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Abstract—This paper presents a mobile cloud computing 
application model and addresses how to minimize the energy 
consumption for uploading L size of data load within the T delay 
constraint. We propose a bandwidth allocation strategy for a LTE 
network with homogeneous sub-channel condition. Our objective 
is to allocate more bandwidth to each UE when its relative channel 
condition becomes better. We formulate the UE’s objective 
function as the sum of two penalty functions: channel condition 
penalty function which incentivizes base stations to minimize the 
energy consumption for every UE and Service Level Agreement 
(SLA) demand penalty function which guarantees L size of data 
load that can be uploaded in time. In the network scenario, we 
formulate the EnerGy Optimized (EGO) bandwidth allocation 
strategy as a linear programming model and solve it by the 
Simplex Method. Simulation results show that EGO can save 
energy of up to 60% for each UE and decrease the SLA violation 
rate in the network of up to 30% in comparison with the existing 
bandwidth allocation strategy in the uplink of the LTE network.  

Keywords—Bandwidth allocation, mobile cloud computing, 
energy optimal, Service Level Agreement, linear programming, 
simplex method 

I. INTRODUCTION 

Nowadays with increasingly more capable smartphones, 
different kinds of applications are emerging rapidly. However, 
due to the limitation of battery life, CPU and memory resources 
[1][2], it is still difficult to run computational intensive 
applications, such as image processing, mobile learning [3][4], 
mobile gaming [5][6], on the smartphones. Emergence of the 
Mobile Cloud Computing (MCC) technology has created a new 
commercial opportunity for smartphone application markets. 
By exploiting MCC, more complicated and computational 
intensive applications can be facilitated on the smartphones, as 
MCC may save energy for the mobile sets and reduce the 
execution latency [7][8][9]. Recently, several MCC platforms, 
such as MAUI [10], CloneCloud [11] and Cloudlet [12], have 
been proposed. The basic idea of these platforms is to associate 
each mobile set with one or more Virtual Machines (VMs) in 
the data centers to accomplish its MCC applications; this 
mechanism is referred to application offloading. 

The process of offloading can be simply characterized as: 
different UEs upload the MCC application data load to the data 
center via an access network; a number of VMs execute the 
applications and return back the results to UEs. Each UE’s data 
load can be depicted as <L, T> [7][13][14], where L is the data 
load size and T is the application completion deadline. 

However, not all the applications are suitable for execution in 
the cloud. Some of them may save energy and time by executing 
them locally rather than remotely. Therefore, research described 
in [13][14][15][16] focuses on designing a criterion to decide 
whether an application should be run locally or remotely. 
However, running some MCC applications, such as face 
identification and voice recognition, is still not a viable option 
since these applications require huge information which cannot 
be possibly and necessarily stored in the mobile set.  

In this paper, we focus on how to decrease the energy 
consumption of the UE when the MCC applications must be 
executed remotely or UE decides to offload the applications 
while satisfying the application’s Service Level Agreement 
(SLA) in terms of the time delay constraint T. In the MCC 
offloading process, the main energy consumption of UE is to 
upload the application’s data load from UE to Base Station 
(BS). The total energy consumed by UE depends on how much 
bandwidth is allocated by BS in different time slots. We 
formulate the bandwidth allocation problem within the 
framework of linear programming and the solution is a policy 
specifying how much bandwidth is assigned to each UE in 
every time slot.  

The rest of this paper is organized as follows. Section II 
provides an overview of related works. Section III presents an 
energy consumption model of UE in the LTE network and UE 
objective function for minimizing energy consumption and 
satisfying the application’s SLA. We formulate the bandwidth 
allocation strategy in the LTE network as a linear programming 
model. Section IV presents the performance evaluation results. 
Section V summarizes the paper and provides future directions.  

II. RELATED WORKS 

Previous works [13][14][17] have investigated the concept of 
offloading computation to decrease the energy consumption of 
a single UE. Zhang et al. [13] developed an optimal data 
transmission scheduling of a single UE in order to minimize the 
energy consumption of UE for transmitting L bits within the 
time constraint T. The Gilbert-Elliott channel model is adopted 
in the paper and the channel state is determined by a discrete 
state space Markov model. Lei et al. [14] offered an energy 
saving model to make an offloading decision of UE. Huang et 
al. [16] proposed a dynamic offloading algorithm, i.e., an 
optimal strategy for migrating different offloadable components 
from UE to the cloud, to save more energy while meeting the 
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time requirement of the applications.  
Moreover, some literatures have studied bandwidth 

allocation among different UEs on the uplink of the LTE 
network. Madan and Ray [18] formulated a convex 
optimization problem to maximize the total utility of all UEs’ 
data rates by allocating bandwidth to different UEs on the 
uplink of the LTE network. Pfletschinger et al. [17] proposed a 
computationally efficient subcarrier allocation algorithm for a 
multiuser OFDM system for uplink and downlink transmission. 
Huang et al. [19] proposed a maximum weighted sum rate 
resource allocation strategy for the uplink OFDM system by 
considering the heterogeneity of sub-channel conditions and 
discrete nature of sub-channel assignments. 

As compared to these previous efforts, this paper presents 
several enhancements. First, we apply the LTE technology as an 
access network for MCC application’s offloading. The 
application profile is different from the traditional applications 
in the LTE network for bandwidth sharing, and thus results in 
different formulations. Second, we provide the theoretical 
framework of bandwidth allocation in order to reduce energy 
consumption of all UEs in the LTE network rather than of a 
single UE. 

III. SYSTEM MODEL AND PROBLEM FORMULATION 

A. Mobile Cloud Computing Application Model 

We consider the MCC environment as shown in Fig.1 [20] in 
which the data transmission between UE and the remote server 
in a data center is facilitated through wireline and wireless 
connections. Specifically, wireless connections are facilitated 
by the LTE network. The wireline network enables 
communications among BSs, the application server, and servers 
in a data center. The application server receives the MCC 
application requests from UEs and assigns specific servers to 
different MCC applications according to some policy 
[21][22][23]. Once the communication link is established, UE 
can upload the application data load to the servers in the data 
center through BS. 

As mentioned earlier, every MCC application profile can be 
depicted as <L, T> where L is the application data load and T is 
the time constraint for completing the whole offloading process, 
which can be divided into four steps and involves time 
consumed for transmitting the data load from UE to BS, Tupload; 
time consumed for transmitting the data load from BS to data 
center, Ttrans; time consumed for data load processing by servers 
in the data center, Tprocess; time consumed for returning back the 
results from servers to UE via BS, Tback. We suppose that the 
connection between BS and servers in the data center [24][25] is 
a non-blocking link or the congested link can be quickly 
resolved, and so Ttrans can be approximated as zero [20]. Also, as 
compared to uplink data load size L, we assume the size of 
MCC application results is much smaller; and therefore, Tback 
can be negligible [13]. Hence, the time constraint of offloading 
T is primarily decided by Tupload and Tprocess. Tupload is determined 
by the amount of bandwidth resource that BS allocates to UE, 

i.e., if UE pays more for its data plan to the LTE network 
provider (e.g., AT&T or Verizon), it would incur less time to 
transmit the specific data load. On the other hand, Tprocess is 
determined by the amount of computing resources allocated to 
UE, i.e., if UE pays more to the data center provider (e.g., 
Amazon or Microsoft) for renting more VMs [26], it would 
acquire higher computing speed in terms of small Tprocess. 
Therefore, the MCC application profile can be separated into 
two parts according to different steps of offloading process: <L, 
Tupload > and <L, Tprocess >. In the paper, we do not consider the 
data load processing step, and so we modify the MCC 
application profile as <L, Tupload > in the uploading step. 

 
Fig. 1. Mobile cloud computing application model. 

B. Energy consumption model of UE 

The objective function of UE is to minimize the energy 
consumption for uploading  bits of data load while satisfying 
time constraint Tupload. We first discuss the energy consumption 
model of UE for the uplink transmission of the LTE network. If 
BS applies fractional power control [18] and we assume the 
sub-channel is homogenous, UE’s transmission power  in 
the Physical Shared Channel is [27]: 

  max 0 10min , 10log      [dBm]   txP P P PL M   (1) 

where  is the path loss from UE to BS, α is the path loss 
compensation factor, and  is the power offset. Note that α and 

 are the BS specific parameters, i.e., BS would broadcast the 
values to all the UEs for a time period.  is the number of 
Physical Resource Blocks (PRBs) allocated to UE. 	  is the 
maximum transmission power of UE. By converting the power 
units in Eq. (1) from dBm to mW, UE ’s transmission power in 
each time slot becomes: 

max
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where  is the transmission power of UE  in time slot , 
 is the amount of bandwidth in one PRB,  is the 

amount of bandwidth allocated to UE , and 10 . 
Here, we relax the constraint such that only an integer multiples 
of PRBs can be allocated to a UE and multiple users can share 
one sub-channel by time sharing [19]. 

Suppose the interference Power Spectrum Density (PSD) at 
the BS in every sub-channel is I0 and noise PSD is N0 (these two 



 

values can be measured by the BS periodically over unassigned 
resources [18]) and these two values are the same among 
different sub-channels since we assume sub-channels are 
homogenous. So, if UE transmits  of power over bandwidth 

 in time slot , based on Shannon-Hartley theorem, it can 
achieve a data rate of: 
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where  is the data rate of UE  at time slot  and  is the 
channel gain of UE  at time slot . The BS can measure  by 
decoding the Sounding Reference Signal (SRS) [28]. We define 

log 1  as the spectral efficiency of BS, 

and so UE ’s data rate is a linear function of : 
t t t

i i ir c b .            (4) 

C. Optimal transmission energy in LTE network 

The objective function of a single UE is to minimize the 
energy consumption for transmitting  bits of data load and to 
satisfy SLA, i.e., meet the time delay constraint. In other words, 
for each time slot, more bandwidth should be allocated to UE if 
its channel condition is better or UE’s SLA demand is much 
higher, i.e., transmitting more bits in less time slots. In order to 
achieve the goal, we define the channel condition penalty 
function and SLA demand penalty function. 

1) Channel condition penalty function 
From the energy saving aspect of view, good channel 

condition means UE can transmit more bits per unit of energy. 
So, we define the energy efficiency factor ζ  in order to indicate 
the channel condition at each time slot for UE i as 
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where ∆  is the duration of one time slot. Therefore, a large 
value of ζ  means UE ’s channel condition is good in 
comparison with other UEs at time slot . However, a larger 
value of energy efficiency factor does not mean that UE is 
favored to obtain more bandwidth than others at time slot t. For 
instance, if UE i has better energy efficiency factor ζ  than other 
UEs, but as compared with its average energy efficiency factor 
ζ  during its history window size, ζ  is much smaller than ζ . In 
this case, UE i should be less favored to obtain bandwidth at this 
time slot since it has higher probability to get better channel 
condition in terms of energy efficiency factor in the future for 
transmitting data more efficiently. So, we define relative 
channel condition  to measure the competence of obtaining 
bandwidth from the shared channels as 
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where  is the relative channel condition factor of UE 	  at time 
slot . Therefore, UE is more likely to get more bandwidth if it 
has better relative channel condition in terms of smaller value of 

, and vice versa. 
If UE is assigned  of power to UE i at time slot t, then we 

define the channel condition penalty function  as follows: 


   
t
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.       (7) 

Eq. (7) means if BS allocates more bandwidth to UE i with 
worse relative channel condition in terms of larger value of , 
BS would be penalized more, i.e., in order to decrease the 
penalty value, BS is incentivized to allocate more bandwidth to 
UE who has smaller value of . It is easy to see that  is a 
monotonically increasing function with respect to , i.e., if we 
only consider minimizing energy consumption of UE, BS does 
not prefer to allocate any bandwidth to UE. 

2) Service Level Agreement (SLA) demand penalty function 
SLA demand means transmitting  bits of data load within 

the time delay constraint . SLA demand changes at every time 
slots. It depends on how many bits UE has transmitted in the 
former time slots. Here, we use average data rate 	R L /T  to 
measure the degree of SLA demand of UE  at time slot .  
refers to the number of bits remaining at the beginning of time 
slot  and T  is the number of slots left at the beginning of time 
slot . So, a larger value of R  means a higher degree of SLA 
demand. Suppose that UE  is assigned  of power at time slot 
, we define the SLA demand penalty function  as follows: 
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where R  is the average data rate of UE  in terms of SLA 
degree at time slot 1 and  is a very small value in order to 
make the equation meaningful when T 1. Eq. (8) means if 
UE  is assigned  of power and reaches the data rate of  at 
time slot , then BS would be penalized more if UE 	 ’s SLA 
degree (i.e., R ) becomes much higher at time slot 1 as 
compared with the current data rate . In other words, in order 
to decrease the penalty value, BS is incentivized to allocate 
more bandwidth to UE i in order to maximize the difference 
between the current date rate and SLA demand at the next time 
slot.  is a monotonically decreasing function with respect to 

, i.e., if satisfying SLA demand is the only concern, BS 
prefers to allocate bandwidth to UE as much as possible. 
3) EnerGy-Optimized (EGO) bandwidth allocation strategy in 
LTE network 

There is a tradeoff between the two penalty functions, i.e., if 
BS wants to minimize the penalty of SLA demand, it would 
assign UE with enough bandwidth to transmit the whole data 
load, but on the other hand, UE would be penalized more for 
allocating more bandwidth in . So, the optimal bandwidth 
allocation should minimize the sum of both penalty functions. 
Here, we define a penalty function  of UE i at time slot t as 
follows: 

t t t
i i i if s g             (9) 

where  is a scalar to guarantee that the range of  and  is 
the same given the same increment value of , i.e.,  and  



 

should have the same influence on the penalty function . So, 
we need to find the expression of  first. 

If UE i’s bandwidth is incremented by ∆ ,  is 

decremented by ∆  and  is incremented 

by ∆ . So, we need to make sure  and 

 have the same value range. Since 1,  where 

 is UE i’s initial time constraint, we have 
1 1

,
1 1t initial

i iT T 
 

     

.       (10) 

Assume ζ  and ζ  are the largest and smallest energy 
efficiency factor of UE i’s historical record (BS records every 
UE’s channel information with a sliding window), and so the 
expectation of the historical energy efficiency factor ζ  should 

be lower than ζ ; we assume ζ ζ  where ∈ 0,1  

and based on Eq. (6), the range of  is , . Plugging in 

the expression of ζ , we have 
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Then, we have: 
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Since ∈ 1, ∞ , ∈ , ∞ . Substituting 

Eqs. (7), (8) and (12) into Eq. (9), we have: 
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where ζ /ζ . In the network scenario, suppose there are 
N UEs in the BS coverage area at time slot  and the total 
available bandwidth for BS is B. For each UE, the maximum 
transmission power is Pmax. The objective of the system is to 
minimize the total penalty value of UEs in each time slot: 
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The first constraint means the total bandwidth allocated to 
UEs should be less than the system capacity. The second 
constraint means the transmission power for each UE should be 
less than the maximum transmission power [18]. The third 
constraint means the number of bits that UE uploads at this time 
slot should be less than UE’s data load demand. It is a linear 
programming that can be solved by the Simplex Method [29]. 

IV. SIMULATION RESULTS 

We simulate the proposed EGO strategy in the network 
scenario. For comparison, we select the bandwidth allocation 
strategy proposed in [18] whose goal is to Maximize the total 
UEs data RATE (M-RATE) at each time slot, i.e., ∑ . 
Here, we assume the sub-channel condition is homogeneous. 

The system parameters are listed in Table 1. Initially, UEs are 
randomly distributed in the BS’s coverage area and the speed of 
UE is randomly chosen from 0 to 50m/s, meanwhile, the 
direction of UE’s movement is randomly chosen from -180 to 
180 degree. BS classifies the uploading services into 5 
categories (5 service classes) with respect to the average data 
rate: 100 KB/s, 75 KB/s, 50 KB/s, 25 KB/s and 20 KB/s. High 
average data rate may cost UE more monthly payment. The 
average data rate corresponds to the relationship between the 
data load L and time constraint T, e.g., if the average data rate is 

100 KB/s, then 
	

	 /
. The data load of each UE is 

randomly selected from 10KB to 5MB. 
In the first simulation, 1000 MCC UEs are uploading the data 

to BS, and they are uniformly assigned among the five service 
classes. We randomly choose one UE to trace its bandwidth 
allocation and energy consumption in different time slots with 
respect to the varying relative channel condition τ. The selected 
UE’s initial profile is <880KB, 8.8s> in terms of transmitting 
880KB data within 176 time slots. Figs. 2(a) and 2(b) show the 
bandwidth and energy consumption distribution among 
different time slots using the EGO strategy. In order to clearly 
show the bandwidth/energy consumption with respect to τ,	 we	
convert	the	unit	of	τ into the dB domain. In the figures, BS can 
select suitable time slot in terms of smaller value of τ to allocate 
enough bandwidth to UE in order to minimize the energy 
consumption. Meanwhile, SLA is satisfied (UE finished the 
uploading at the 100th time slot). Figs. 2(c) and 2(d) show the 
bandwidth and energy consumption distribution among 
different time slots using the M-RATE strategy We select the 
time range from520 to 770. M-RATE wants to maximize the 
total data rate at each time slot, and so in every time slot, BS 
would select the UEs who have larger values of spectral 

TABLE 1 
SYSTEM PARAMETERS 

Parameter Value 
Cell layout Circle grid,  
Cell radius 500 m 

The length of time slot ∆  50 ms 
Power offset P0 -68dBm 
Path loss compensation α 0.6 
Noise Power Spectrum 
Density  

-174dBm/Hz (thermal) [31] 

Interference Power 
Spectrum Density  

8  [31] 

Path loss model (dB) 34.5 35 [30] 
Shadow fading Log-normal, 8 dB standard 

deviation[30] 
Multipath fading SCME [30] 
Maximum transmission 
power Pmax 

24mW 

Total available bandwidth 
for BS B 

5MHz 
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(a) Bandwidth allocation of EGO and relative channel 

condition of specific UE at different time slots 
(b) Energy consumption of EGO and relative channel 

condition of specific UE at different time slots 
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(c) Bandwidth allocation of M-RATE and relative channel 

condition of specific UE at different time slots 
(d) Energy consumption of M-RATE and relative channel 

condition of specific UE at different time slots 
Fig. 2. Bandwidth allocation and energy consumption of specific UE at different time slots with respect to relative channel condition τ. 
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Fig. 3. Total energy consumption with respect to 

different number of UEs. 
Fig. 4. Average energy consumption with 

respect to different number of UEs. 
Fig. 5. SLA violation rate with respect to 

different number of UEs.

efficiency  and allocate enough bandwidth to them. The 
selected UE is completing its uploading process until the 744th 
time slot at which its SLA is violated. This is because the 
selected UE has the smaller spectral efficiency  than the other 
competitors (it is probably far away from the BS), and so it 
cannot obtain bandwidth at earlier time slots until the UEs who 
are closer to the BS in terms of better spectral efficiency finish 
the uploading process.  

In the second simulation, we vary the number of UEs from 
50 to 1000 in the network and record the total energy 

consumption, average energy consumption in terms of 
	 	

	 	
 and SLA violation rate in terms of 

	 	 	 	 	 	

	 	
. As shown in Figs. 3 and 4, 

EGO can save the total energy consumption and the average 
energy consumption of up to 60% when the number of UEs is 
small. This is because BS only considers the UE i’s current 
spectral efficiency , i.e., if it is larger than others, BS would 
allocate enough bandwidth to it. However, UE i’s current  
cannot indicate whether it has better channel condition at the 



 

current time slot as compared to its history, i.e., even if UE i’s 
current channel condition is worse than those of the past time 
slots, it also has the probability to get enough bandwidth for 
transmission data load, and  gets small as the number of 
competitors increases. Therefore, we can see that when the 
number of UEs in the network increases, the two strategies’ 
total energy consumption and average energy consumption are 
getting closer. In Fig. 5, the M-RATE’s SLA violation rate 
increases (up to 30%) as the number of UEs in the network 
increases. This is because M-RATE does not consider SLA 
demand in its objective function, and so UE who has worse 
spectral efficiency always gets lower priority to acquire 
bandwidth no matter how high its SLA demand degree is. On 
the other hands, the SLA violation rate of EGO is very low 
(around 0.1%). Since EGO considers SLA demands as part of 
its objective function, when the UE’s SLA demand degree 
becomes higher, BS is incentivized to allocate more bandwidth 
to it even if its relative channel condition is a little bit worse.  

V. CONCLUSION 

In this paper, we have investigated the issue of saving energy 
for resource-constrained mobile devices during the uploading 
process. The MCC application’s profile is characterized as <L, 
T>, and we have proposed a bandwidth allocation strategy to 
decrease the energy consumption of UEs for uploading L data 
load while satisfying the SLA demand. The objective function 
of each UE is characterized by two penalty functions, which 
reflect the relative channel condition and the level of SLA 
demand. Simulation results have demonstrated that the 
proposed bandwidth allocation strategy, EGO, can save energy 
of up to 60% for each UE as well as decrease the SLA violation 
of up to 30% as compared with the existing bandwidth 
allocation strategy M-RATE. 

In the future, we will apply the method for heterogeneous 
sub-channel condition of the uplink channel and evaluate the 
performance by simulating the strategy in different scenarios. 
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