Methods Introduced in the "heat lab"

- How did we measure core temp?
 What was the termination Tc?
- How did we measure skin temp? Sites?
 - Calculate mean skin temp
 Calculate mean body temp
- Calculate mean body temp
 What is the WBGT?
- Wet bulb, dry bulb, globe temp
- Did you see how we measured air flow?
 What is an anemometer
- · What is uncompensible heat stress?

Hydration and Exercise

Who was that man??

Water and Survival

- Water is more important than food when it comes to survival
 - death in weeks, even months, w/o food
 - death in days w/o water (100 hr rule)

- with heat acclimation, \downarrow sweat threshold
- training, \uparrow sweat for a given Tcore
- natives, are more "efficient sweaters"—genetics or adaptation?

Fluid and salt control

- · Water and salt intake vary greatly
 - 1 L/d for old, sedentary
 - 10 L/d for camel drivers in the Sahara
 - 3-30 g/d salt intake
- Plasma volume and sodium content are controlled within ~1%
 - PV, maintained \pm 50 ml
 - Na⁺, maintained 135-145 mequiv/L

Body fluid imbalances

- · Over-hydration is rare
 - water and salt will be excreted with too much intake
 - water intoxication is very rare
- · Under-hydration is very common
 - dehydration with exercise
 - dehydration in the elderly (lack of thirst)
 - dehydration with fever and diarrhea (children most susceptible)
 - Hypo-hydration in astronauts

Dehydration vs. Hypohydration

- Dehydration
 - reduced plasma volume
 - increased plasma osmolality
- Hypohydration
 - Isotonic loss of water without increased plasma osmolality

Normal fluid balance			
 Intake (2550 ml) 			
– drink	1200 ml		
– food	1000 ml		
 metabolically produced 	350 ml		
 Output (2550 ml) 			
 insensible 	900 ml		
- sweat	50 ml		
– feces	100 ml		
– urine	1500 ml		

What is dehydration?

- · Loss of body water
 - > 2% body weight loss
- Loss of plasma volume

 Estimated from changes in hct and hb
- Increased urine osmolality and specific gravity
 - Color > 3, Sg > 1.030, osm > 800 mosm/kg
- Increased serum osmolality
 290 mosm/kg

Components of Plasma

- 96% of osmolality is determined by Na⁺ and its associated anions.
 - Plasma osmolality is 280 mosm/l
 - Na+, 136 mequiv/l, (NaCl, 272 mosom/l)
 - Electrolytes easily move through the capillary wall
- oncotic pressure is determined by proteins
 - [total protein] is about 7.4 g/dl in plasma
 albumin (4-5 g/dl) smallest and most influential in terms of fluid movement
 - Proteins can move in and out of the PV with posture, exercise
 - New proteins are produced with training, heat acclimation

Thirst

- Regulated in the hypothalamus. Thirst stimuli:
 - plasma osmolality >295
 - water loss > 2 liters
 - renin-angiotension-angiotension II
 - dry mouth and throat receptors
- Humans normally stop drinking before replacing all fluid lost
 - stomach distention
 - drop in plasma osmolality

ADH

- Acts to retain water (kidneys, sweat glands)
- Release from posterior pituitary is stimulated by:
 - osmoreceptors (brain, liver, others?)
 - SNS, stress
 - elevated temperature
 - cardiac atrial receptors (Henry Gauer reflex?)
 - Role in humans?
 - arterial baroreceptors

Other hormones

- Aldosterone acts to conserve sodium – conserving Na+, conserves water
- Atrial natriuretic factor (peptide)
 - released from the cardiac atria with distention to cause sodium excretion
 - · less distention in dehydraton
 - · less ANF is released
 - · less sodium is excreted

Early studies of dehydration and heat tolerance

- Effects of dehydration first studied in coal miners in England (JS Haldane)
 - voluntary water restriction
 - afraid of water toxicity
- Importance of heat acclimation shown in gold miners in S. Africa (Wyndham, Strydom)

Stomach emptying and dehydration

- Sweat loss during exercise is typically 0.8 to 1.4 l/h
- The rate of stomach emptying during exercise is 0.8 to 1.2 liters/min
 - will be slower with increased osmolality of the drinking solution
- Prolonged severe exercise in heat can lead to progressive dehydration even with excessive drinking? (Gisolfi, very rare)

• Sweat gland fatigue?

- sweating is reduced under conditions where sweating is not effective
 - with prolonged sweating in humid conditions (> 2hrs), SR will decline
 - mechanism proposed to be swelling of the epidermal cells around the sweat gland pores
 - drying of the skin can lead to return of sweating

Other effects of dehydration

Cardiovascular

- increased HR and decreased SV
- reduced CO and increases in a-v(O2 diff)
- decreased splanchnic bf
- decreased muscle bf (controversial)
- Muscular
 - > 5% dehydration--loss of strength
 - increased lactate
 - reduced clearance and increased production?
 - decreased endurance

Dehydration and exercise

- Decrease in body
 weight
 - 1%, cardiovascular effects
 - 3%, decrease VO₂max in cool

- 2-8%, common during competition and training
- 12%, often fatal
- 25%, Pablo syndrome,
 1906 (pg 83, Piantadosi)

Am I the good, the bad, or the ugly guy??

Dehydration and endurance

Body Weight Loss	Exercise Environment	VO2 max Change	Endurance change
-2%	НОТ	-10%	-22%
-4%	НОТ	-27%	-48%
-5%	MILD	-7%	-12%
-5%	MILD		-17%
Armstrong, pg 26			

Dehydration and Survival

- Loss of 12% body mass
 - clinical shock
 - plasma osmolality of 350 mosm/liter
 - loss of 8.4 liters of sweat
 - loss of 33% of PV (1 liter)
- With no fluid intake and an obligatory water loss of 1200 ml/d, 8.4 liters will be lost in 7 days (168 hrs), with no exertion

100 hr rule

Humans can survive about 100hrs without water

- shorter than 168 hrs because more water is lost due to heat, activity
- shorter yet with increased activity and heat exposure

Hydration Solutions

- · Adolf (early 40s)
 - importance of fluid ingestion to reduce cardiovascular and thermoregulatory effects of dehydration
 - slows development of fatigue
- Gisolfi (90s)
 - studied effect of weak carbohydrate (6%) and electrolyte solutions

Water vs. electrolyte solutions?

- · Add carbohydrates
 - when exercise is intense (>70%) and prolonged (> 1 hr)
- Add electrolytes
 - when sweating is profuse and prolonged (> 4 hrs)
- Water
 - empties best from the stomach and is most effective in shorter duration exercises
 - For most individuals (except athletes, military or spec. occup.) water is enough

How much fluid intake?

Current ACSM
 recommendation

Noakes

 drink to maintain body weight

- prolonged drinking to

maintain wt can lead

to hyponatremia (Na+

< 130 mequiv/l

Increase sodium intake?

- Americans typically eat 6-17 g NaCl/d
 Recommended to reduce to 6 g
- People who live in hot climates and eat less than us don't have hyponatremia-
 - Masai, < 5g NaCl/d
 - Galilean naturalists, 1.9 g NaCl/d
- Lab studies have shown successful heat acclimation with 4-6 g NaCl/d
 - Typical sweat losses are 0.8-2.0 g in acc and 3-4 g NaCl/l in unacclimated humans
 - 1 Tsp salt (8g NaCl) can easily replace sweat loss

Rehydration

- · Drink water?
 - water will empty from the stomach quickly
 - water will lower sodium concentration
 - lower sodium will inhibit drinking before fluid is totally replaced
 - delay rehydration?
- Nose:
 - add sodium to the rehydration solution to get more rapid and complete rehydration

Over-hydration to improve exercise performance?

- A controversy over semantics?
- Over-hydration (Sawka)
 - is not effective
 - drink before & replace fluids during exercise
 - is no better than controls drinking during exercise
- Over-hydration (Moroff)
 - is effective
 - drink before & no fluids during exercise
 - is better than controls not drinking during exercise
 - extra fluid before exercise delays dehydration.

Glycerol Hydration Controversy

- · Riedesel, Montner
 - pre-hydration with glycerol and hydration during exercise reduces cv and tr strain
 - expanding the ICF and ISF allows > reservoir to maintain PV
- Sawka
 - glycerol hydration solutions offered no benefit. Expands TBW but does not increase PV and therefore is not effective
- Robergs
 - Negative findings with glycerol are related to the method of administration. Must start the night before and continue during exercise

ACSM Position Stand on Exercise and Fluid Replacement, 2000

- drink 500 ml of fluid 2 hr before exercise
- during exercise, drink early, drink to maintain body wt, or max rate tolerated (600-1200 ml/hr)
- cool fluids (15-22°C)
- with few exceptions, water is the replacement of choice
- unless the exercise bout lasts > 60-90 min. there is little advantage to supplementing carbs

