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[1] The bed material grain size distribution of gravel bed streams is often spatially
heterogeneous. The heterogeneity is actually a random parameter, even for a “well-mixed
mixture,” which potentially causes the transport rate for a given bed material to become an
uncertain variable. The cause of bed material heterogeneity is the nonuniformity of the bed
material, which is analyzed in this paper using examples from field observations and
experimental data. The Monte Carlo simulation method is applied to study the uncertainty
of the bedload transport rate using Wilcock’s experimental data (P. R. Wilcock et al., 2001;

P. R. Wilcock and J. C. Crowe, 2003). Each realization of the Monte Carlo simulation
employed a randomly generated grain size distribution field for the entire simulation
domain. With sufficient realizations the simulation results were adequate to show that the
transport rates were a random variable and the mean transport rates did not fall on a
single-valued curve when the local heterogeneity was taken into account. The results
indicate that the bedload transport rate of nonuniform sediment has an intrinsic uncertainty
that can result solely from the bed material. The results also partially account for the
scatter of the fractional transport rate within Wilcock’s experimental data. This study
presents an important concept in understanding the uncertainty associated with estimates

of sediment transport.
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1. Introduction

[2] The transport of coarse sediment as bedload is im-
portant for the evolution of channel morphology, especially
in mountain streams. However, understanding of this com-
plex sediment transport process remains poor. The physical
process involves cycles of particle entrainment, movement
along the stream (which includes rolling, sliding, and
saltation) and deposition on the bed. The transport of
particles is controlled by the interaction of highly turbulent
flow with stationary and moving particles. For nonuniform
sediments, this process is further complicated by the inter-
action between size fractions.

[3] A number of physically based models of particle
entrainment and transport have been developed on the basis
of comprehensive force balance analyses [Bagnold, 1966;
Yalin, 1977; Wiberg and Smith, 1989; Bridge and Bennett,
1992]. Because of the complexity of forces acting on
particles, quantifying this condition is inexact. Therefore
the final equations of bedload transport models depend on
several unknown parameters which need to be determined
through experimental data.

[4] Stochastic approaches have gained attention as a
method to account for uncertainty in the bedload transport
process. Einstein [1950] offered a stochastic model by
introducing a probability function to describe incipient
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particle motion. This probability is usually determined by
the instantaneous shear stress distribution, which is assumed
to follow a normal or lognormal probability density function
(PDF). Though this method is theoretically closer to reality,
it still depends on several undetermined parameters. To date,
very limited work has been completed on the issue of
nonuniform sediments. The similarity method is most widely
used by researchers when handling nonuniform bed material
[e.g., Parker et al., 1982; Parker, 1990; Wilcock and Crowe,
2003]. This method starts directly from observed data.
Nondimensional similarity variables are then adopted to
collapse the data sets for all size fractions. Finally, the hiding
exposure function is proposed to account for the interaction
between different size fractions and to reach perfect similar-
ity. All of these models require reliable bedload transport
measurements for model parameterization and calibration.
[s] Though a number of field observations and flume
experimental results are available, it is difficult to find good
data sets to calibrate bedload transport models. For mech-
anism analyses, flume experimental data are usually pre-
ferred over field observations because researchers have
more control over flow properties and bed materials. Field
observations typically include many complicating factors
that affect the quality of the data. For example, flow
conditions are difficult to measure with high accuracy and
in short periods of time and the flow field often deviates
from steady state conditions; the channel cross-section
geometry often affects the transport rate if the unit width
transport rate is used to derive a transport equation; and the
transport process may not reach equilibrium in the field
because of varying flow conditions and bed material varia-
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tions. Another practical difficulty is the measurement of bed
material grain size distributions (GSD). Also, practical
considerations in field sampling techniques limit data qual-
ity and availability, particularly in deep- or high-velocity
flows [Stone and Hotchkiss, 2007a]. Because of these
difficulties, scatter in observational data is often attributed
to technical limitations and the complexity of natural
systems.

[6] A carefully designed flume experiment can avoid
most of the aforementioned difficulties and provide a more
comprehensive data set. Such a data set was produced by
Wilcock and others [Wilcock and McArdell, 1993; Wilcock
et al., 2001] through a series of bedload transport experi-
ments that carefully measured a number of flow and
sediment variables including flow depth and velocity, sur-
face and substrate bed material composition, and water
surface slope. A range of bed material mixtures and flow
conditions were used over 47 experimental runs; providing
a comprehensive collection of observations for the main
variables of concern. The experiments covered a range of
bed material particle sizes (0.2—64 mm), Reynolds numbers
(25,000—115,000), and shear stresses (2.78—23.6 N/m?).
With such an extensive experimental design, Wilcock’s
work produced a useful data set for improving our under-
standing of bedload transport.

[7] On the basis of their experimental data, Wilcock et al.
[2001] and Wilcock and Crowe [2003] developed a bedload
transport model based on the similarity collapse method,
which is widely adopted in bedload transport studies.
Following the similarity treatment, the data set displayed a
clear trend and the model described this trend fairly well.
However, although the model reproduced the experimental
data well for the total transport rate, the data displayed
noticeable scatter for the fractional transport rate (Figures la
and 1b). The nondimensional transport rate has a vertical
belt width of 1-2 orders of magnitude, illustrating consid-
erable uncertainty. The uncertainty was observed to increase
as the normalized shear stress (¢;) decreased. Such uncer-
tainty is notable for a well controlled flume experiment with
reliable measurements. It is unlikely that turbulence was the
dominant cause for the observed transport uncertainty.
Turbulent fluctuations in near-bed velocity and shear stress
are known to cause fluctuations in sediment entrainment
and transport rates [Papanicolaou et al., 2001; Wu and
Jiang, 2007]. However, turbulence is a quasi-periodic
process with a much higher frequency than the experimental
duration used by Wilcock [Stone and Hotchkiss, 2007b].
Therefore the transport rate uncertainty caused by turbu-
lence should largely be removed from the time averaged
results. According to Wilcock’s similarity analysis, it is hard
to substantially improve the similarity of the normalized
data set. Thus the cause of the uncertainty is likely related to
the sediment itself. The fact that the model describes the
total transport rate better than the fractional transport rates
implies that the nonuniform GSD could be an important
factor contributing to the uncertainty. Nonuniform sediment
transport has been investigated by many researchers and the
influence of nonuniformity on uncertainty is supported by
the results from previous studies. For example, a compar-
ison between Figures lc and 1d [from Chien and Wan,
1999] for laboratory experiments reveals that higher varia-
tions in bedload transport rates were observed for the case
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of nonuniform sediments when compared to uniform sedi-
ments. The work presented here investigates the impact of
the heterogeneity of the local GSD on the uncertainty in
bedload transport rates. In the literature, the term sediment
heterogeneity is often used synonymously with the term
nonuniform sediment [e.g., Bridge and Bennett, 1992]. In
this study, sediment heterogeneity describes spatially vary-
ing local GSD.

[8] Section 2 of this paper examines the phenomenon of
GSD heterogeneity using examples from field observations
and laboratory experiments. The conditions required to
define heterogeneity are discussed and the physical property
of heterogeneity is examined through a Probability Density
Function of the GSD, which provides the foundation for the
following stochastic analysis. Wilcock and Crowe’s bedload
transport model [Wilcock and Crowe, 2003] that will be
used in the heterogeneity study is shortly summarized in
section 3. In section 4, Wilcock’s experimental data are
reanalyzed through a Monte Carlo simulation approach with
randomly generated particle distributions, which all match
the global GSD. The Monte Carlo simulation results are
then used to investigate the impacts of sediment heteroge-
neity on bedload transport rates. Sections 5 and 6 contain
discussions of results and implications respectively.

2. Heterogeneity of the Local Grain Size
Distribution

[9] An implicit assumption made in bedload transport
studies for nonuniform bed material is that the bed material
is nonuniform but homogeneous. This implies that the size
distribution is the same everywhere within the study do-
main. In the mixture of nonuniform bed materials, every
particle is surrounded by neighbor particles. The particles
interact with each other and induce the hiding and exposure
effect. Because of this effect, each size fraction has a
different transport rate from that of a uniform material with
the same size. Transport rates are studied by size fractions
for nonuniform sediment. Usually a particle size composi-
tion representing the whole domain is adopted for the
transport rate study (henceforth referred to as the global
GSD). Local conditions, however, can vary significantly
from the global GSD, introducing the effect of heterogene-
ity of the local GSD.

[10] The gravel bed GSD provided in experimental or
field observation data sets is typically sampled from small
areas on the bed to represent a large area. This is to
approximate the statistical average value of the GSD for
the entire study domain, the global GSD. The local GSD
could be different from this average, even for a “well mixed
mixture” as demonstrated below using Wilcock’s experi-
mental data. If the study domain is divided into subareas,
particles of each size fraction may not be evenly distributed
in each subarea, provided the number of subareas is
comparable with the number of large size particles in the
study domain. This effect is more significant if the mixture
of bed material contains a wide range of particle sizes. The
result of this effect is that the transport rate in each subarea
is not equal to the average transport rate for the whole study
area. Therefore the predicted total transport rate by averag-
ing the transport rates of subareas may not be equal to the
predicted transport rate by using the global GSD. This
means that the transport rate could be an uncertain variable
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(d)

(a) and (b) Dimensionless total transport rate /¥ and fractional transport rate W¥; as functions of

dimensionless shear stress ¢ (¢;), using Wilcock’s experimental data [Wilcock et al., 2001; Wilcock and
Crowe, 2003]. The geometric mean size of bed material is used for the dimensionless shear stress. The
solid curves are the Wilcock and Crowe equation. (c) and (d) A comparison of uniform and nonuniform
bedload transport data. These graphs are adapted from Chien and Wan [1999, Figures 9.14 and 9.25]
(with permission from the American Society of Civil Engineers). The solid curves are Einstein’s bedload
transport function. Parameters ¢ and W, defined in Einstein’s function, are the nondimensional bedload
transport rate and the reciprocal of nondimensional flow shear stress.

rather than a fixed value because of the uncertain local
GSD.

2.1. Examples of the Heterogeneity of Grain Size
Distributions

[11] The heterogeneity of grain size distributions can be
visually observed in many sites and has been noted in
previous studies [e.g., Seal and Paola, 1995]. To illustrate
the heterogeneity of GSDs in natural streams, we collected
bed material samples from seven random locations within a
10 meter reach of Willow Creek, a gravel bed stream in the
Spring Mountains of Nevada. On the basis of visual
observations, the global distribution of bed materials in
the 10 m reach appeared to be nearly homogeneous with
a few large size cobbles (>64 mm in diameter) showing

local heterogeneity. Because of shallow flows, a fairly high
amount of small particles, the lack of a defined armor layer,
and the very shallow flow depth (less than 10cm) a
volumetric sampling technique was employed. Following
the techniques described by Bunte and Abt [2001], volu-
metric samples were collected with a shovel and transferred
to buckets at seven sampling stations within a 20 cm by 20
cm region of the streambed. The samples were transferred to
the laboratory and the GSDs were determined using a
standard sieve analysis. The results, shown in Figure 2,
illustrate the heterogeneity of the local GSD. The median
particle size (dsg) varied from 13.9 mm to 58.1 mm and the
geometric mean size (d,,) ranged from 13.5 mm to 35.4
mm. This simple exercise demonstrates that substantial
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Figure 2. Grain size distribution of seven samples
collected from Willow Creek, a gravel bed stream in
Nevada. Samples show significant spatial heterogeneity.

heterogeneity in the GSD can exist within an apparently
homogenous stream reach.

[12] Wilcock’s gravel-sand mixture experiment also illus-
trates the nature of bed material heterogeneity. Even without
visual observations of the bed material, the heterogeneity of
bed material may be elucidated through a more detailed
analysis on the GSD. The bed material mixture consisted of
particles ranging from very coarse gravel to very fine sand.
For example, the BOMC6 case had the surface GSD listed
in Table 1. In this table, the first column shows the sieve
sizes, the second column shows the geometric mean sizes
for each fraction, and the third column contains the percent
mass for each size fraction.

[13] To illustrate the concept of particle size heterogene-
ity, it is convenient to calculate the minimum required area
of the surface layer that contains exactly this GSD. We still
use experiment BOMC6 as the example. For simplicity, the
following assumptions are made: (1) particles are all
spherical; (2) particles in each size fraction are uniform
and the representative size is the geometric mean size of
this fraction; and (3) the porosity of the mixture is 0.3
everywhere.

[14] Table 2 shows the computation of the minimum
required volume, V,;,, that has the global GSD. Each
subarea of the mixture that contains exactly this size
composition should have an integer number of the largest

Table 1. Particle Size Distribution in Wilcock’s Experiments

Diameter, mm

Size Fraction Geometric Mean Percentage of Weight, %

64-453 53.84 2.5
45.3-32 38.07 2.7
32-22.6 26.89 8.2
22.6-16 19.02 8.1
16—11.3 13.45 5.6
11.3-8 9.51 4.6
8-5.660 6.73 5.6
5.66—-4 4.76 5.6
4-2.83 3.37 6.4
2.83-2 2.38 1.9
2-1.41 1.68 33
1.41-1 1.19 5.6
1-0.5 0.71 19.4
0.5-0.21 0.32 20.5
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Table 2. Example Calculation of Bed Material Heterogeneity®

dy, mm Pk Vi, mm’® Gy Integer G, Total Vi, m®
53.844  0.025 8173547 1 1 8.17E-05
38.074  0.027  28899.09 3.055 3 8.67E-05
26.892 0.082 10182.82 26.33 26 2.65E-04
19.016  0.081  3600.44 73.55 74 2.66E-04
13.446  0.056  1272.85 143.84 144 1.83E-04
9.508 0.046 450.06 334.17 334 1.50E-04
6.729 0.056 159.53 1147.65 1148 1.83E-04
4.758 0.056 56.40 3246.29 3246 1.83E-04
3.365 0.064 19.95 10488.10 10488 2.09E-04
2.379 0.019 7.05 8811.35 8811 6.21E-05
1.679 0.033 2.48 43534.52 43535 1.08E-04
1.187 0.056 0.876 209077.75 209078 1.83E-04
0.707 0.194 0.185 3427799.62 3427800 6.34E-04
0.324 0.205 0.0178 37634900.2 37634900 6.70E-04

WVinin = S V(1 — P) = 0.0047 m®.

particle (i.e., at least one 53.84 mm gravel particle in
Wilcock’s BOMC6 case). The procedure in Table 2 to
calculate the V,;, is: 1) with the mean size (dj), the
percentage (p;) and the single particle volume V of size
fraction k, the particle number particle number G (using
G, = 1) is calculated; 2) G; is rounded to an integer and
used to calculate the total volume for size fraction k; 3)
then the total volume of the mixture V,;, for BOMC6 can
be calculated using Table 2, which shows:

Vain = »_ GeVie/ (1 = p) = 0.0047 m’ (1)
k=1

Where p is the porosity. If the surface layer thickness is
defined as the mean size of the largest size fraction
(53.84 mm in this case), the sideline length of a square area
of such a volume in the surface layer is:

Lin = 0.3 m (2)

This happened to be one half of the width of Wilcock’s
experimental flume. If we define the smallest covering area
as:

Amin = Liﬁn (3)

a consequence is that the “well-mixed mixture”, or the
homogeneous bed material, should describe an area much
larger than A,;,, or a spatial scale much larger than L;,,. For
an area smaller than this scale, the global GSD does not
exist.

[15] However, in an area containing the global GSD,
particles may not interact over the entire domain. In other
words, one particle cannot influence other particles that are
too distant. Therefore the actual hiding and exposure effect
may not occur for the global GSD and the local GSD must
be considered. For a spatial scale on the same order of A,
or smaller, the GSD becomes heterogencous. In the case of
Wilcock’s BOMC6 experiment, L,;, is of the same order as
the channel width. This implies that the heterogeneity of the
GSD is not a second-order effect, and thus it is not
negligible.
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[16] In the above calculation, the surface layer thickness
value adopted is the largest possible value, which was
defined as Dgg by Parker et al. [1982]. In addition, the real
porosity value is generally larger than 0.3, as used here.
However, these were conservative estimates intended to
avoid overestimation of 4,,;, which would exaggerate the
heterogeneity effect.

2.2. Probability Density Function of Grain Size
Distributions in a Mixture

[17] When the local GSD is accounted for, the transport
rate problem for heterogeneous bed material can be defined
as follows. The study area 4 is a bed area no less than the
smallest area A,,;, that is able to contain the same size
fraction composition as the entire bed surface. If A is divided
into n subareas, each subarea contains m size fractions, and
the percentage of each size fraction is p;(i=1, ..., m, k=
1,..., n), then the whole area averaged percentage of each
size fraction is p;. Because the size composition is a
stochastic variable, the goal of the solution is to seek the
expression of the probability density function f(p; ;) in order
to find the size composition in different subareas which
satisfies the following constraint conditions:

S = )
i=1

1 <& _
= pik =pi (5)
4

The first constraint condition shows that probability density
functions for each size fraction are actually correlated with
each other.

[18] The distribution function, f{ p; ), however, is difficult
to determine because of the correlation between size func-
tions. If only the second constraint condition is considered
(i.e., each size fraction is calculated separately), the prob-
ability of K out of 7; particles in one subarea can be
expressed with a binomial distribution:

p(rk) = (¢ )R- r (©

where T; is the total number of the ith size fraction particle,
and R is the probability of a particle falling into one subarea,
R = 1/n. The percentage of each size fraction is then
calculated as:

KV T; -
pik =p(Ti,K) o - ( )RK(I_R)T, K,

1-prPyy \K

Where V; is the volume of one single particle of the ith size
fraction, V is the volume of the kth subarea, and P is
porosity. When 7; is a large number, this distribution of
particle numbers could be approximated by a normal
distribution based on (6)

fp(T,K)] = TRS

1 (K — T;R)?
V2T RS 0|
L
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where, S=1—R, T;R is the mean and T;RS is the variance of
the distribution. If 7; is a large number (i.e., for fine size
fractions), the ratio v/ TiRS/T;R is small, which means the
distribution is mainly concentrated in a relatively narrow
range around the mean value. Thus the spatial distribution
of particle numbers is close to uniform. This encourages us
to make an assumption that, when considering all constraint
conditions, the ratio of particle numbers of two fine size
fractions is spatially invariant, i.e.,

Gix, _ Gip, )
G Gk

where G; 4 and G;, are grain size percentages of fine size
fractions 7 and j in subareas k; and k,. This equation allows
us to achieve a well-mixed mixture with the following
physical procedure: (1) randomly place coarser fraction
particles into each cell without considering the first
constraint condition, and (2) use well-mixed finer fractions
to fill every cell to the same cell volume. This approach will
be used in the stochastic simulation below.

3. Wilcock and Crowe Model

[19] In the following section the impact of a heteroge-
neous GSD on the transport rate will be examined. In this
section we describe the bedload transport model presented
by Wilcock and Crowe [2003]. The regressive model was
established from a similarity collapse of the aforementioned
data set. In this study, it is assumed that the model predicts
the accurate fractional transport rate for any possible bed
material GSD in a small subarea. The model is summarized
as follows:

0.002¢]° for ¢, < 1.35
W= (10)

14(1 —%#)4'5 for ¢ > 1.35
(s — 1)gqui
13
of ith size fracti(l)n’:< ¢; = 7/7,; 1s the nondimensional shear
stress; qp; 1s the volumetric transport rate per unit width of
ith size fraction; s = py/p is the ratio of sediment to water
density; g is gravitational acceleration; P; is the percentage
of the ith size fraction in bed surface; u, is shear velocity;r
is bed shear stress; 7,; is the reference value of 7 which is

calculated with a hiding function:

Tri _ (Dl )b
Trm Dy

where W; = is the nondimensional transport rate

(11)

and
po__ 067 (12)
1 +exp(1.5 —g;)
in which
Tom = (s—()% (13)
o = 0.021 + 0.015 exp(—20F, ) (14)
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where Dy, is geometric mean size of bed surface; 7,,, is the
shear stress for Dy,,; 7%, is Shields parameter, and F is the
percentage of sand in the bed surface.

[20] In the Wilcock and Crowe model, the interaction
between particles of different sizes is accounted for with a
hiding function. This increases the mobility of coarse
particles and reduces the mobility of fine particles when
compared with the corresponding uniform bed material of
the same size. Wilcock et al. [2001] also found that the
gravel transport rate is sensitive to the total sand content
percentage. The key parameters of the hiding function are
the geometric mean size and sand content.

4. Monte Carlo Simulation

[21] In this section, we examined the difference between
the transport rate averaged from subareas with local GSD
and the transport rate calculated with the global GSD. To
study the impact of GSD heterogeneity, the local GSD for
each subarea is needed. Wilcock’s experimental data were
used in this study to provide the hydraulic conditions, the
dimensions of the domain, and the global GSD. However,
for a given global GSD, the local GSD in each subarea is
uncertain because the particle allocation is random. This
uncertainty should be accounted for in order to obtain an
averaged effect of the heterogeneity. Since it is impossible
to consider every possible distribution in each local subarea,
the Monte Carlo method was employed for this study.

[22] The Monte Carlo simulation is a widely used com-
putational method for stochastic processes. Unlike deter-
ministic methods, the Monte Carlo simulation can provide a
series of possible values for variables of concern, which
allows the modeler to investigate the resulting distribution
caused by these variables. In this study, the Monte Carlo
approach was employed in a sequence method. A series of
realizations for bedload transport were simulated separately
in order to obtain a sequence of bedload transport rates. In
each realization the bed material distribution for each cell
was randomly generated while satisfying the constraining
conditions of equations (4) and (5). The mean and variance
of the transport rates for all realizations was then estimated
directly from the sequence of computed results. The key to a
successful Monte Carlo simulation is a large number of
realizations to ensure that the results are truly representative
of the stochastic nature of the spatial heterogeneity.

[23] To examine the stochastic nature of the transport
process, Wilcock and Crowe’s original bedload transport
model was employed in this study. It was assumed that the
Wilcock and Crowe model is accurate for any given local
GSD. Prior to the simulation, the flume bed was divided
into n x m cells, covering a 4m reach upstream from the
outlet. This was the portion of the flume used for the GSD
sampling in the original experiment. In this study, n and m
are taken as n = 40 and m = 6, resulting in 240 cells, each
0.Im x 0.1m. This configuration was selected because the
largest particle size in the experiment was 5.38 cm, and it
was assumed that approximately twice this scale was the
impacted region of such a particle.

[24] To calculate the fractional transport rate in each cell,
the local GSD was required. The distribution was obtained
by counting the total particle number for each size fraction
in one cell. This data was obtained by randomly placing
each particle into one cell. The total particle number of each
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size fraction was calculated in advance. The particle random
placing approach was used in this study rather than the
probability density function approach because it is more
general and more accurate. Because this method requires
considerable computational resources for distributing small
size particles, we used equation (9) and the procedures
presented thereabout to generate the random field for the
local GSD.

[25] The overall procedure used for conducting the Monte
Carlo simulation for each of Wilcock’s 47 experiments was
as follows: (1) calculate the total particle number of each
size fraction on the basis of the global GSD of an experi-
mental run and the area of study domain, as described in
section 2.1; (2) generate a random number between 1 and n
x m for each particle in fractions of d; > 8§ mm to randomly
place it in a cell and calculate the total particle number of
each size fraction in each cell; (3) calculate the remaining
volume for d; < 8 mm in each volume and distribute the
volume for each fraction using equation (9), assuming
particles are spherical and the porosity is 0.3; (4) calculate
the size composition in each cell on the basis of the total
volume of each size fraction; (5) calculate the transport rate
in each cell in row n (the last row before outlet) on the basis
of the GSD calculated in step 4 and the flow condition in
Wilcock’s experimental data; (6) calculate the cross-sec-
tional averaged transport rate at the flume outlet on the basis
of the equation

m
WP = WPk
=1

(15)

where W, is the cross-sectional averaged transport rate for
m

size fraction i and P; = %Z P, is the cross-sectional
k=1

averaged percentage of size fraction i; and (7) go back to

step 2 and enter the next realization until 1000 realizations

are finished.

[26] The Monte Carlo simulation does not exhaust all
possibilities of the size composition in each cell. However,
numerous realizations can effectively approximate the dis-
tribution of the particle size composition for the entire
domain. Thus it is possible to demonstrate the significance
of the uncertainty from a sufficiently large number of
realizations.

[27] The hydraulic parameters specified in the simula-
tions strictly followed the experiment measurements and
were kept the same for all realizations within an experi-
mental run. Also, shear stress distributions were adjusted for
the side wall effect following the approach presented by
Wilcock et al. [2001].

5. Results and Discussion

[28] In total, 1000 realizations were implemented for each
experimental condition. Therefore, for each experimental
run, 1000 possible transport rates for each size fraction were
generated. Sample results of simulated transport rates, W,
for several size fractions of selected experimental runs are
shown in Figure 3. The transport rates are plotted on a
logarithmic scale. Figure 3 shows that the logarithmic
transport rate is a stochastic variable and it approximately
satisfies the normal distribution.
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rates (W;) in log scale of each of the four arbitrarily selected cases and (right) the four corresponding
distributions of the 1000 transport rates.
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Figure 4. Monte Carlo simulation results of dimensionless
fractional transport rate ¥, against dimensionless shear
stress ¢; for all of Wilcock’s experiments. Each mean value
is the averaged transport rate of 1000 realizations for a size
fraction in one experiment. Upper/lower bounds are the
mean *1 standard deviation of the 1000 realizations.

[20] The simulated mean fractional transport rates and
standard deviations from the 1000 realizations of each size
fraction were calculated for each experimental run. The
mean values and upper and lower bounds (defined here as 1
standard deviation from the mean) are shown in Figure 4. In
this simulation, the equilibrium transport status was as-
sumed and the local transport rate was determined by the
flow condition and the local GSD. Practically, however, the
local GSD and local transport rate change with time.
Therefore each of the realizations in our simulation is
analogous to an instant transport rate during an extended
transport process. If the ergodic assumption is applicable,
the mean value of all the realizations is close to the long
time averaged transport rate. Figure 4 illustrates the varia-
tions in fractional transport rates among realizations. It also
shows that the fractional transport rate has a large variance
at low transport rates and less variance for high transport
rates.

[30] The mean fractional transport rates of all realizations
were calculated for each size fraction for each experimental
run. Figure 5 shows the mean values of the Monte Carlo
simulation results compared with Wilcock’s experimental
data and the deterministic transport equation, respectively. It
is notable that the mean transport rates do not fall on one
single-valued curve. Rather the data form a belt with the
same trend as the observed data and the deterministic
model. Significant transport rate uncertainty is evident from
this result. The vertical belt width is larger than 1 order of
magnitude at low transport rates. This result supports our
speculation that the transport rate is a random variable due
to the heterogencous local GSD. The belt is wider at low
transport rates and gradually contracts to a line at the high
transport rate end. This trend shows that the mean transport
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rate has larger uncertainty at low shear stress or for coarse
particles. Apparently, the uncertainty was reduced at very
low transport rates. This is attributed to the fact that some of
the simulation results were too low to be plotted in the given
range. Also, the simulation was restricted by the limited
number of experimental cases and there was very little data
for the condition of low normalized shear stress.

[31] Additionally, the total transport rate of the mixture
was modeled with the Monte Carlo simulation using the
local geometric mean size in each cell. Again, 1000 realiza-
tions were simulated as shown in Figure 6. Figure 6 shows
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Figure 5. Comparison of Monte Carlo simulation results
to (a) Wilcock’s experimental data and (b) the Wilcock and
Crowe equation. The stochastic predictions are the mean
values of the Monte Carlo simulation.
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All of Wilcock’s 47 experiments are shown along with the
Wilcock and Crowe equation.

that the total transport rates, calculated stochastically, were
different from the original model, but they fell within a very
narrow band. This was consistent with the observed total
transport rate data, which also formed a much narrower
band than the fractional transport rate. This implies that the
total transport rate had less uncertainty than the fractional
transport rate. It is notable that the stochastic results were
always larger than the deterministic results.

[32] Figure 7 illustrates the variation of local GSDs
generated with the random particle allocation approach in
the Monte Carlo simulation. Using the simulation of exper-
iment BOMC6 as an example, a histogram of the randomly
generated local geometric mean size is plotted. To produce
the histogram, the geometric mean sizes were counted for
1000 realizations in all 240 cells (i.e., 240,000 samples in
total). The histogram shows that the local geometric mean
size ranged from 1 mm to 37.5 mm, with a high probability
of occurrence around the global geometric mean size of
2.64 mm. Some extreme situations that were characterized
by large or small mean size did occur in the simulation but
with very low frequency. This is consistent with the nature
of well-mixed sediment.

[33] Two types of numerical experiments were conducted
to examine the sensitivities of the transport rate uncertainty.
The first experiment varied the flume width while holding
the cell size constant. Figure 8a contains the results of a
comparison between flume widths of 0.3 m, 0.6 m and 1.2
m with a cell size of 0.1 m x 0.1 m. The stochastically
simulated transport rate W¥; was normalized by the Wilcock
and Crowe equation predicted value W,,;. Also, the results
represent the mean transport rate of 1000 realizations. In
this experiment, it was assumed that the global size distri-
butions were the same for each case. When compared with
the actual flume width of 0.6 m, the width of 0.3 m slightly
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increased the uncertainty while the 1.2 m width substan-
tially reduced the uncertainty. The results indicate that the
uncertainty is reduced with an increasing lateral scale. It is
expected that the uncertainty will be reduced to a negligible
level if the lateral scale is several orders of magnitude larger
than L.

[34] The second experiment was to test the effect of
variable cell sizes. A cell size of 0.1 m x 0.1 m was
compared with a cell size 0.2 m x 0.2 m for a constant
flume width of 0.6 m. A comparison of the two scenarios is
plotted in Figure 8b. The results show that the uncertainty
was reduced with a larger cell size. As the cell size is
increased, the particle size distribution in the cell will tend
to approach the global size distribution and differences
between the cells are reduced. However, this may exagger-
ate the impact area of each particle and overestimate the
hiding and exposing effect and therefore underestimate the
uncertainty.

6. Implications to Field Situations
[35] The current study focused on an apparently well-

mixed sediment mixture and found the existence of intrinsic
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Figure 7. Example of the histogram of randomly
generated local geometric mean size. Bed material from
experiment BOMC6 provided the global grain size
distribution, which had a global geometric mean size of
2.64 mm. The total sample population was 240,000 (240
cells by 1000 realizations). The local geometric mean size
ranged from 1 to 37.5 mm, including some extreme
situations with very low occurring frequency.
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Figure 8. The dimensionless fractional transport rate (;)
normalized by the prediction of the Wilcock and Crowe
equation (W,;) as a function of dimensionless shear stress
(¢;). (a) Two hypothetical flume widths (0.3 and 1.2 m) are
tested to compare with the actual flume width (0.6 m). Cell
sizes are fixed at 0.1 m. (b) The modeling results using two
different cell sizes (0.1 and 0.2 m).

heterogeneity that may introduce significant uncertainty in
the sediment transport prediction. In field situations, how-
ever, the sediment is generally not “well-mixed” because of
hydrodynamic heterogeneity, stream geometry, and sedi-
ment sources. Hence the heterogeneity in field situations
may be even greater than the intrinsic heterogeneity. The
implication of the current study is that wherever heteroge-
neous sediment exists, it may introduce significant uncer-
tainty into the transport prediction if only the global GSD is
considered. In field applications, two-dimensional and
three-dimensional sediment transport models may be able
to accommodate the lateral (cross-sectional) variation of the
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GSD, but such models require descriptions of the initial
conditions for the spatial distribution of the GSD. If this
information is not available, an uncertainty analysis for the
sediment transport rate may improve understanding of the
deterministic predictions.

7. Conclusions

[36] The Monte Carlo simulation illustrates that the
macroscale deterministic transport model is unable to reveal
the uncertainty of the mixed size bedload transport process.
From the simulation results the following conclusions are
drawn.

[37] 1. The global GSD is not adequate for predicting the
fractional bedload transport rate. The transport rate of
gravel-sand mixtures corresponding to certain global GSD
is essentially a stochastic variable. The uncertainty can be
caused solely by the spatial heterogeneity of the local GSD.

[38] 2. The fractional transport rate can have significant
uncertainty induced by a heterogeneous bed material, while
the total transport rate has much less uncertainty. This is
consistent with the experimental results.

[39] 3. The simulation results show that the uncertainty is
increased as shear stress is reduced and as the grain size is
increased.

[40] The bedload transport process is extremely compli-
cated and it is related to many physical parameters and their
interactions. This study examines just one of these many
aspects. For example, questions still remain regarding the
cause of uncertainty at high transport rates where the
uncertainty associated with bed material heterogeneity is
low. Such uncertainty is apparently a complex affect of
multiple interacting factors.

[41] The work presented here has advanced our ability to
quantify one of the many sources of uncertainty in estimates
of sediment transport. Future research efforts in this area
should expand focus on quantifying other sources of uncer-
tainty and reducing uncertainty in sediment transport models.
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