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In a previous paper, an elastic-decohesive model was developed for sea ice. Unlike previous models,
orientation and displacement discontinuity associated with lead opening are specifically predicted. However,
over the course of a season a specific lead may open and close several times with significant implications
related to ice production and heat flux. The focus of this paper is to indicate, in a generic manner, how the
formation of new ice by freezing within a lead and the recovery of tensile strength by the freezing of ridges can
be accommodated easily within the decohesive structure. A sample simulation is provided to show the
implications of these additional terms on ice production over several cycles of lead opening and closing.
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1. Introduction

In the winter, sea ice acts to insulate the warmer ocean water from
the colder atmosphere. Especially when constrained by the shore, the
ice cover continuously breaks up and refreezes when forced by
oceanic currents or atmospheric winds. The leads, or cracks in the ice,
can be kilometers wide and up to hundreds of kilometers long. The
importance of leads in modeling sea ice is well known. New ice is
formed primarily in leads where open water, exposed to the cold
atmosphere, freezes quickly. As leads close, ice piles up into pressure
ridges, or is forced down into keels, creating thicker ice. In addition,
the greater albedo of the ice compared to the water results in more
reflected solar radiation and cooler ice, sea, and air surface
temperature. Climate simulations strive to capture these important
effects of leads.

Current sea-ice models have three major components. The first
component models the ice dynamics, governed by the momentum
equation. The forces acting on the ice are drag from the wind and
ocean, Coriolis forces, gravitational effects from the sea surface tilt,
and internal ice forces that follow a constitutive model. The second
component models ice thermodynamics, and is governed by a heat
equation describing the temperature of the ice and snow through the
thickness. The third component is an ice thickness distribution. The
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ice thickness distribution is a subgrid parameterization of the spatial
heterogeneity of the ice thickness and accounts for redistribution of
ice due to lead opening and closing. Thus, the constitutive model is
one piece of a comprehensive ice model which accounts for the
internal forces in the ice. These forces are responsible for the observed
deviation in ice motion from free drift and, as noted, are especially
important in the winter.

To account for the presence of leads, a decohesive constitutive
model was developed for predicting the initiation and opening of
leads in the Arctic ice (Schreyer et al., 2006). Once the existence of
leads is taken into account, the remaining motion of the ice in the
central Arctic ice pack has small deformations and is appropriately
described as elastic. The phrase Oelastic-decohesiveO is used to
describe this model of the dual continuum-discontinuum aspects of
the behavior of Arctic ice. Several features were designed into the
model. First, the model was constructed to predict the observed
features of transition from brittle failure under tensile to moderate
values of compression, to mixed modes of failure under larger
compression, and to a plastic-like faulting under large confinement
(Schulson, 2004). The various modes of failure occur in the model,
depending on the stress state in the material. In other words, the
predicted mode of failure depends on the state of stress, a feature not
contained in most other models. Where the transitions occur in stress
space depends on the material parameters and can be adjusted based
on empirical data. Second, the model can handle multiple cracks at a
point, and therefore can predict crack branching. Third, the numerical
implementation of the model is accomplished similarly to standard
plasticity models. A final aspect of the model is the ability to build in
initial planes of weakness that may be due to pre-existing, partially
frozen leads, for example. Initial tests of the model on a regional
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simulation of the Beaufort Sea show that the model is able to capture
the qualitative and statistical behavior of localized deformation seen
in satellite observations (Sulsky and Peterson, in press). This
constitutive model is described in detail in Section 2.

Preliminary tests on basin-scale simulations of the Arctic, over a
season or more, indicate that more opening and fracture of the ice is
predicted than that which is calculated by processing satellite
images. Sulsky and Peterson (in press) also note more fractures in
their regional model. We postulate that a primary reason for these
results is that in the current model, leads can close mechanically but
their strength is not adjusted if they close and refreeze. This paper
introduces modifications to the elastic-decohesive model to account
for this aspect of ice behavior. In the next section of the paper, we
review the elastic-decohesive model to date. In Section 3, we address
the new model features and then in Section 4 we illustrate, in numeric
examples, the implication of these features. Finally, in Section 5 we
give concluding remarks.

2. The elastic-decohesive model

The ice is modeled as elastic until a stress threshold is reached, in
which case the ice can fail and form a lead. For the purposes of
modeling sea ice, a two-dimensional, plane-stress description of
failure has been formulated assuming cracks occur in the plane. The
envelope of failure points in stress space is described by a failure
function, F,(0, n) where F,<0 implies no failure, F,=0 implies
evolving failure and F,,>0 is not allowed. This function is analogous to
a plastic yield function in plasticity theories. The subscript n on F,
indicates a separate failure function for each potential crack
orientation, and F, depends on the stress o, and the unit normal n
to the crack surface. To consider all possible failure directions, a
general failure function F is defined as F=max,F,,.

Many classical failure criteria, such as the Rankine, Tresca and
Mohr-Coulomb criteria, are expressed in terms of the traction on the
failure surface (i.e., crack surface). If an associative flow rule is used,
then the Rankine condition results in an opening mode and can be
considered to model brittle failure. With associativity, the Tresca
criterion results in a shear mode and can be considered as a model for
ductile failure. When other features are added, both opening and
shear can occur, resulting in mixed-mode failure. The elastic-
decohesion model extends these classic criteria by adding two new
features: (1) a modification of the Rankine criterion for brittle failure
to allow for the possibility that a compressive stress component may
lower the resistance of the material to brittle failure, and (2) a
transition from brittle to ductile failure within one criterion. If a local
basis consisting of n, the unit normal to the crack, and t, a unit vector
tangent to the crack, is introduced, then the traction on the failure
surface has normal component 7,=n-o-n and tangential compo-
nent 7,=t-o-n. The remaining component of stress in this basis
(within the plane of the ice sheet) is oy=t-o-t. The brittle
decohesion function is defined as follows
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Material parameters are 7,y the tensile or normal failure stress and
f¢ which denotes the failure stress in uniaxial compression. For the
moment, take f, = 1. The new criterion for brittle failure is B, = 0. The
Macaulay bracket is used to activate the normal component of stress
oy only if it is negative, If the term involving o, were absent then
failure would occur when the normal traction on the surface reaches
the threshold 7, which is the Rankine criterion. With the o term,
this criterion is analogous to the Rankine criterion in that failure
occurs in the direction of maximum principal stress, but the critical
value of the normal traction component is potentially reduced when

Oy is compressive. The criterion allows for failure even if 7, is
negative, and it is this aspect of the model that allows compressive
brittle failure.

Next, brittle and ductile aspects of failure are included by defining
the failure function as

PR
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To gain some understanding of this form for the failure function,
examine some special cases. Suppose the normal component of
traction is a large negative value (7,— —) and the other normal
component of stress is zero (0, =0) so that B,— — then Eq. (2)
reduces to 72 =72, for F,=0. Therefore, the additional material
parameter, Ty, iS the failure stress in shear when the normal
component of traction is large and compressive. Let the failure stress
in shear for an unconfined body be denoted by 7y Under the
conditions 7,=0, 0;=0, and f,=1, we have B,=—1. For these
conditions, we expect pure shear failure and want F,=0 when
¢ =T% So we choose k such that e™*=1— (7% /r%,). Notice that if
Tnf = and f.—« then the criterion F=0 becomes the shear
criterion of Tresca. Fig. 1 shows a sketch of the decohesion failure
envelope in stress space. This function is analogous to a yield function
in plasticity theories. The solid line represents the failure envelope
F=0. Along this solid line, the black arrows indicate the direction of
maximum principal stress and the gray arrows indicate the normal to
the crack surface. Under brittle failure the normal to the crack is in the
direction of maximum principal stress. Under ductile and mixed-
mode failure the normal to the crack is at an angle to the direction of
maximum principal stress, with two orientations of the crack possible.
Of the two, the orientation that preserves the sense of local rotation is
chosen. The transition from brittle to ductile failure occurs at a point
along the failure envelope determined by the ratio of 7 to 7y; and
thus is a material property.

This failure envelope describes the model for lead initiation in the
ice. Once the beginning of a crack has been identified, the evolution of
the lead is required. The term decohesion or cohesive crack model
refers to the reduction of the traction on the crack as the crack opens.
Decohesion is included in the model by introducing a softening
parameter, analogous to equivalent plastic strain in plasticity models,
that drives the traction to zero as a crack continues to open. A
dimensionless parameter, f,, in Eq. (1), starts with a value unity for
undamaged material and reduces to zero as u,, the normal component
of the jump in displacement, increases from zero. The crack is
considered completely open when u,, reaches the material-dependent
value ug, at which point the traction on the crack surface has been
reduced to zero and a free surface is thus formed. Accordingly, we set

fo = —u, [ ug). 3)

The displacement discontinuity evolves according to a normal flow
rule

OF . . OF
U = wa—Tt7 (4)

where a superposed dot indicates a time derivative. The displacement
discontinuity is regularized into an effective decohesion strain,
analogous to plastic strain,

.d . .d o .d

ém = Uy /L e = U /2L ey =0 (5)
where L is a measure of the cell size in numerical simulations. (The
value of L is chosen so that the physically correct energy is dissipated
during fracture.) The stress is a function of the elastic strain e —eq.
Thus, as a specimen of ice is loaded, we typically begin with F<0; the
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Fig. 1. Failure envelope in principal stress space for the elastic-decohesive model.

stress is inside the failure envelope. We assume each loading step is
elastic, giving a trial stress state. If the trial stress is outside the failure
envelope (F>0) then a jump in displacement is introduced to bring F
back to zero. This procedure is identical to standard solution
procedures for plasticity. The result is that as a crack opens we
predict the amount of both the normal and tangential opening. Once a
free surface has formed, the jump in displacement can continue to
grow if the crack surfaces continue to separate, and the traction on the
surface remains zero.

At each loading step we find the critical direction n for which F is
largest. As a crack with a particular orientation begins to open, the
softening makes it likely that this orientation will remain the critical
direction. However, it is possible that a changing stress state will make
another direction critical, in which case a second crack can form
intersecting the first. In this manner, the model accommodates
multiple cracks at a point. If weak areas are known to exist in the ice,
the softening parameter f,, can be initialized with a value less than one
to account for this information.

3. Refreezing

Our previous work, outlined in the last section, focuses on the
prediction of lead formation. The model indicates the level of stress
needed to form a lead. In addition, the model provides the orientation
of the lead and tracks the amount of lead opening in terms of both the
normal and tangential components of displacement associated with
the displacement jump. The model above also allows for lead closure,
but with no resistance to that closure. That is, once a lead is fully
formed and the crack is defined by two free surfaces, those surfaces
are free to move - either to open more or close, as conditions permit.
However, as new ice is formed in an open lead, we expect the ice
strength to begin to recover, and to resist further opening or closing of
the lead. When the new ice is thin, the strength of the new ice is
negligible in either tension or compression. With sufficient time and
favorable thermodynamic conditions, a combination of freezing or
crushing of ice in the lead builds up the thickness and the strength.
This section of the paper focuses on the mechanical aspects of
strength recovery due to refreezing and presents simple adjustments
that extend the decohesive constitutive model to include physics of
Arctic ice not present in the original model.

The thermodynamic model described in Appendix A tracks
thickness changes in the ice due to freezing or melting. Moreover,

the range of ice thickness within a computational cell that can be
created by freezing and ridging of ice is tracked by the ice thickness
distribution model of Appendix A. When a lead is formed, open water
is created and when a lead closes, ridging occurs and ice is
redistributed from thinner to thicker ice in the thickness distribution.
We assume that the thinnest ice in the ice thickness distribution
occurs in a lead if one, or more, exists within a computational cell.

To enhance the model, we consider that a lead can regain its
strength if the lead closes and the free surfaces come together for a
sufficient duration to refreeze. A change in strength in the ice model is
reflected by replacing the softening function f, in Eq. (3) with f,
where

fan=

o { (1—u, /uy) if the lead is opening or closing ©)

fy  if alead has closed and u, < u,

The new parameter, f,, only becomes active once a lead has opened
and closed. In intact ice, we start with no opening, u, =0, and fa=0.
Thus, we have the original model where f, = f, = (1 —u, / ug).Alead
is formed when u, reaches uo and the lead typically opens to a
distance u,>uo. The original softening function, f,, is zero once
U, > Uo. The value of f, is unchanged until a ridge is formed. Suppose a
lead opens to a width u,,>>u,, ice now begins to form in the lead as
water freezes. Further suppose conditions change so that the lead
begins to close. If the lead closes completely, then u, will return to a
value equal to uo. During this process, ridging takes place. Under
stable conditions, the ridge will freeze and the ridged ice in the lead
should regain strength. To accomplish this strengthening of the ice, an
evolution equation for the growth of f, is proposed. Its value should
start at zero and increase as freezing occurs. If fn<1, the inherent
strength as given by f, is less than the original material, but greater
than the strength of the fully opened lead. Once f, =1, the lead has
healed completely. The parameter f, does not increase beyond unity
because ice immediately adjacent to the ridge will govern failure. At
this point the lead is closed, u,, and f, are reset to zero, and the process
can repeat. "

Starting from the value zero, the rate of increase of strength, f,, is
assumed to depend on the temperature difference between the air
and the ocean. The evolution equation for enhanced strength is
intended to be a representative example of how such a feature can be
incorporated into the formulation. Additional considerations such as
desalination, width and depth of the ridged ice, and wind may require
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a modification to the proposed form. As the strength increases, it is
possible that the rate decreases. Moreover, the strength should never
exceed the original strength. Therefore, the following evolution
equation is proposed

- A(T) .
= 0)=0. 7
e ey LA AU 7)
In this evolution equation, the parameter A(T) is a ratio of the
temperature difference between the ocean and air and a given
reference temperature T,.; and takes the following form

T, T,

— Yocean " fair
AT = =, ®)

The constant T,.rand the exponent m set the time scale over which
f, returns to the value unity.

Fig. 2 displays the evolution of the strength function for an
exponent m=>5 and for three constant values of A(T). The values of
A(T) used in this figure could correspond to a reference temperature
Trey=20°C and temperature differences between the ocean and
atmosphere of 20 °C, 40 °C, and 60 °C respectively. For these
parameters the ice regains its strength within 3 to 11 days. Changes
in the reference temperature change the typical length of time
needed for the ice to regain its strength, and thus the model can be
adjusted to fit observations.

A key point is that this evolution equation allows the temperature
to vary in any manner. Additionally, a new lead can be formed at any
time based on the current strength. If either a completely refrozen
lead whose strength has completely recovered, or a partially refrozen
lead whose strength is still lower than the original value, is subject to
new winds or ocean currents that cause it to reopen, then the strength
recovery is reset and the process described above is repeated. We
expect that if a lead opens and closes repeatedly without refreezing
then more ice is formed than if a lead opens and closes once with the
ridged ice refreezing and regaining strength. These scenarios are
explored through specific numeric examples in the next section.

4. Numeric examples

In order to illustrate the behavior of the elastic-decohesive
constitutive model with and without strength recovery due to closure
and refreezing of leads, we perform a simple calculation using the
Material-Point Method (MPM). MPM is a numerical technique that
combines Lagrangian particles with a background grid (Sulsky et al.,
1994, 1995). A description of the application of MPM to sea ice is given

0 I I I I I
0 2 4 6 8 10 12

t (days)

Fig. 2. Time evolution of the strength parameter, f;, due to refreezing for constant
ocean-air temperature differences. In practice, the parameter is not allowed to increase
beyond unity.

in Sulsky et al. (2007) and Sulsky and Peterson (in press). The
Lagrangian particles, or material points, carry mass, velocity, stress, ice
thickness, and other material parameters and internal variables for
the constitutive and thermodynamic models, as well as the thickness
distribution. The Lagrangian representation allows for these quanti-
ties to be transported with the material motion in a natural manner.
Material-point properties are mapped to the background grid for the
solution of the momentum equation at each time step. The model
used in this analysis combines the elastic-decohesive constitutive
model used in the momentum equation for the ice dynamics, with an
energy conserving thermodynamic implementation for ice growth
and melt, and a five category ice thickness distribution incorporating
ridging. A brief summary of the governing equations for each of these
components are found in Appendix A.

For the example calculation a block of ice 1050 km long and
600 km wide with an initial region of decohesion down the center, at
x=0km, is forced by cyclic atmospheric winds. The computational
domain is larger than the block of ice and is divided into a
1150x 700 km background grid, which is composed of square cells
of dimension 50 km. The ice region contained within the background
grid is made up of material points. The region of initially weakened ice
in a line through the center of the ice region is initialized by setting the
normalized decohesion opening (u, /ug) equal to 0.8 and with the
normal to the crack surface set to the x-direction. Therefore, the initial
strength function is f, = 0.2 along this line. An overview of the
computational domain displaying initial values of normalized deco-
hesion opening magnitude are shown in Fig. 3. The initial average ice
thickness is approximately 2.6 m for each material point and is
calculated by summing over the five ice thickness categories at each
material point. The parameters used in the decohesion algorithm are
given in Table 1.

The simulations are run for three months with a time step of 100 s.
For the strength recovery algorithm, the parameters chosen resultin a
strength evolution over time as shown in Fig. 2 with A=2. This value
allows stationary ice to regain its strength in about five days. Note that
the parameter A depends, in general, on the temperature difference
between the ocean and the atmosphere and would therefore vary
seasonally over a longer calculation.

The atmospheric winds are set to pull then push the block of ice in
the horizontal direction to open and close the crack down the center.
This forcing is accomplished by setting the wind velocity to cycle,
putting the ice in tension for a period of 5 days, compressing the ice
for 10 days, and pausing for 10 day intervals of zero velocity between
the active periods to allow for ice growth. A plot of the velocity cycle
as a function of time for a point on the right side of the domain for the
first set of simulations is shown in Fig. 4a and a plot of the atmospheric
wind velocity over the domain on day two is shown in Fig. 4b.

Decohesion Opening Magnitude

700
NN EEEE

un/uo
00.8

0.0

600

Fig. 3. Initial normalized decohesion opening. A nonzero value of 0.8 is initialized in the
central region to model a pre-existing weakened area.
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Table 1 Table 2
Decohesion parameters used in the simulations. Atmospheric and oceanic forcing.
Variable Value Description Variable Value Description
Tnf 2.5 kPa Tensile strength Fi 187.5 W/m? Downwelling longwave flux
Tsm 6.0 kPa Shear strength Fsw 0 W/m? Downwelling shortwave flux
e 12.5 kPa Compressive strength Tair —38°C Air temperature
ug 4 km Minimum decohesion opening Q 5%x107° Specific humidity
m 5 Exponent in strength factor Fsnow 6x10~° Snow flux (precipitation)
SST —1.96 °C Sea surface temperature
SSS 32 ppt Sea surface salinity

The ocean current is assumed to be zero, but an ocean drag
depending on the ice velocity is still applied. The atmospheric and
oceanic forcing has a magnitude consistent with typical forcing over
winter months in the Arctic. The values for the oceanic and
atmospheric forcing parameters are given in Table 2.

The effect of adding the strength recovery algorithm for closing
leads in the simulations can be seen by plotting the normalized
decohesion opening in the x direction for a point in the center of the ice
domain as a function of time, as shown in Fig. 5a. A material point is
chosen in the initially weakened ice and its decohesion history is
displayed in the figure. The point starts with a normalized decohesion
opening equal to 0.8. Without strength recovery, the ice can freely open
and close and the decohesion opening cycles in response to the cyclic
wind. The lead opens to a scaled value of 6 over the first 5 days, stays
roughly constant over the next 5 days as the winds die down, and then
closes within 5days when the winds reverse. Since the ice is still
fractured, when the wind changes, the lead can reopen and repeat the
previous pattern. If strength recovery is added, the first tension and
compression cycle is identical. However, once the ice has compressed in

Q

o N A OO ©
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Atmospheric Wind Vectors Day 2
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Fig. 4. (a) Atmospheric wind in the x direction as a function of time for a point to the
right of the center of the block of ice. For points to the left of the center the wind velocity
is equal and opposite. (b) Atmospheric wind vectors over the calculation domain on day
2 near the peak of the velocity cycle.

the simulation with strength recovery, the crack heals and the full
strength is regained over the ten days between the last compression
portion of the cycle and the new tension portion of the cycle. Once this
happens, the forcing in this simulation is never enough to reinitiate
decohesion and the lead does not reopen. Therefore, on day 15 in Fig. 5a
the calculations begin to differ such that the ice with strength recovery
is no longer able to pull apart under the given tension. The
corresponding evolution of the strength factor is shown in Fig. 5b.
Without strength recovery, the strength factor starts at 0.2 and then
decreases to zero as the lead opens. The strength factor then remains at
zero for the duration of the simulation. With strength recovery, the
strength factor increases from zero back to one and the ice remains at
full strength for the duration of the simulation. Note that the strength
factor is only nonzero for points that have previously undergone
decohesion and have closed sulfficiently to allow refreezing.
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Fig. 5. (a) Normalized decohesion opening as a function of time for a point in the center
of the initial lead. The dashed line is for the case of the original elastic-decohesive
formulation with no strength recovery in leads and the solid line displays the case
where refreezing and strength recovery in the lead is included. (b) Evolution of the
strength factor as a function of time when strength recovery is included, for the same
point.



K. Peterson et al. / Cold Regions Science and Technology 76-77 (2012) 44-51 49

— With refreezing
= No refreezing /]

3.2
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Thickness

Fig. 6. Thickness at a point near the center of the ice domain for three cases: with
strength recovery in the lead, original formulation without strength recovery, and
without atmospheric winds.

To examine how the strength recovery algorithm effects ice
production within a lead, we examine the average thickness for a
point near the center of the ice domain and plot it as a function of time
in Fig. 6. The dashed line in the figure is the original model where the
ice in the lead does not regain strength over time. The average
thickness cycles with the applied atmospheric winds. When the winds
pull the ice apart, open water is created, and the average thickness
goes down. However, new ice is formed in the open lead and grows
quickly while the wind forcing is stopped. When the winds next
compress the ice, ridges form from the newly grown ice and the
average thickness goes up. Over time, this cyclic motion increases the
peak average thickness. Since thin ice grows more quickly than
thicker ice, this cyclic behavior of the lead will eventually produce
more ice than will be produced in a region of ice without a lead that is
exposed to the same thermodynamic forcing. Another simulation,
labeled in Fig. 6 as “No atmospheric wind” and plotted with a dotted
line, shows this case where the initial configuration of ice is the same,
but no atmospheric wind forcing is applied to open a lead. As can be
seen, the increase in peak thickness due to thermodynamic growth of
the open water in a lead that is allowed to reopen and then close and
ridge, outpaces the thermodynamic growth of an intact region of ice.
In the case where strength recovery due to refreezing is included, an
initial ridge is formed during the first compressive cycle and then that
ice increases slowly in thickness commensurate with thermodynamic
growth of an intact region.

As expected from the results for the ice thickness at a material
point, the total volume of ice over the simulation is also altered by the
strength recovery algorithm. The total ice volume is the area times the
thickness, summed over the domain and is shown in Fig. 7a as a
function of time. The total volume increases over time in all cases due
to ice growth caused by the atmospheric and ocean heat flux applied
in the simulations. To see the impact of strength recovery in a lead
more clearly, the volume increase in the case of the intact region (with
no atmospheric winds applied) is subtracted from the other two
simulation results. Thus, Fig. 7b measures the change in volume
attributable to the cycling of the lead. Clearly, the continued opening
and closing of a lead causes an increase in ice volume as ice forms in
the lead and is crushed into a ridge with each cycle. This increase in ice
volume is larger by about 50% than the ice volume formed when the
lead regains strength after closing and refreezing and does not reopen.

The thickness distributions at a point near the center of the domain
for each of the cases previously considered are shown in Fig. 8. Note
that at the final time the thickness distribution for the original
formulation without strength recovery is shifted more towards
thicker ice. This result is consistent with the average thickness over
the domain being larger when the lead is allowed to cycle without
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Fig. 7. Ice volume versus time over the entire ice domain (a) for three cases: with
strength recovery in the lead, original formulation without strength recovery, and no
atmospheric winds and (b) for the strength recovery and original formulation, showing
the difference of each from the case of no atmospheric wind.

resistance. The thickness distribution when strength recovery is
included is similar to the simulation with no atmospheric winds
where the lead is never formed. Again, this picture is to be expected
based on the calculations of ice thickness and volume changes.

5. Summary

An elastic-decohesive model was developed to predict lead
opening and the orientation of the lead in simulations of Arctic sea
ice. In previous work, the model was shown to reproduce qualitative
and statistical properties of lead formation in a regional study of the
Beaufort Sea. This paper suggests a modification to the model in order
to add an important element for predicting the closure of leads and
the formation of fresh ice. For this modification an evolution equation
is provided to model the recovery of strength of a closed lead due to
refreezing within ridged ice. With a reversal of wind, a ridge with no
strength will open and fresh ice will form in the lead. However, with a
recovery of strength, the ridge may not open and, consequently, no
new ice is formed. This second aspect is particularly important
for an accurate prediction of the formation of fresh ice in leads,
and ultimately for correctly predicting ice production in climate
simulations.

Two simulations were performed, with and without strength
recovery due to refreezing. The parameters were chosen to bracket
two possible extremes and to illustrate the contribution of refreezing
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Fig. 8. Ice thickness distribution at the final time for (a) original formulation without
strength recovery, (b) with strength recovery in the lead, and (c) with no atmospheric
wind.

to the ice model. In the first simulation, the strength is not allowed to
recover. The lead can open and close without resistance. Repeated,
cyclic opening and closing of the lead produces more ice relative to the
second simulation where the strength of the ice recovers when a ridge
is formed. The impact of the modified model on global Arctic
simulations remains to be seen, and is the subject of future work.
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Appendix A. Equations of motion

The mathematical model of sea ice is derived from considering the
balance of linear momentum which is expressed by the following
equation (Coon et al., 1974)

dv _ pint ext

(A1)

In this equation, the time derivative is a material-time derivative,
d/dt=0/0t+v -V, where v=v(X, t) is the velocity field associated
with the point x at time t. This equation is derived by assuming the ice
properties are constant through the thickness. Integration through the
thickness leaves a two-dimensional equation describing motion in the
plane of the ice. The quantity m is the ice mass per unit area, and
Fint = v ‘ho is the force due to variation in internal ice stress, given by
the divergence of the stress tensor, o, times the ice thickness, h.
External forces are described by the vector F*** which include Coriolis
forces, air stress and water stress, and effects of sea surface tilt. Ice
thickness can change due to the thermodynamic processes of melting
and freezing, or mechanical processes such as lead or ridge formation.
Since numeric climate simulations still must use large computational
elements, within each element there is a distribution of ice thickness.
The quantity h is the average thickness. A subgrid scale model for the
distribution of ice thickness, g(x, h, t), keeps track of the evolution of
ice thickness within an element (Thorndike et al., 1975) according to
the equation

dg

dg o) _
a

+ (Vg + =

(A2)

The first two terms in this equation describe horizontal transport
and the changes in thickness at a point due to ice motion. The third
term expresses transport in thickness space, with f=dh/dt being the
rate at which thickness h changes due to thermodynamic processes.
Finally, i, describes mechanical redistribution of ice and accounts for
ridge formation in converging flow or the creation of open water in
diverging flow. The ridging redistribution function described in
Lipscomb et al.(2007) is used in our simulations. The local average
ice thickness can be computed from the distribution by integration in
thickness space
h = [5hg dh. (A3)

Freezing and melting on the top and bottom surfaces is
determined by solving a one dimensional heat equation for the
temperature through the thickness (Bitz and Lipscomb, 1999; Maykut
and Untersteiner, 1971). The coordinate in the direction perpendic-
ular to the plane of the ice is labeled as the z coordinate and the heat
equation is

ar _ o oT . Rz
pegr = 6_z<k§> + Klpe ™.

(A4)

The heat capacity, ¢, and conductivity, k, are functions of
temperature and salinity, where the salinity is given by a fixed profile
depending on the vertical coordinate (Bitz and Lipscomb, 1999). The
quantity K is the extinction coefficient, and I, is the solar radiation that
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penetrates the upper surface. To obtain the change in thickness of the
ice due to thermodynamic forcing the following balance of flux
equations must be solved at the atmosphere and ocean interfaces

T dh
fo o = g
ar To=0C (A5)
Fot kg, = dh K
g To < 0C

where the enthalpy, g, is also dependent on the temperature and
salinity. Note that dh/dt at each surface is summed to obtain the rate of
change in thickness, f, in the ice thickness distribution equation,
Eq. (A.2). The flux at the ocean interface, F,,, is simply the heat flux
from the ocean to the ice. The net flux at the atmosphere interface, F,,
is a combination of flux terms as shown in Eq. (A.6). It includes
downwelling shortwave radiation from the sun, Fz, minus the fraction
which is reflected based on the albedo of the surface, o, and the
fraction that is transmitted through the ice, Io. It additionally includes
the downwelling longwave radiation due to atmospheric heating, F;,
and the upward longwave radiation from the ice surface, which is
defined in terms of the surface temperature, Ty, the Stefan-Boltzmann
constant, o, and the longwave emissivity of the surface, ¢;. The final
terms in the balance are the flux of sensible heat, F;, and the flux of
latent heat, F;

F, = F(1—a)—Iy + F,—,0Tg + F, + F,. (A6)

In order to complete the mathematical description, a constitutive
model for the stress is required. This model is the topic of the main
body of the paper.
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