamic wave propa-
gation problem of /e\lastic—plastic material, if one of the wave
speeds of a dynamic perturbation is imaginary, then the problem
is ill-posed, or unstable in the sense of Hadamard.

Effects of various features in the constitutive description of the
materials (vertices in the yield surface, nonassociativity in the
spherical space of the plastic flow rule) on localization have also
been studied (Rudnicki and Rice, 1975; Rice, 1976; Pan and Rice,
1983; Needleman and Tvergaard, 1982). Those pioneering re-
searches show that the presence of the features in the constitutive
model, which can be regarded as deviations from a smooth yield
surface with associated flow rule, promotes the initiation of local-
ization, giving better comparisons with experimental data. Fur-
thermore, features such as the development of vertices in the
yield surface and nonassociativity in the spherical space are consis-
tent with the micromechanics of the material behavior. For exam-
ple, as discussed by Rice (1976) and by Pan and Rice (1983), for
crystalline materials vertices in the yield surface are a natural con-
sequence of the activation of multiple slip systems in a rate-inde-
pendent crystal, and for geological materials nonassociativity in
the spherical space of the flow rule is the result of the Coulomb
frictional nature of the yielding of a material.

In the current work, we study the effect of nonassociativity in
the deviatoric space on the initiation and orientation of strain
localization. Deviatoric nonassociativity has been considered by

Solids Struct. (2010), doi:10.1016/j.ijsolstr.2010.02.015
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several researchers in recent years (Loret, 1992; Ottosen and Run-
esson, 1991a,b,c; Szabo, 2000; Kobayashi, 1998, 2003, 2010). In
particular, Loret (1992) has studied the effect of deviatoric nonas-
sociativity on the possibility of flutter instability in geomaterials
and stated the validity of deviatoric associativity for such materials
is an open problem”. For ductile materials, Kobayashi and cowork-
ers (1998, 2003, 2010), in a study of localization of polycrystalline
A1070 aluminum, have used a plastic flow rule that is nonassoci-
ated in the deviatoric plane. Kobayashi (2010) attributes this non-
associativity to the elastoplastic coupling between the plastic
deformation and degradation of elastic stiffness of materials.
Desrues and Chambon (1989) have proposed a formulation in
which the plastic strain rate is given as a linear combination of
the current stress and the current stress rate, which can be inter-
preted as deviatoric nonassociativity if a smooth yield surface is
used. In addition to providing a different stress-strain response,
nonassociativity can have significant implications concerning the
orientation and point of initiation of a discontinuous bifurcation.
The analysis in this paper provides a detailed analysis for nonasso-
ciativity in the deviatoric space based on von Mises plasticity. Sur-
prisingly, perhaps, the degree of nonassociativity has little effect on
the orientation of the plane of localization but a very significant ef-
fect on the critical load level at which bifurcation initiates. Analo-
gous to the results of Rudnicki and Rice (1975) for nonassociativity
with respect to the spherical part of the stress tensor, current pre-
dictions show that nonassociativity in the deviatoric space can
move the initiation of the bifurcation from the softening region
well back into the hardening regime.

The paper proceeds as follows. After a brief review of the key
concepts and definitions needed for a discussion of instability
and ill-posedness associated with problems of inelastic materials,
Section 2 summaries the key results of a discontinuous bifurcation
analysis of elastic-plastic materials with nonassociated flow. Sec-
tion 3 introduces a special form of nonassociated plastic flow,
where it is assumed that the projections of the plastic strain rate
direction and the normal to the yield surface have the same length
in the deviatoric plane. With this assumption, the nonassociativity
in the deviatoric plane is completely characterized by the angle be-
tween the projections. The effect of the degree of nonassociativity
on the failure predictions (both the failure orientation and critical
plastic modulus) is studied in Section 4, where an example of the
von Mises yield surface for various loading paths is provided. The
result in this section indicates that nonassociativity in the devia-
toric plane has little effect on the orientation of the failure plane
but a large reduction in the stress at which bifurcation occurs is
possible. The paper ends with a summary and some concluding
remarks given in Section 5.

2. Summary of discontinuous bifurcation analysis
2.1. Initial comments and notation

Here we provide a synopsis of the theory to form the basis of
subsequent developments. The approach taken in this work to ad-
dress the bifurcation and instability problem of an inelastic mate-
rial is the dynamic perturbation analysis, which has been shown by
Rice (1976) to be equivalent to the classic bifurcation analysis of
Rudnicki and Rice (1975) based on the consideration of traction
continuity and Maxwell compatibility requirement. The use of dy-
namic perturbation allows us to address the bifurcation and stabil-
ity problem of materials by applying the techniques and results in
the mathematical literature on the well-posedness of initial-
boundary value problems. The same dynamic perturbation
approach has been successfully applied to the buckling and
instability analysis of elastic structures.

For the sake of compactness, the following direct notation for
vector and tensor operations (e.g. Gurtin, 1981; Schreyer and Neil-
sen, 1996a,b; Belytschko et al., 2000) will be used in most of the
paper:

i= 5Uei ® €j, I= (5ik5jl + 5il(3jk)ei e e e,

N —

U@ Vv=1Uye X e, A@BEAI'J‘BHE,'@C]@E,{@C[,

u-v = U, A - u = Ague;, u-A:AT~uzAkiukei,
A-B= A,~,<Bkje,- X €, T:e= T,-jk,skle,- ® e,
trA=i:A=A;., A:B=tr(A-B")=A;By,

where i is the second-order identity tensor; I, the fourth-order iden-
tity tensor; d;, the Kronecker delta; e;, an arbitrary orthonormal ba-
sis; u, v, vectors; A, B, symmetric, second-order tensors; and T, a
fourth-order tensor.

2.2. Dynamic perturbation

Consider the stability of a homogenous solution to an initial-
boundary value problem involving a rate-independent, ¢lastic-
plastic material. Let a dynamic perturbation, which is small com-
pared to the homogenous solution itself, be imposed on the solu-
tion. Then the stability of the solution can be determined by the
behavior of the perturbation with time: the solution is structural
unstable if the perturbation can grow with time (e.g., Troger and
Steindl, 1991; Seydel, 1994). Worse yet, if the perturbation can ap-
proach infinity in a finite time, then the problem is said to be ill-
posed (Kreiss and Lorenz, 1989). This is the classical Hadamard
instability. In this paper, we refer to structural instability as just
instability and the Hadamard instability as ill-posedness.

For the study of stability it is sufficient to consider only the per-
turbation with the following planar wave form (Rice, 1976):

v(r,t) = Re{voe*™r=<}, 1)

where v is the perturbation to the particle velocity, r the position
vector, t time, Vo the magnitude (vector) of the initial perturbation
(also the wave polarization directions, Auld, 1990), k wave number
(2=2m/ k, the wave length), n unit normal to the planar wave front

n-n = 1), and c the wave speed. It is seen from Eq. (1) that the ini-
tial perturbation has been assumed to be

v(r,0) = Re{voe"™*} = v, coskx, ()

where x =n -r is the coordinate along the normal to the planar
wave front. Since a perturbation can have an arbitrary wave length
and can be along any direction, we need to consider all values of
wave number k and all wave normal (n). In a numerical analysis
using finite elements, v(r,0) = v cos kx can be thought as the error
introduced by discretization. Mesh refinement then corresponds to
an increase in the wave number k (or decrease in the wave length).

It follows from Eq. (1) that the solution is stable if and only if
the wave speed c remains real for all wave numbers k and all direc-
tions n. The wave speed c is given by the following eigenvalue
problem (Rice, 1976; Ottosen and Runesson, 1991a,b,c; Larsson
et al., 1993; Schreyer and Neilsen, 1996a,b; Belytschko et al., 2000)

A(n) - vo = pc*vy, 3)
where A(n) is the acoustic tensor corresponding to the direction n:
An)=n-T-n, (4)
and T is the tangent modulus (tensor) of the material. For a rate-
independent /e\lastic—plastic solid, when the corotational terms in
the objective stress rate are neglected (Rice, 1976; Loret, 1992),

the Cauchy stress rate ¢ is related to the total strain rate (the sym-
metric part of the velocity gradient) by (e.g, Ottosen and Runesson,
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1991b,c; Loret, 1992; Schreyer and Neilsen, 1996a,b; Zyczkowski,
1998; Szabo, 2000)

6=T:=T:(VV). (5)

According to Loret (1992), in many practical problems, espe-
cially in civil engineering and geomechanical analyses, neglecting
the corotational terms in the objective stress rate is not a severe
restriction. Since the intended applications of the current analysis
are for geomaterials, we will not consider the effects of the corota-
tional terms in this work. For problems where the corotational
terms become important, the ordinary time rate of stress in the
Eq. (5) should be replaced by an objective stress rate (such as the
Jaumann rate, e.g., Rice, 1976).

It follows from Eqgs. (1) and (3) that the wave speeds c and the
polarization directions v, are related to the eigenvalues and eigen-
vectors of the acoustic tensor A(n). For an glastic-plastic material,
A(n) is a function of both the propagation direction and the plastic
deformation. It follows from Eq. (3) that when the acoustic tensor
becomes singular [det A(n) = 0] for some critical direction n¢, the
lowest wave speed c reduces to zero and perturbations along that
direction would not propagate, but are trapped in the material
causing instability. The condition for which A(n) is singular is
called the loss of ellipticity condition. Based on the Maxwell com-
patibility condition for a jump in the strain field, Rudnicki and Rice
(1975), Rice (1976) found that a discontinuous bifurcation in the
deformation of an elastic-plastic material occurs when the loss
of ellipticity condition is met. It was shown by Rice (1976) that
the loss of ellipticity condition also corresponds to the material
instability.

Upon further plastic deformation beyond the loss of ellipticity
condition, if the lowest eigenvalue of A(n‘) becomes negative
(/3 <0), the wave speed becomes imaginary: ¢ = =i /|43|/p. The
perturbation then becomes

v(r,t) = voRe{eMe ) = vq cos kxe V5Pt (6)

that is, the perturbation with a finite wave number k grows expo-
nentially with time (this corresponds to the structural instability
defined earlier); furthermore, even within a finite time t = ty < oo,
the perturbation grows unbounded as the wave number k increases.
As mentioned earlier, mesh refinement in a finite element analysis
introduces perturbations with increasing wave number k (or
decreasing wave length). Therefore, when the lowest eigenvalue
of A(n‘) becomes negative, the numerical solution starts to lose
convergence as the mesh is refined even for a finite time, as has
been observed in numerical simulations (e.g. Sluys, 1992). This is
the Hadamard instability and the problem is said to be ill-posed.

The loss of ellipticity condition, det A(n) = 0, is used in the pa-
per as the criterion for discontinuous bifurcation and initiation of
material failure. We now derive the expressions for the tangent
modulus T and the acoustic tensor A(n).

2.3. Tangent modulus

Consider the plastic deformation of the material. The stress rate
can be written as (e.g., Ottosen and Runesson, 1991a,b,c; Loret,
1992; Schreyer and Neilsen, 1996a,b; Szabo, 2000)

6=E: & =E:(§—#&), (7)

where &® and &P are, respectively, the elastic strain rate and plastic
strain rate, and E is the elasticity tensor, which is anisotropic in gen-
eral. Without loss of generality, the elasticity tensor E is assumed to
possess both minor and major symmetries &Eﬁk, = Ejii = Ejik = Eij;
recall that E can be assumed to possess major symmetries when
the elastic strain energy density function is defined for the
material).

It is assumed that for a rate-independent glastic—plastic mate-
rial, there exists a yield surfacef (s, q) = 0, inside of which the plas-
tic strain rate is zero (& = 0). The vector q contains hardening
variables. The evolution equations for the plastic deformation
and hardening are given by

& = Mo, q), (8)
q=—/h(s,q), ®

where / is a plasticity parameter determined by the consistency
condition f(s,q) = 0, which requires that the stress state remain
on the yield surface for plastic loading (f(e,q) =0 and 9,f :E: &=
f (6,q)/0c - E: & > 0). A specific plasticity model is defined when
the expressions f(s,q), M(s,q), and h(s,q) are provided for the
yield surface, the plastic flow rule, and the hardening function,
respectively. The tangent modulus (or tensor) for the material de-
fined in Eq. (5) can be written as (e.g., Simo and Hughes, 1998)

T=E-E=E-y(E:M)®(N:E), (10)
where N is the normal to the yield surface
8 K

N(o.q) = d,f = f(;aq). a1
In Eq. (10) the scalar  is defined by

= 1 _ 1 K=N:E:M (12)

"N:E:M+E, K+E,’ o
where E, is the plastic (hardening) modulus
Epzaqﬂh:%:q)»h. (13)

It follows from Eq. (10) that if the flow rule is associative,
M(e.,q) = N(,q), that is, if the plastic strain rate is along the normal
to the yield surface, then the tangent tensor T also has major sym-
metry (Tyu = Twy;). However, for a nonassociative flow rule,
M(e.q)#N(s,q); consequently, the tangent tensor T does not have
major symmetry even though the elasticity tensor E possesses both
minor and major symmetries. It is noted that the formulations pre-
sented so far are rather general, allowing for anisotropies in both
elasticity and plasticity and for the flow rule to be nonassociative.
Isotropic plasticity is implied when the yield function f(as,q) is gi-
ven in terms of stress invariants. Conversely, if the yield function
cannot be expressed in terms of stress invariants only, then the
plasticity part of the model is anisotropic.

2.4. Acoustic tensor

Substitution of the tangent tensor in Eq. (10) into Eq. (4) yields
the expression for the acoustic tensor of the g\lastic—plastic
material

Am)=n-T-n=A; - Ap, (14)

where Ag and Ap are respectively the acoustic tensors associated
with elastic and plasticity terms (e.g., Larsson et al., 1993)

Ar=n-E-n, (15a)
Ab=n-F’.-n=ybRa, (15Db)
where

b=n- (E : M), (b, = njEijklel)7 (163)
a= (N : E) -1, (aj = NmnEmnﬂnl = nlEﬂmnNmn). (16]3)

Since the elasticity tensor E is assumed to have major symmetry, Ag
is always symmetric. However, if the plastic flow rule is nonassoci-
ative, then Ap and hence A are not symmetric. For an associated
plastic flow rule, M(s,q) = N(s,q); consequently, b=a, and the
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acoustic tensor A becomes A(n) =n-En— Ja®a, which agrees
with the previous work on associated plasticity (e.g., Schreyer and
Neilsen, 1996a,b). On the other hand, if the plastic flow rule is non-
associative, M(s,q)#N(s,q), then ba and the acoustic tensor A is
not symmetric. The focus of this paper is on the materials for which
the plastic flow rule is nonassociative.

2.5. Plastic wave speeds

In this paper, we only consider glastic-plastic materials with
isotropic elasticity. For an isotropic material the elasticity tensor
defined in Eq. (7) can be written as (e.g., Schreyer and Zuo, 1995)

E—Ji®i+20l, (17)

where 2 and G are the Lame constants of the materials; i and I are,
respectively, the second- and fourth-order identity tensors defined
previously. With the limit of an isotropic elasticity, the eigenvalues
of the acoustic tensor defined in Eq. (14) can be solved analytically
(e.g., Ottosen and Runesson, 1991a,b,c; Brannon and Drugan, 1993;
Zuo, 1995). For completeness, the key results of these studies are
briefly summarized below.

Along an arbitrary propagation direction n, the eigenvalue of A
are (the details are given in, e.g., Ottosen and Runesson, 1991c):

53=G, (18a)

51,2:% Z+3G—l//(a~b)j:\/[;1+G+x//(a~b)]2—4(1+G)|//(a-n)(b~n) )
(18b)
The corresponding plastic wave speeds are\/G/p, \/01/p, and

Q/(Sz/p.

For applications where the elastic anisotropy cannot be ne-
glected, simple closed-form expressions for the eigenvalues of A,
similar to those given here, are not available for an arbitrary prop-
agation direction. However, it is still possible to make some esti-
mates on the eigenvalues, as reported in a recent work (Zuo, 2010).

2.6. Loss of ellipticity

The determinant of a tensor is just the products of its eigen-
values. Therefore

Det(A) = G515, = G[G(Z + 2G) — my], (19)
where
mm) = (1+2G)@-b)— (A+G)@-n)(b-n). (20)

Recall that loss of ellipticity occurs when Det(A) = 0. As stated ear-
lier, a discontinuous bifurcation occurs when the ellipticity condi-
tion is lost. It follows that the loss of ellipticity occurs when the
parameter y reaches a critical value
gy = G4 +26) 21)
m(m)
Recall from Eq. (12) that ¢ = m = ﬁ Therefore a bifurcation
occurs when the plastic modulus assumes the value
m(n)

EEm) =———F——-K. 22

p(m G(1+ 2G) (22)
An equivalent form of Eq. (22) was derived by Larsson et al. (1993)
by taking an alternative approach. For a given constitutive model, E
(hence 2 and G), M, and N are known, so a and b are functions of the
direction n. It follows from Eq. (22) that the critical modulus E, at
which bifurcation occurs also depends solely on n. For a given stress
state, there will be a critical orientation n¢ which yields the highest
value of E, (or the lowest value of a loading parameter). This critical
orientation n¢ corresponds to the normal to the plane of localization

and is defined here as the failure direction (normal to the failure
plane); the corresponding plastic modulus is called the critical
modulus.

For a nonassociated flow rule, since the acoustic tensor A is not
symmetric, another possible failure mode of the material is flutter
instability as indicated by Rice (1976), in addition to the discontin-
uous bifurcation discussed above. By flutter instability, it is meant
that the acoustic tensor admits a pair of complex eigenvalues with-
out going through the origin. Though flutter instability of flexible
structures under nonconservative loading, for example, bending
flutter of slender missile under an end rocket thrust (Langthjem
and Sugiyama, 1999), has been a major topic in aeroelasticity
(Fung, 1955), flutter instability in glastic-plastic materials has only
received limited amount of attention (An and Schaeffer, 1992; Lor-
et, 1992; Bigoni and Willis, 1994; Bigoni, 1995). The possibility of
flutter instability is not considered in this paper.

2.7. Closing comments

Ottosen and Runesson (1991c) and Zuo (1995) have found the
analytical expressions for the critical orientation n¢ under a rather
general form of nonassociativity (it is only required that M and N
share the same principal directions which are satisfied by almost
all practical constitutive models and which is assumed in the
remainder of the paper). For a specific constitutive equation, the
yield surface f(s,q) = 0 and plastic flow rule are known. The nor-
mal to the yield surface, N, and the direction of the plastic strain
rate, M, can be found for given stress state ¢ and the hardening
function q. Then the critical orientation n¢ and the failure direction
and the critical modulus can be calculated using the formulas in
Ottosen and Runesson (1991c) and Zuo (1995). The formulas given
in Zuo (1995) are used to generate the numerical results presented
in Section 4.

In their general formulations for the plastic wave speeds and for
the discontinuous bifurcation analysis, Ottosen and Runesson
(1991a,b,c) have considered nonassociativity in both the spherical
and deviatoric spaces. However, in the material models used for
their numerical examples they have limited nonassociativity to
the spherical space only. In the following (Sections 3 and 4), we
will focus on nonassociativity in the deviatoric space and provide
a detailed analysis of simple von Mises model with deviatoric
nonassociativity.

There are materials for which the yield surfaces are available, but
the plastic flow direction is not well defined. In what follows, we as-
sume that N is known, and M is related to N through some parame-
ters defined to represent various degrees of nonassociativity.

3. Representation of the nonassociativity
3.1. Initial comments

In order to present the final results in as simple a manner as pos-
sible, we introduce coordinates in the deviatoric plane. We first con-
sider general nonassociativity where the plastic flow rule is allowed
to be nonassociative in both the spherical and the deviatoric spaces.
We then focus on a restricted case of nonassociativity in which the
plastic flow direction is assumed to lag the normal of the yield sur-
face by an angle in the deviatoric plane. With this assumption, the
effect of nonassociativity in the deviatoric plane can be conveniently
presented in terms of a single angle parameter.

3.2. General nonassociativity
Suppose the plastic flow rule is nonassociative (M=N). Let the

plastic flow direction M and the normal to the yield surface N be
decomposed into the spherical and deviatoric parts
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1

M = _ (trM)i + M‘, (23a)

— W

N =3 (trN)i+ N¢,
where M? and N? are the deviatoric parts of M and N, respectively. It
is usually assumed in the literature on nonassociated plasticity that
trM=trN but M? = N% In other words, the nonassociativity is only
allowed in the spherical space, but not in the deviatoric one. Here
we extend the nonassociativity into the deviatoric space as well.
Since the spherical part a tensor is completely determined by its
trace, only a scalar is needed to characterize the nonassociativity
in the spherical space

trM = ntrN. (24)

(23b)

In general, five parameters are needed to represent a deviatoric part
of a tensor. The concept of the Pi (or deviatoric) plane for stress ten-
sor was introduced and has been conveniently used in the study of
yield surfaces (Hill, 1950). The Pi plane is defined as the plane that
forms equal angles with the three principal directions of the stress
tensor.

Since we have assumed that M and N share the same principal
directions, it follows that the Pi planes for M and N are the same
(Fig. 1a). Let the principal directions of M and N be e; (i = 1,2, 3).
Since the projections of e; on the Pi plane, €; (i = 1,2,3), form an-
gles of 120 degrees with each other, as shown in Fig. 1b, it is more
convenient to introduce an orthonormal base, q,, q,, and q;, with
q; normal to the Pi plane and q, in the &, direction, as shown in
Fig. 1b (the details of the expressions for the q; are given in Zuo,
1995).

e 4 1
3 Hlerere)
N]
€,
l’_-"'h.‘
A D!
\ S
X &
N s »
~ N

Pi Plane
(a)
a4
€y . d
M
o
0
30° q
&)

€3

(b)

Fig. 1. Representation of nonassociativity: (a) orientation of the Pi plane for M and
N, (b) projections of M and N in the Pi plane.

The coordinates of N in its Pi plane, ii; and 71, are related to its
principal values, Ny, N,, and N3 through the following equations
(Hill, 1950):

iy = %(Nl Ny, (25a)
iy — \/lg(zzv2 ~ Ny = N). (25b)

Alternatively, the projection of N in the Pi plane can be represented
by its length in the plane and the angle that the projection makes
with the horizontal axis (the Lode angle, Hill, 1950):

fi= /i + 2
2
= VNN = \/§ (N7 N + N3 = NiNa = NN —N3N1>,
(26a)

0 =tan! T_l_z — tan~! M

iy V3(N; — N3) (26b)

3.3. Restricted form of deviatoric nonassociativity

For the sake of simplicity, it is further assumed that the length
of the projection of M is the same as that of N in the Pi plane, that
is,

=i, (27)

Now the only parameter left to characterize the deviatoric nonasso-
ciativity is the angle between M and N in the Pi plane. Let « denote
the angle by which M lags N (Fig. 1b and Fig. 2). Then, the following
expression for the eigenvalues of M can be found in terms of those
of N through two parameters n and o, which, respectively, charac-
terize the degree of nonassociativity in the spherical and the devia-
toric spaces (the details are given in Zuo, 1995):

M 2cosocN1—<coso<—\/§sinoc>N2—(cosa+\/§sinu)N3

1

M, 5 = % 2cos N, — (cosoc— \/§sinoc>N3 - (cosot+ \/§sinac)N1

Ms 2cosoN; — (cosoc— \/§sina>N1 - (cosa+ \/§sinoc)Nz

1
_,_nw 1\, (28)
1
q;
:Nd=3sd
20
M
0
qQ

\

Yield Surface

Fig. 2. Plastic flow direction, M, and normal to the von Mises yield surface, N, in the
Pi plane.
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The principal directions of M have been assumed to be the same as
those of N: e;, e,, and es; consequently, M is completely deter-
mined once N is known and the two parameters n and o are
specified:

3
M=) Mewe. (29)
i=1

Consider the special case where oo = 0, but n#1. In this case, Eq. (28)
reduces to

M, . 2Ny — N, — N3 Ny Ny 5N
M, =3 2N, — N3 — N, +”f
M3 2N; —N; — N,
Ni
=< N +nw (30)
N

That is, trM=trN but M® = N, and deviatoric associativity is recov-
ered. Furthermore, if « = 0 and n = 1 then

M, N
M; p =¢ Ny 5, (31)
M3 N3

or, M = N, and the associated flow rule is recovered.

4. Application to Mises plasticity with deviatoric
nonassociativity

4.1. Initial comments

Since much research has been done on the bifurcation analysis
of the elastic-plastic materials described by the plastic flow rules
which are nonassociated in the spherical space but retaining asso-
ciativity in the deviatoric space (e.g., Rudnicki and Rice, 1975; Peric
et al.,, 1992; Larsson et al., 1993), here, the focus is on the influence
of nonassociativity in the deviatoric space. Of particular interest is
the influence of the nonassociativity parameter o on the failure an-
gle and the critical plastic modulus, obtained by letting n = 1 and
a+#0. As an example, a bifurcation analysis is performed for a mate-

rial described by the von Mises yield surface, but with a nonasso-

ciative flow rule in the deviatoric space.

4.2. Formulation

The von Mises yield surface is defined by

12
f(e,8) =G —H(&") = Ead : ad] — H(&), (32)
where & is the equivalent plastic strain defined by
) 2 ‘ ‘ 2. 1/2
&= {g(er’) L (&P) ] = /1[§Md : Md} , (33)
and H(&P) is the strain-hardening function. The normal to the yield
surface is

9 34 i (36 367\ 3\
N=%"25 NN —(i?ﬁ)—(i) : (34

Since N is proportional to ¢?, the principal directions and the Pi
plane for N and M are the same as those for the stress tensor, o.
In this case, every angle 6 represents a stress path. For example,
0 =0 corresponds to pure shear; 6 = —30° triaxial tension and
0 = 30° triaxial tension, as shown in Fig. 1b.

A bifurcation analysis for associated flow rule subjected to the
following standard loading paths have been performed by Schreyer
and Neilsen (1996a,b). Here, we examine the effect of the degree of
nonassociativity on the bifurcation prediction.

4.3. Restriction to plane stress

Consider the case of plane stress in the e;—e, plane. Let
(01,02,0) be the principal stresses. Then the principal values of
the stress deviator, ¢%, are (201 — 03,20, — 01, —01 — 03)/3. It fol-
lows from Egs. (32) and (34) that ¢ = (62 + 62 — 010>) and

1
N= E[(ZG‘ —0y)e1 Qe + (20, —01)e; Q€ — (01 + 02)e; ® es].

(35)
The principal values of N are
N; 1 201 — 0,
N R st | .

The influence of the degree of nonassociativity, o (as defined in
Fig. 1b and Fig. 2), on the failure angles and the critical moduli for
special cases are given next. In all examples, a value of 1/4 is se-
lected for the Poisson’s ratio of the material.

(i) Uniaxial stress

Let 01 = 0 > 0, 0, = 0, a loading path defined as uniaxial ten-
sion. The normal to the failure plane and the critical modulus at
which bifurcation first occurs are found. The axisymmetry of the
problem makes the critical direction n (normal to the failure plane)
nonunique in the e,—e; plane. Fig. 3a shows a plot of the angle, 8,

44.0
430 |- (a)
@ 420 |-
41.0 -
40.0 . 1 . 1 . 1 i
0.0 10.0 20.0 30.0 40.0
Degree of nonassociativity, o
0.2
0.0
O
o~
.
(=%
W o2
—0.4 A ] . 1 A ] ;
0.0 10.0 20.0 30.0 40.0

Degree of nonassociativity, o

Fig. 3. Influence of degree of nonassociativity on the failure of a rod subjected to
uniaxial tension (a) the failure angle, (b) the critical modulus.
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made by n with respect to the direction of the applied stress, as a
function of the degree of nonassociativity o. The plot starts with
B =40° for an associated flow rule (o = 0), the result first given
by Rudnicki and Rice (1975), and increases slowly with «. For a
fairly large degree of nonassociativity (o = 40°), the failure angle
B only increases about 3 degrees, which is less than 8% of the ori-
ginal angle corresponding to o = 0. Fig. 3b plots the non-dimen-
sional critical modulus (E,/2G) with «, the degree of
nonassociativity. The modulus starts at about —0.33 for an associ-
ated flow rule (again, the result first given by Rudnicki and Rice),
which means bifurcation occurs only after the material enters
the softening regime. The critical modulus increases with the de-
gree of nonassociativity. For & < 30°, the modulus us still negative.
The critical modulus reaches zero at o = 30°, which means that the
first bifurcation coincides with the limit point for that particular
degree of nonassociativity. For a > 30°, the critical modulus be-
comes positive which implies that with a large enough angle of
nonassociativity, this material can bifurcate when it is still
strain-hardening. Fig. 3a and b show that for o = 40°, although
the failure angle increases less than 8% from the value for an asso-
ciated flow rule, the critical modulus changes the sign and bifurca-
tion occurs much sooner than if an associated flow rule is used.

(ii) Pure shear
Let 01 = 0 > 0, 0, = —a, describe a loading path that results in
pure shear of the material (Fig. 4). The failure direction is in the
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49.0
480 | (a)
@ 47.0 |
46.0 -
45.0 N 1 L 1 L 1 N
0.0 10.0 20.0 30.0 40.0
Degree of nonassociativity, a
0.015
0.010
(@]
o~ L
P
a
L
0.005
0.000 1 . 1 N ] N

e;—e; plane. Fig. 5a shows that the failure angle starts with
B =45 for an associated flow rule, and increases monotonically
with the degree of nonassociativity. Similarly to the case of uniax-
ial stress, the failure angle g here is not very sensitive to « (it only
increase about 3.3° for a change in o of 40°). Fig. 5b shows that the
effect of o on the non-dimensional critical plastic modulus (E,/2G).
The critical modulus starts at zero for o = 0, meaning that if the
flow rule for the material is associated, then the material bifurcates
at the peak in the stress-strain curve. With an increase in o, the va-
lue of E, /2G becomes positive, meaning the plate will bifurcate be-
fore the peak. For o = 40°, although the failure angle only increases
less than 8%, the critical modulus reaches 2% of the elastic shear
modulus, which could move the bifurcation point into the begin-
ning of the strain-hardening regime. Both uniaxial stress and pure
shear loading paths show that while the failure angles do not
change much with the introduction of the nonassociativity, the
critical plastic moduli (or failure loads) do show strong depen-
dence on «. Earlier bifurcation will be predicted if an associated
flow rule is replaced by a nonassociated one.

/

Fig. 4. A state of pure shear.

0.0 10.0 20.0 30.0 40.0
Degree of nonassociativity, o

Fig. 5. Influence of degree of nonassociativity on the failure of material subjected to
pure shear (a) the failure angle, (b) the critical modulus.

(iii) Equal biaxial tension

Let 0, = 0, = . Since both the yield surface and the plastic
flow rule under consideration are insensitive to hydrostatic pres-
sure, the result is identical to that of uniaxial stress with the excep-
tion that the failure angle 8 is now with respect to the e; direction.

(iv) Unequal biaxial tension

Let 61 = 20, 0, = 0, a stress state often encountered in a cylin-
drical pressure vessel with e; along the circumferential (hoop)
direction and e, along the axis of the cylinder. The result is identi-
cal to that of pure shear with the exception that now the failure
direction lies in the e;—e;3; plane as opposed to the e;—e, plane
for the pure shear case (ii) discussed earlier.

(v) Triaxial compression

Another common test is that of triaxial compression, which is
not a case of plane stress, whereby a longitudinal compressive
stress is superposed on a state of uniform pressure. However, since
N and M are insensitive to hydrostatic pressure for the model con-
sidered here, the result is identical to that for uniaxial stress.

4.4. Discussion of results

To illustrate the important implications of this section, consider
the sketch of a generic stress—strain curve in Fig. 6. For uniaxial ten-
sion (Fig. 6a), the poin/t\of bifurcation for an associated law occurs
well into the softening regime as indicated by A. For o = 40°, the
bifurcation point is denoted as A, while the materials is still in the
strain-hardening. Similar points for pure shear (Fig. 6b) are denoted
by B (the peak) and B', respectively. In both cases, with « = 40° bifur-
cation points (A’ and B') move into the hardening regime.
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hardening
(E.>0)

softening
(2:<0)

Q

A
A

H(0) |---
Elast.

(a)

hardening
(£:>0) g

Q

softening

B £.=0 (E: <0)

H(0)

Elast.

(b)

Fig. 6. Sketch of a generic stress-strain curve illustrating the effect of deviatoric
nonassociativity on the onset of bifurcation.

These same trends hold for nonassociativity in the spherical
space (Rudnicki and Rice, 1975). However, there are some situations
where deviatoric nonassociativity may be the dominant aspect, and,
therefore, it is possible to have a bifurcation much earlier than pre-
viously thought. More importantly, deviatoric nonassociativity may
be physically relevant for a number of significant cases.

5. Summary and conclusions

The discontinuous bifurcation analysis based on the loss of
ellipticity condition is performed on elastic—plastic materials
where the flow rule can be nonassociated in both the spherical
and the deviatoric spaces. A particular form of nonassociativity in
the deviatoric space is introduced, where the projections of the
plastic flow direction (M) and the normal to the yield surface (N)
are assumed to have the same length but the projection of M lags
that of N by an angle. With this assumption, nonassociativity in the
deviatoric space is completely characterized by the angle.

It is shown that even for the simple yield surface of von Mises,
nonassociativity in the deviatoric space can lead to a bifurcation for
a load parameter that is significantly lower than the value pre-
dicted with an associated flow rule. Furthermore, the degree of
nonassociativity in the deviatoric space seems to have only a mod-
est effect on the orientation of the bifurcation (failure) plane.

In our numerical calculations, we have only considered the case
where the projection of M lags that of N (« > 0). For a non-radial
loading path, depending on the direction of the stress increment
with respective to the normal to the yield surface (N), the projec-
tion of M may lead N, rather than lags it. We expect similar results
(i.e., lowering the critical load parameter) hold for o < 0, but that
remains to be verified.

6. Uncited reference

Runesson et al. (1991).
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