

Signs and Symptoms

KNormal Response△flush skin, moist△shortness of breathe, local muscular fatigue

Cool, clammy skin
 □ peripheral cyanosis
 □ dizziness, ataxia, nausea, confusion
 □ angina during exercise, disappears in recovery

G TA	BLE 6-1. Mean ((±SD) Peak SB	P and DRP (mr	n Hø)	
During Maximal Treadmill Exercise*					
Age	Men		Women		
	SBP	DBP	SBP	DBP	
18-29	182 ± 22	69 ± 13	155 ± 19	67 ± 13	
30-39	182 ± 20	76 ± 12	158 ± 20	72 ± 13	
40-49	186 ± 22	78 ± 12	165 ± 22	76 ± 13	
50-59	192 ± 22	82 ± 12	175 ± 23	78 ± 1	
60-69	195 ± 23	83 ± 12	181 ± 23	79 ± 1	
70-79	191 ± 27	81 ± 13	196 ± 23	83 ± 11	

Abnormal HR and BP responses

State of the second sec

Cardiac Output, Stroke Volume

 ※Invasive measures: Swan-Ganz catheter is introduced into the pulmonary artery
 △Flow sensor: direct Fick
 △Thermistor: thermal dilution

*Non-invasive measures: rebreathing techniques, continuous-wave Doppler

Cardiac Contractility

#Ejection Fraction

☑EF = EDV - ESV / EDV ☑resting value about 60% ☑exercise value, increases to 80-85%

ЖESV

⊡volume of blood left in the heart after contraction

CAD CO, HR, and SV responses

CAD patients may have constriction in coronary arteries
Constriction causes ischemia and ↓pump fn
Cardiac output may not rise normally
SV may not increase normally
HR response may be blunted (independent of drugs) and may even decrease

Why are VO2 measurements obtained?

XVO2 measurement is more reliable than estimates from cycle or treadmill eqns

Peak VO2 is most accurate measurement of functional capacity and index of overall cardiopulmonary health

#Heart and lung diseases will be evident from gas exchange abnormalities

Oxygen Consumption

#The most notable result of CAD is \downarrow VO2max

△variable response (depends on amount of myocardium involved and severity of ischemia)

- $\# \downarrow$ VO2 at submaximal levels of exercise
- ℜ oxygen kinetics are slower
- #more reliance on anaerobic energy
 production during exercise

Maximal	Exercise	02
variables	;	

Subject	<u>VO2</u>	HR SV CO a-vO2		
CAD				
Normal	3000	190 100 19.0 15.8		
Athlete	5600	180 180 32.5 17.0		
		Roberts 97, pg 106		

Anaerobic threshold or ventilatory threshold

#AT has been described as the breakpt in Ve associated with lactate accumulation and muscle anaerobiosis

#AT probably reflects a balance between lactate production and removal

#Exercise beyond AT is associated with metabolic acidosis, hyperventilation, and reduced capacity to perform work

AT response in CAD #AT < 40%VO2max is below 95% confidence for sedentary subjects #↓ AT is assoc with CAD and is a sign of a condition that limits O2 flow to muscles #Other tests are needed to differentiate whether problem is cardiovascular, respiratory or metabolic

O2 pulse

₩O2 pulse = VO2/HR

302 pulse = SV x a-vO2 difference

#With exercise, O2 pulse increases due to $^ a-v O2 difference and SV (upright)$

#In CAD, the rise in O2 pulse is blunted because SV is reduced

Systolic Time Intervals

✗ Measure by
 △ Phonocardiogram
 △ Carotid pulse sensor
 △ Ballistocardiogram

Prolonged STI could indicate coronary insufficiency, decreased ventricular function, increased TPR, abnormal wall motions

Heart Sounds

- A-V valves close at onset of systole, blood rumbling (lub)
- Aortic then pulmonic valves close at onset of diastole (dub)
- Rapid filling in early diastole, sound occurs with decreased ventricular distensibility

4. Atrial contraction

Bad Heart Sounds

- **Sound 1**, should be loud and powerful ⊠Mitral murmur, prolapsed mitral leaflet (10% of pop)
- Sound 2, splitting may be LBBB and decreased right or left ventricle function
 Aortic murmur, aortic stenosis
- ${\tt {\tt H}}$ Sound 3, associated with poor ventricular function
- # Sound 4, common in ischemic heart disease or myocardial disease.

