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Abstract—To provision IT solutions with reduced operating
expenses, many businesses are moving their IT infrastructures
into public data centers or start to build their own private data
centers. Data centers can provide flexible resource provisioning
in order to accommodate the workload demand. In this paper,
we present a comprehensive survey of most relevant research
activities on resource management of data centers that aim to
optimize the resource utilization. We first describe the resource
overprovisioning problem in current data centers. Then, we sum-
marize two important components in the resource management
platform and present the benefit of accurately predicting the
workload in resource management. Afterwards, we classify ex-
isting resource management in a data center into three categories:
Virtual Machine (VM) based, Physical Machine (PM) based and
application based resource management mechanisms. We discuss
the performance degradation for implementing these three kinds
of resource management in a heterogeneous data center. Finally,
we present three important issues arised in the data center
resource management and some potential approaches to address
the issues. This paper presents a timely survey on resource
management in a data center, and provides a comprehensive
reference for further research in this field.

Index Terms—Resource management, resource utilization, re-
source allocation, workload prediction, data center.

I. INTRODUCTION

INTERNET based commerce has been blooming and grow-
ing rapidly in recent years, and data centers [1] are

enabling IT solutions for facilitating e-commerce because
of their great potential in reducing the operating expenses
(OPEX) and management overheads, i.e., data centers provide
a shared elastic computing infrastructure to different business
tenants for hosting multiple applications. More specifically,
data centers provision services in terms of Infrastructure as
a Service (IaaS), Platform as a Service (PaaS) or Software
as a Service (SaaS) to different tenants based on their de-
mands. Meanwhile, the Service Level Agreement (SLA), a
service contract assigned between a tenant and a data center
provider (e.g., Amazon), is guaranteed by the data center
among tenants. As a reward, tenants would make payment for
renting the resources from data center providers via different
charging models (e.g., pay-as-you-go model and reservation
model). However, resource utilization of a data center is not
efficient for managing on-demand applications. Studies [2],
[3] have shown that servers (note that the terms “server”
and “Physical Machine (PM)” are interchangeably used in the
paper) in the data center are underutilized most of the time due
to overprovisioning for the peak resource demand. Resource
overprovisioning results in the energy inefficient problem in
the data center that increases the data center provider’s budget

X. Sun and N. Ansari are with Advanced Networking Lab., Electrical &
Computer Engineering Dept, New Jersey Institute of Technology, Newark, NJ
07102, USA. E-mail:{xs47, nirwan.ansari}@njit.edu.

R. Wang is with Huawei Technologies Co., Shanghai, China.

and CO2 footprint [4]. Although server virtualization [5] by
enabling resource multiplexing among Virtual Machines (VMs)
in one server mitigates the resource overprovisioning problem,
resource utilization in a data center is still rather poor. It is
reported that the mean utilization of CPU, memory and disk
on several thousands of servers, which were randomly selected
from different data centers during the period from June 2009
to May 2011, were 17.76%, 77.93% and 75.28%, respectively
[6]. Reiss et al. [7] collected the resource utilization traces
of VMs in one cluster over the 29 day period from the
Google Cluster Trace [8] and found out that the average CPU
utilization is less than 60% and the average memory utilization
is less than 50%. Obviously, the resources in a data center
are overprovisioned most of the time, especially the CPU
resource which consumes more energy than other resources.
Therefore, adopting an agile resource management mechanism
to accommodate the dynamics of application resource demand
is critical in enhancing resource utilization without violating
applications’ SLAs in the data center. The application resource
demand refers to the number of VMs required to serve the
application and the amount of resources (CPU cycles, memory,
and network I/O) assigned for each VM. Instead of optimizing
resource utilization, some studies manage the resources in
order to minimize the energy consumption of the data center
[9]–[11], and others aim to reduce the operational cost of
running a data center by making use of resource management
[12], [13]. The resource management approach to achieving
the three objectives is quite similar. In this paper, we focus
on optimizing resource utilization, one aspect of resource
management.

A resource management platform, normally, consists of two
parts: Global Resource Manager (GRM) and Local Resource
Manager (LRM) [14], [15]. GRM provides a global view
of the resource provisioning strategy, i.e., GRM determines
each VM’s location (VM that is hosted by a corresponding
server) so that the physical server has sufficient but not
superfluous resources to host the VMs. Live VM migration
is applied to implement global resource management. GRM
provisions coarse time scale resource management because
of the complexity of running the global resource allocation
algorithm. LRM, installed in each server, is to implement VM
based operations (such as creating, starting, terminating and
migrating VM), which are controlled by GRM. Meanwhile,
LRM assigns server-based resources to the hosting VMs
according to the information from GRM and dynamically
adjusts the resources to its VMs based on their real-time
resource demands. However, LRM is unaware of other servers’
information (such as other servers’ resource utilization) or
application-based information (such as the performance of
applications which are running on the other servers).

GRM comprises two components as shown in Fig. 1.
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The workload demand predictor is to estimate the workload
demand of the selected object for the next time period based
on the historical data traces stored in the database. The object
can be VM, server or application; the workload demand of a
different object may incur different resources, i.e., if GRM
selects VM as the object, then the VM workload demand
normally refers to the resource (CPU cycles, memory, and
network I/O) utilization of the VM in the dedicated server
[17]; if GRM selects server as the object, then the server
workload is defined as the sum of the resource utilization
of all VMs [19], and the application workload is referred to
as the average number of application requests arrived in the
time period [20]. Also, owing to the different characteristics
of objects’ workload data traces, choosing different objects
results in adopting different prediction models to estimate
the objects’ future workload demands. The Global Resource
Allocator (GRA) in Fig. 1 is to assign resources to every
object based on its estimated workload demand and to map the
estimated resources of the objects to different servers so that
the total resource utilization of servers in the data center is
maximized and applications’ SLAs are guaranteed. The GRA
in GRM would adopt a different strategy in estimating the
workload of choosing a different object. Often, LRM does
not implement the workload demand predictor because the
prediction algorithm is computationally intensive and running
the prediction algorithm on each server will drain the server
resources. However, LRM can trace the workload of the object
or sense the object’s performance, and utilizes the information
to fulfill local resource provisioning by the Local Resource
Allocator (LRA) in LRM.

Workload demand prediction is critical for resource man-
agement for two reasons. First, the workload of an object is
fluctuating over time, and the resource allocation strategy in
the current time period may not be suitable in the next time
period. Second, a resource allocation strategy may incur VM
migration, which takes time to complete the process [21]. So
predicting the workload demand is necessary to proactively
manage resources of the objects. Zhen et al. [14] showed
that resource management with workload prediction outper-
forms resource management without workload prediction. The
accuracy of the workload demand prediction algorithm is
a very important factor in determining the performance of
the whole resource management mechanism. A huge bias
of workload prediction leads to a big deviation in resource
demand estimation of the objects that may result in resource
overprovisioning or underprovisioning.

Based on the workload demand of the objects to be pre-
dicted, we can category the resource management mechanism
into three types: VM, PM, and application workload prediction
based resource management mechanisms, respectively. We
structure the rest of the paper as follows. Sections II, III,
and IV present the VM, PM, and application workload based
resource management mechanisms, respectively. Section V
discusses the performance degradation of implementing these
three types of resource management in a heterogeneous data
center. Section VI presents several issues that arise in the data
center resource management and some potential approaches to
address the issues. Section VII summarizes and concludes the

survey.

II. VM WORKLOAD BASED RESOURCE MANAGEMENT

VM workload based resource management is to predict each
VM workload based on its historical workload data traces and
to assign the necessary resources to every VM based on the
estimated workload. The architecture for realizing the VM
based resource management mechanism is shown in Fig. 1.
The server in Fig. 1 is implemented by Xen based hypervisor.
LRM, which is located in Domain 0, traces the workloads of
all VMs in Domain U and reports them to GRM. VM workload
based resource management strategy consists of two parts: the
VM workload prediction algorithm, which is run in the GRM’s
VM workload predictor component, and the VM workload
based resource allocation method, which is implemented by
GRA in GRM and LRA in LRM.

A. VM workload prediction

Normally, the VM workload is defined as the average uti-
lization of different types of resources of the VM in its hosting
server during a fixed time period. The types of resources
include CPU cycle, memory, and network I/O resources. So,
VM workload based prediction executed in GRM is to estimate
the resource utilization of each VM in the server for the next
time period based on each VM’s historical workload data
traces.

Jheng et al. [22] argued that the historical VM workload
data traces from the same day have weak correlation with
the current VM workload, but there is a strong correlation
between the current VM workload and the workload from the
same time in the previous week. The Grey forecasting model
is applied to predict the tendency of CPU, memory and hard
disk utilization of VMs.

Kashifuddin et al. [23] proposed to use chaotic theory to
predict VMs’ workloads. They argued that the VM’s workload
data traces may not exhibit a cyclic pattern, i.e., the same or
similar workload pattern may not appear in a fixed period,
and the VM’s workload cannot be accurately predicted for a
long term, i.e., the prediction error is exponentially increasing
with respect to the prediction time. By proving that the
workload follows a Chaotic time series, they proved that
the maximum Lyapunov Exponent value of the time series
data samples from the Google Cluster Data Trace [8], NASA
[24] and the World Cup [24] data trace are all positive [25].
Based on the proof, chaos theory is applied to predict each
VM’s workload in terms of the VM’s CPU utilization in the
future by using the historical data trace of each VM. In the
experimental evaluation, the proposed VM workload based
prediction algorithm estimates the CPU usage of a single
VM in 5-minute intervals with Mean Square Error (MSE)
between 0.005 and 0.015 (depending on different data traces
run on the VM) that outperforms other prediction methods,
i.e., Fourier Transform with Sliding Window [26] and Wavelets
with Markov Chains [27].

Based on the Exponentially Weighted Moving Average
(EWMA) model, Zhen et al. [14] predicted the CPU, memory
and network I/O resource demand of each VM for running
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Fig. 1. VM workload based resource management platform.

Internet applications. Meanwhile, in order to predict the VM
resource demand conservatively, they proposed the Fast Up
and Slow Down (FUSD) prediction algorithm by adapting the
smooth coefficient of the EWMA model when the observed
resource demand is going up or down, i.e., FUSD algorithm
would predict the resource demand a little higher than the
expected whenever the observed resource demand is going
up or down (the predicted resource demand is increasing
faster than the observed resource demand when it is going
up and the predicted resource demand is decreasing slower
than the observed resource demand when it is going down)
to reserve more resource for the demand. The experimental
results show that by choosing proper system parameters, 77%
of the predicted CPU utilization is higher than the observed
one with the mean error of 9.4%.

Arijit et al. [28] showed that each application running in
the cloud can be decomposed into one or more components in
terms of jobs and each of which is served by a collaborative
set of VMs. By analyzing the discretized time series data,
they found that the workload data traces of VMs from the
same collaborative set tend to vary in a collated fashion. So,
they analyzed the historical time series data of workload traces
of all VMs and grouped the VMs as a cluster in which all
VMs show the similar recurring workload patterns. Instead
of predicting the VM’s workload individually, the proposed
prediction is based on per cluster, thus eliminating the noise
and randomness in individual VM workload measurements.
Meanwhile, they pointed out that not all the clusters’ workload
demands are predictable since the predictability of the VMs in
the same cluster varies. The cluster-based autocorrelation func-
tion and time-lagged cross-correlation function are introduced
to determine the predictability of the cluster, i.e., whether the
workload of a cluster can be predicted by its historical data
trace or by at least one other cluster’s workload data traces.
Hidden Markov model is applied as an estimation model for
a group of clusters (i.e., every cluster in the group is self-
predictable or predictive of other clusters in the group) to

foresee the CPU utilization of all VMs in the group. The
experiments are based on 21 days of CPU utilization time
series collected from one enterprise customer. The results
show that 91% of the VMs’ workload in the cluster can
be correctly predicted within 10% error and the VMs with
higher workloads in the cluster achieve higher prediction
accuracy (approaching approximately 100%) than VMs with
lower workloads.

Chen and Shen [29] also drew a similar conclusion that
VMs from the same tenant (i.e., VMs collaboratively serve
the same application) exhibit the similar resource utilization
time series. Meanwhile, the resource demands of VMs exhibit
a daily periodical pattern. They analyzed the Google cluster
trace [8] and PlanetLab trace [30] to prove the conclusion.
Based on these two characteristics of VMs’ resource utilization
time series, they estimated the future resource utilization of
VMs by detecting the resource demand patterns (i.e., finding
the smooth envelop of the resource utilization time series) of a
set of VMs (i.e., VMs serve the same application) in the past
24 hours.

Bobroff et al. [31] argued that not all the VMs’ workloads
are predicable, i.e., the prediction of some VMs’ workloads
may result in relatively larger prediction errors (i.e., the
width (standard deviation) of the prediction error distribution
is larger than the width of the workload distribution). The
larger prediction error brings about the misleading of VM
resource management later on. They pointed out that if a
VM’s workload time series is lack of periodicity or suffers
a quickly decaying autocorrelation function (i.e., the VM’s
workload undergoes random fluctuations over time), then
proactive resource management applied into these type of VMs
is meaningless.

The VM workload prediction module can be easily imple-
mented because it does not need to acquire any application-
based configuration. The monitoring engines (e.g., XenMon
[33] and virtual firewall-router [5]) in each server’s hypervisor
periodically monitor its VMs’ resource utilization and report
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it to GRM. However, VM’s workload exhibits non-stationarity
over time, i.e., VM’s workload changes unpredictably with
time, especially, the VMs serving some short-running tasks
(e.g., DAG-of-tasks in MapReduce system). In other words,
the ownership of a VM varies over time (i.e., a VM may be
rent by different tenants over a certain time period), and thus
the tasks running in the VM may also vary over time. Different
tasks incur different computational complexities, hence leading
to the resource utilization of a VM randomly fluctuated over
time, and so the VM resource utilization may be unpredictable.
Some long-running tasks exhibit predictable features (e.g.,
periodicity), but VMs’ resource utilization may also be poorly
estimated in some scenarios. This is because each VM’s
resource utilization not only depends on the application users’
activities (i.e., the number of requests for running the tasks in
the VM), but also relies on other factors, such as the workload
scheduling strategy. For instance, one VM may cooperate
with other VMs in serving the same application, and so the
dynamic workload scheduling strategy can affect the individual
VM’s workload. Therefore, it is a big challenge to accurately
predict the VM workload. In order to notify and capture
the dynamic changes of VMs’ resource demands in time,
VM workload prediction models need to update the model
parameters frequently. Meanwhile, there is a tradeoff between
the prediction period (i.e., the duration allowed to predict
the VM workload) and the accuracy of prediction results,
and so the prediction period is setup relatively small (e.g.,
several minutes or hours) to guarantee the accurate prediction
results. Furthermore, the VM resource utilization reflects the
VM workload, and thus the VM workload can be depicted
as resource utilization of the VM in the server. However, if
the servers in the data center are heterogeneous (the servers
with different resource capacities), the VM resource utilization
prediction model, applicable for the current server, may no
longer work for the server to which the VM has migrated.
Thereby, the accuracy of the prediction algorithm degrades
considerably. The premise of server homogeneity imposed by
the above methods impedes their practical deployments.

B. VM workload based resource allocation

Recent resource management platforms, like VMware DRS
[34], Microsoft PRO [35], HP PRM [36] and IBM PLM [37],
are all VM workload based resource management. They are
trying to achieve better performance isolation (the resource
consumption of one VM should not impact the promised guar-
antees of other virtual machines on the same hardware) and
provide a platform to dynamically allocate resources to VMs
based on the VMs’ resource utilization or the static shares so
that various resource allocation strategies can be implemented.
Normally, VM workload based resource allocation is imple-
mented by two means: LRA in GRM and GRA in LRM. LRA
provides fine-grained resource allocation by utilizing real time
resource utilization information and the information provided
by GRM. GRA, on the other hand, provides coarse-grained
resource allocation based on the estimated resource utilization
of VMs.

1) VM workload based Global Resource Manager: The
optimal resource allocation, as mentioned before, is to maxi-
mize resource utilization without violating applications’ SLAs.
However, VM workload based GRA is agnostic to the appli-
cation level information, implying that GRA is unaware of
the application’s performance (such as the average application
response time and the average application throughput). In
order to account for the application level aspect, an assumption
is made that applications’ SLA are violated whenever the
server is overloaded, i.e., the summation of resource utilization
of VMs housed within the same server reaches a predefined
threshold [14], [21], [38]. So, in order to guarantee SLA, VM
workload based resource allocation should guarantee the total
resource utilization of the server to be less than the threshold;
otherwise, VM migration is triggered to move the workload
to the lightly loaded servers or a new server. On the other
hand, if the estimated resource utilization of the server (the
summation of resource utilization of VMs in the server) is too
low, server consolidation [14], [39], [40] is enabled to enhance
the resource utilization.

Studies [21], [38] have proposed the similar ideas of VM
migration strategy which tries to detect underprovisioned
servers (i.e., the server’s resource utilization is higher than
a threshold) and determine a suitable VM in the underpro-
visioned server to be migrated to an overprovisioned server,
which has enough space to host the VM without becoming an
underprovisioned server. Wood et al. [21] chose the VM with
smaller volume value (i.e., lower resource demand) to be mi-
grated from the underprovisioned server to the overprovisioned
one, while Farahnakian et al. [38] selected the VM with the
minimum migration time (the migration time is determined by
the VM’s memory size and available network bandwidth [49]),
which is more suitable for the live VM migration among data
centers (i.e., wide area network VM live migration).

Eliminating the number of underprovisioned servers cannot
solve the problem that the resources in the data center are
underprovisioned, i.e., the number of awaked servers in the
data center cannot satisfy the resource demands of applica-
tions, and so new servers should be woken up. Chen and Shen
[29] proposed a complementary VM allocation (CompVM)
mechanism, which tries to optimize the location of each VM
in each time slot so that the number of awaked servers is
minimized. In other words, CompVM tries to find a VM
allocation solution such that each VM is assigned to the server,
which can satisfy its resource demands, and the multiple
dimensional resource utilization of all the awaked servers is
minimized. Bobroff et al. [31] also proposed the similar VM
allocation mechanism. They formulated the VM allocation
problem as a one-dimensional bin-packing problem (only CPU
is considered as the resource of interest) and applied the first-
fit heuristic algorithm to derive the optimal VM placement in
each time slot. Recalculating the optimal location of every VM
in each time slot can maximize the resource utilization of the
data center, but the complexity of running the algorithm in a
large data center is a big challenge. Moreover, recalculating
the optimal location of every VM in each time slot may incur
the unnecessary migrations (i.e., the cost of migration is larger
than the benefit of migration) and oscillations (i.e., some VMs
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migrate back and forth in every time slot).
Zhen et al. [14] defined two kinds of server groups ac-

cording to the predicted server’s resource utilization (CPU
utilization, memory utilization, and network I/O utilization):
if all types of predicted resource utilization of the server are
below a cold threshold (a lower resource utilization threshold),
then the server is enlisted in the cold spot group; if any
type of predicted resource utilization of the server is above
a hot threshold (a higher resource utilization threshold), then
the server is enlisted in the hot spot group. The predictor
shown in the resource manager architecture (Fig. 2) is to
estimate the resource utilization of each VM. The Hotspot
Solver tries to find a migration strategy for every server in the
hot spot group so that the utilization of any of the server’s
resource is below a hot threshold, i.e., none of the server
is overloaded. The Coldspot Solver is triggered when the
average resource utilization of all active servers is below a
green computing threshold, which indicates that the resource
is fully overprovisioned. The Coldspot Solver tries to move
all the VMs from the sever, which are in the cold spot group,
to the servers whose resource utilization is below a warm
threshold (a median resource utilization threshold indicates
that the sever is running with a certain resource utilization
level below that of the hot spot group) so that the original
cold servers can go into the standby mode. All the migration
decisions are enlisted into the migration list and executed
in the first come first serve fashion. Therefore, in order to
guarantee the SLA, all the servers in the hot spot group should
be removed by VM migration, meanwhile, in order to improve
the resource utilization, the number of servers in the cold
spot group should be minimized. Beloglazov and Buyya [32]
provided the similar idea to determine the server is under-
utilized (i.e., the server’s utilization is lower than the minimum
threshold) or over-utilized (i.e., the server’s utilization is higher
than the maximum threshold), and they tested the total energy
consumption of the data center as well as the SLA violation
rate by selecting different values of minimum and maximum
threshold.

2) VM workload based Local Resource Manager: Owing
to the long time interval required for preforming global
resource management and dynamic changes of VM’s resource
demand over time, more flexible resource adjustment in the
local server can improve resource utilization and application
QoS significantly. In other words, VM workload based GRM
determines the suitable servers to host VMs in the data center
and LRM tries to satisfy the real-time resource demands of
VMs in a dedicated server. One simple approach for assigning
resources to local VMs is static allocation, i.e., local resource
management assigns the weight to different VMs over time
slots and allocate the amount of resources to VMs which are
proportional to their weights, meanwhile, each VM’s weight
is equal to the resource utilization estimated by GRM [14].
Yet, static allocation becomes inefficient if VMs’ loads vary
over time. Therefore, a more efficient resource allocation
strategy in the LRM needs to be designed. The optimal local
resource allocation strategy is to achieve high server’s resource
utilization, reduce applications’ response time and fairly assign
resources to VMs in the server. Different types of resource

adopt different resource scheduling strategies and we will
discuss them separately in the following.

a) CPU resource scheduling: A CPU resource allocator
(located in Domain 0 in Xen based server), i.e., a CPU
scheduler, is to assign the CPU resource to different VMs
in the same server. There are three kinds of CPU schedulers
provided by Xen: Simple Earliest Deadline First (SEDF) [42],
Borrowed Virtual Time (BVT) [43] and Credit Scheduler [44].
In the SEDF scheduler, each job is given two parameters, i.e.,
period Pi and slice Si (where i is the index of jobs), and
the SEDF scheduler tries to guarantee job i by assigning the
job at least Si amount of time in a period of Pi. So, the
SEDF scheduler defines the priority of a job as the deadline
of the job, i.e., the time at which the job’s period ends.
Based on that, the SEDF scheduler provides a dynamic priority
real-time scheduling policy among jobs from different VMs.
More specifically, SEDF maintains a preemptive queue and
schedules jobs according to their dynamic deadlines. Tseng
and Huang [45] pointed out that SEDF performs badly when
a server is in the overload condition, i.e., all the jobs running in
the server may miss their deadlines (domino-effect of missed
deadlines). They proposed to execute the Deadline Monotonic
(DM) scheduling, i.e., a fixed-priority preemptive scheduling
algorithm, in a CPU scheduler when the server is overloaded
and the CPU scheduler chooses the SEDF scheduling when the
server is not overloaded. This is because the DM scheduling
can guarantee higher priority jobs in meeting their deadlines
at the expense of lower priority jobs in missing their deadlines
[46], i.e., even when the server is overloaded, the DM schedul-
ing can guarantee the SLAs of higher priority jobs rather than
violating all jobs’ SLAs.

Duda and Cheriton [43] proposed a novel BVT scheduling
algorithm for either uniprocessor or multiprocessors platform.
In the long term, the BVT scheduling tries to share the CPU
usage among jobs proportionally by their weights. On the other
hand, in the short term, some latency-sensitive jobs are allowed
to warp back in their virtual time (i.e., execution time of jobs)
so that the jobs can be served earlier, i.e., the latency-sensitive
jobs can borrow virtual time from their future CPU usage. By
implementation, the BVT scheduler sorts the jobs with their
virtual time and dispatches them with the smallest virtual time
first.

The Credit Scheduler [44], [47] is the default CPU scheduler
in a Xen-based server. It tries to automatically balance the load
from VMs across all available physical CPUs on a symmetric
multiprocessor server. Each VM is assigned a weight and a
cap. The cap is an absolute value defining the amount of CPU
resource that one VM receives (i.e., one VM’s CPU capacity)
and the weight is a relative value which is proportional to
the CPU resource that the VM receives. In each time slice,
the scheduler transforms the weight into a credit allocation
for each VM. Once a VM is assigned the CPU resource, its
credits will be consumed. The priority of a VM can be one of
two values: over or under, which indicates the VM’s credit is
depleted or not, respectively. So, if the VM is out of credits,
it only runs when other higher priority VMs (i.e., VMs with
credits remaining) have completed their execution.
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Fig. 2. VM workload based resource manager architecture [14].

b) Memory resource scheduling: In order to share a
server’s memory among its hosting VMs, the hypervisor of
the server virtualizes the physical memory by adding an extra
level of address translation, i.e., a mapping function between
a virtual address (which is used by VMs) and a physical
address (which is a software abstraction in order to provide
the hypervisor with the status of the hardware memory). In
general, there is a tradeoff between VMs’ performance isola-
tion and efficient memory utilization in the memory resource
scheduling, i.e., static memory scheduling (reserve the amount
of memory to VMs to be applied in the Xen-based server [5])
performs better performance isolation and incurs lower control
overhead, but it may result in lower memory utilization and
VMs’ performance degradation. On the other hand, dynamic
memory scheduling among VMs can improve the memory
utilization since the scheduler can automatically assign the
memory to VMs to accommodate their memory demands, but
the performance isolation may be violated. Different from the
CPU resource, which can be immediately assigned to the jobs
according to the real-time information (such as the deadlines
of the jobs), adjusting the memory size to the hosting VMs
needs to modify the physical memory address among the VMs,
which is not as flexible as the CPU resource scheduling. Thus,
normally, the memory resource scheduling period is longer
than the CPU resource scheduling period and the memory
resource scheduler relies on the historical memory usage of
the hosting VMs (i.e., non-real time information) to estimate
the VMs’ future memory usage.

Waldspurger [48] proposed a ballooning technique in the
memory management in order to achieve efficient memory
utilization and guarantee memory performance isolation. Each
VM in a server is installed a balloon module, which is to
allocate the VM’s pages and map them into physical memory.
The hypervisor of a server can increase or reclaim the memory
of one VM by implementing balloon inflating or deflating
operation. The memory allocation strategy in the ballooning
technique is based on each VM’s memory usage and its share-
based entitlement, i.e., if the VM has less idle memory and
shares more memory pages with other VMs (content-based
page sharing is provisioned in the ballooning technique, i.e.,

if some VMs try to access the same contents in the memory
pages, one of the VM can share its memory pages with others),
it would be assigned more memory in the next time slice, and
vice versa.

Heo et al. [49] proposed a dynamic memory allocation
strategy based on the memory usage of each VM. Initially,
the hypervisor set two values (i.e., Umax and Umin) to ensure
the minimum and maximum amount of memory assigned to
each VM. The memory usage of each VM is monitored and
once the VM’s memory usage is below a predefined threshold
in the previous time slice, the hypervisor would revoke its
free memory and assign it to the other VMs. Basically, the
hypervisor dramatically assigns extra memory to VMs, which
are underprovisioned, and slowly revokes the idle memory of
VMs, which are overprovisioned.

Lu and Shen [50] presented that VMs’ memory usage may
not be related to VMs’ performance, i.e., the memory usage
based allocation strategies may probably degrade the VMs’
QoS. They proposed to use the VM page miss ratio (the
number of page misses under the new VM memory allocation
divided by that under its baseline allocation) as a parameter to
determine the VM memory allocation and guarantee the VM’s
performance consequently. Specifically, each VM is assigned a
baseline memory allocation initially (baseline memory alloca-
tion ensures each VM’s bound performance). The hypervisor
of a server allocates the remaining memory resources to VMs
so that the overall page misses (i.e., the geometric mean of
each VM’s page miss ratio) is reduced. As a consequence, the
VM with a higher page miss ratio would obtain more memory
resource as compared to the VM with a lower page miss ratio.

c) Network I/O resource scheduling: Network I/O vir-
tualization technologies enable VMs share the network re-
source of a server to improve the network I/O utilization
and provide flexible connectivity. In general, the network I/O
virtualization architecture is shown in Fig. 3 where each VM
has at least one Virtual Network Interface Card (VNIC) to
communicate with other VMs. Virtual bridge (such as Open
vSwitch [51], VMware’s vNetwork distributed vswitch [52]
and Cisco’s Nexus 1000V [53]) is a software layer located
between VNICs of VMs and Physical Network Interface Cards
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Fig. 3. Network I/O virtualization Architecture.

(PNICs). It provides packet forwarding between VNICs and
PNICs based on forwarding tables. Also, it supplies flexible
connectivity management (e.g., Open vSwitch supports both
VLANs and GRE tunnels [54]), traffic statistics collection and
QoS enforcement, etc. One of the challenges in the network
I/O virtualization technologies is to allocate the network
resource to VMs so that 1) VMs can fairly share the network
resource, 2) the network resource usage is improved, and 3) the
minimum QoS is guaranteed among VMs [55], [56]. However,
different from the CPU and memory scheduling, scheduling
the network resource in a server is not sufficient to achieve
the goals mentioned above, because the traffic of a VM may
go through not only PNICs in a server but also switches in a
data center, i.e., if only the allocation strategy at the access
point (server side) is considered, the network resource will be
overprovisioned in a server’s PNICs (because the bottleneck
would be at the aggregation or core switches in the data cen-
ter). Popa et al. [55] presented that it is impossible to achieve
network-level proportional resource allocation (i.e., end-to-
end data rate is proportional among different flows based on
the flows’ weights), guarantee minimum QoS of each VM
and maximize network resource utilization simultaneously,
because there are two kinds of tradeoffs among these three
goals, i.e., 1) the tradeoff between network-level proportional
resource allocation and high utilization, and 2) the tradeoff
between network-level proportional resource allocation and
minimum QoS guarantee of each VM. Therefore, designing
an optimal network I/O resource scheduling in a data center
is very challenging.

By applying the models proposed in [57]–[59], it is easy to
achieve flow-based network resource fair-sharing in a single
link (i.e., fair-sharing the network resource in a single server or
a single switch). The authors in [60]–[62] tried to fairly assign
the network resource to flows in a congested link by notifying
the source VMs to fairly reduce their transmission rates. Sun
and Ansari [63] proposed the persistence proportional sharing
at network-level (PPS-N) algorithm by fairly assigning the
bandwidth (i.e., network resource) to flows at the congested
links. On the other hand, rather than providing fair resource
allocation, Ballani et al. [64] proposed a virtual cluster struc-
ture in order to guarantee the network performance among
different tenants (i.e., minimum QoS guarantee) by reserving
the bandwidth to VMs. Guo et al. [65] assumed that all the

aggregate and core switches in a data center are non-blocking,
and so they tried to design a server-based fair bandwidth
allocation. They modeled the bandwidth competition among
VMs as a cooperative bargaining game, and tried to 1)
guarantee the minimum bandwidth allocation to VMs based
on their base bandwidth requirement, and 2) proportionally
share the remaining bandwidth based on their weights. Pascal
and Gulati [66] also considered a server-based fair bandwidth
allocation, but they considered not only the minimum QoS
guarantee and proportional sharing, but also tried to provide
performance isolation among VMs in a server by limiting
the maximum bandwidth allocation to VMs. To improve the
network resource utilization, Sun and Ansari [63] proposed
the bandwidth efficiency persistence proportional sharing in
network level (BEPPS-N) algorithm. By allowing each PNIC
running in the work-conserving mode, the algorithm tries to
assign the bandwidth to all the flows in a link as much as
possible, thereby achieving max-min fairness. Raiciu et al.
[67] demonstrated that enabling the multipath forwarding1 in
a data center network can significantly increase the throughput
and resource utilization of the network.

Note that the network I/O resource scheduling strategies
mentioned above are to allocate the bandwidth to the VMs
once the location of each VM is determined (i.e., each VM has
already been assigned to the corresponding PM). However, the
locations of the VMs can significantly affect the performance
of the network resource scheduling strategy. For instance,
suppose there are two VMs, i.e., VM 1 and VM 2, and each
PM can only host one of the two VMs; meanwhile, assume
the traffic demand from VM 1 to VM 2 is 1 unit and the
residual link capacity of the rack switch and aggregate switch
is 1 unit and 0.9 unit, respectively. As shown in Fig. 4(a), for
a bad VM placement, the network will be congested on the
aggregate links no matter what kind of network I/O resource
scheduling strategy is applied. For a good VM placement, as
shown in Fig. 4(b), QoS of each VM will be satisfied. In
Section VI-A, we will discuss resource allocation by jointly
optimizing the VM placement and bandwidth (i.e., network
I/O resource) scheduling in detail.

III. PM WORKLOAD BASED RESOURCE MANAGEMENT

PM workload based resource management is to predict
each PM’s workload based on its historical data trace and
preform PM based resource allocation. The platform of PM
workload based resource management is similar to that of VM
workload based resource management (Fig. 1), but the LRM
only traces its PM’s workload rather than all VMs on the
PM. PM workload based resource management also consists
of two parts: PM workload prediction and PM workload based
resource allocation.

A. PM workload prediction

PM workload is defined as the average resource utilization
of a PM during a fixed time period. Types of resources

1Multipath forwarding refers to routing the traffic load of the VM pair
through multiple paths in order to balance the load among the paths.
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Fig. 4. The illustration of effects different VM placement methods on the performance of VMs.

include CPU cycle, memory, and network I/O resources. So,
PM workload based prediction is to estimate the resource
utilization of the PM for the next time period.

Nidhi and Rao [18], [19] argued that the characteristics of
a PM’s workload in a data center is dynamically changing
over time because the PM workload is considered as the
synthetic workload of hosting VMs and live VM migration
happens frequently in the data center. Therefore, a specific
workload prediction algorithm can hardly predict accurately
all the time, i.e., different prediction models and parameters
may need to be adopted in order to accommodate the new
characteristics of the PM’s workload. The authors proposed
an ensemble learning approach to predict the PM’s workload
quickly and accurately. The basic idea of the approach is to
form a set of base workload learners, i.e., individual workload
prediction algorithms, to estimate the PM’s workload based
on the historical data separately. Then, the final workload
prediction value is calculated as the weighted average of
predictions of all learners in the set. The learner’s weight
is updated periodically by computing the difference of the
actual value with the estimated value, and the learner whose
estimated value is closer to the actual value will get a larger
weight, and vice versa. The experimental result shows that the
proposed approach can achieve an accuracy of 87.8%.

Similar to the VM workload, the PM workload also exhibits
non-stationary feature over time, due to reasons like changes of
the service function of a PM (e.g., a file server is reconfigured
as a web server), etc. LRM in the PM workload prediction only
needs to upload the information about resource utilization of
the PM rather than every VM in the PM, and thus alleviates
the network traffic for uploading the resource utilization data
traces to GRM. In addition, the computational load of the
prediction algorithm is lighter since the number of PMs in the
data center is much less than the number of VMs.

B. Server workload based resource allocation

GRM does not have insight on the application’s performance
because only the resource utilization of all PMs is uploaded to
GRM and there is no solid evidence showing the relationship
between the PM resource utilization and the application’s SLA.

Thereby, an assumption is made such that when the PM’s
average resource utilization approaches a predefined upper
bound (e.g., 90%), the applications running on the PM are
considered to have violated their SLAs. Therefore, similar to
the VM workload based resource mechanism, GRA in the PM
workload based resource allocation mechanism tries to avoid
triggering the PM overload in the data center to guarantee
applications’ SLAs.

Although PM workload based resource management does
not need to monitor every VM’s resource utilization in a PM
and thus reduces the total control overhead from hypervisor, it
is difficult to design the PM workload based resource alloca-
tion strategy because GRA in PM workload based resource
management is VM-agnostic, i.e., GRA is unaware of the
VM-level information, and so traditional live VM migration
strategies to minimize the number of awaked PMs cannot be
implemented in the PM workload based resource management.

Nidhi and Rao [68], [69] tried to minimize the energy
consumption in a PM cluster by shutting down the low-utilized
PMs or switching them to low-power-mode for a period if
applications running on these PMs are non-critical. Gmach et
al. [70] predicted the workload traces from different PMs and
checked whether these workload traces can be consolidated
into a smaller number of PMs, i.e., the total resource utilization
is improved by awaking a smaller number of PMs.

For the local resource allocation, PM workload based LRM
can adopt the same strategies proposed in the VM workload
based LRM.

IV. APPLICATION WORKLOAD BASED RESOURCE
MANAGEMENT

Application based resource management is to predict each
application’s workload and assign the necessary resource to the
application based on the estimated workload so that the ap-
plication’s SLA can be satisfied. Application workload based
resource management platform is shown in Fig. 5. Normally,
an application running in a data center comprises different
application-tiers. An application-tier can be considered as
an individual component or function in the application. For
instance, an application can be separated into three tiers,
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Fig. 5. Application based resource management platform.

which are running various tasks in different VMs: a front-
end tier (e.g., a HTTP server), a client-server processing tier,
and/or an enterprise database tier [71], [72]. The front-end tier
receives the application requests from users, and the requests
are processed in the dedicated back-end tier (including client-
server processing tier and/or an enterprise database). Normally,
all the application requests go through the front-end tier, and
so the front-end tier has to sense the application workload
and report the workload data traces to GRM. GRM, which
has the same two modules mentioned in Fig. 1, analyzes
every application/application-tier workload data trace, predicts
the future workload and decides the minimum amount of
resource demand of each application/application-tier based
on the estimated workload. Each application/application-tier
has a resource demand pool, which defines the minimum
amount of resource demands. Afterwards, GRM maps all
the resource demand pools into physical servers in order to
maximize the total resource utilization in the data center. LRM
is also applied in the platform to optimize the server resource
utilization in a fine scale time domain.

A. Application workload prediction

The application workload is referred to as the number of
incoming requests of the specific application. Recently, many
studies focused on predicting the application workload in the
data center. Prevost et al. [73] assumed that each application
is accessed via a set of VMs, which are assigned different IP
addresses, and predicted the number of requests for each IP
address. They used FIR Wiener Filter to predict the workload
of web servers (e.g., WWW server at NASA) by utilizing
the historical workload data traces with a sliding window
of size N . FIR Wiener Filter is a tool to minimize the
mean square error between the actual workload and predicted

workload during look-ahead interval by solving the Yule-
Walker equations. Wei et al. [74] argued that the application
workload data trace in the data center exhibits periodical
nature, and so they applied the ARIMA model to do short-
term application workload prediction; the results showed that
there is less than 10% underestimate or overestimate prediction
error on average. Tom et al. [75] formulated the web server’s
workload in the data center as a time series, which exhibits
short-term random fluctuations. However, the time series also
expresses prominent periodic patterns in a diurnal cycle. They
provided both long term (in days) and short term (in minutes)
application workload predictions. For the long term prediction,
the load is modeled as a dynamic harmonic regression. For the
short term prediction, the autoregressive model is applied for
the workload prediction.

Other than the server and VM workload prediction, the
application workload does not predict the resource utilization
directly. The number of application/application-tier requests is
much easier to be estimated than VM and server workload
since the application workload depends on human activities
and exhibits periodical characteristic over time. Moreover,
the application workload prediction algorithm is unaware of
the hardware deployment in the data center, i.e., the server
heterogeneity does not affect the performance of the appli-
cation prediction module. However, applications sometimes
suffer the flash crowd load, which is unpredictable [76],
and result in applications’ SLA violation. Meanwhile, the
application workload prediction is to estimate the number of
application requests in the next prediction period, which is
not directly related to resource demand of the application,
i.e., GRM has no insight on how much resources that the
application really needs. Therefore, GRA in the application
workload based resource management would design much
more complicated resource allocation strategy than GRA in
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the other two managements mentioned earlier.

B. Application workload based resource allocation

Similar to the VM based resource allocation module, the
application workload based resource allocation strategy is also
implemented by two components: GRA and LRA which are
located in GRM and LRM, respectively.

1) Application workload based global resource manager:
Application workload based GRM is to predict the work-
load demands and assign resources to applications in GRA.
Normally, SLA in application workload based resource man-
agement is defined as the average application response time
in terms of the waiting time plus the service time. In order
to maximize the resource utilization and satisfy applications’
SLAs, minimum resources assigned to each application should
be decided (i.e., if the minimum resource is allocated to the
application, the average response time for handling a request
during a specific time period is equal to the predefined SLA).
Then, GRM should map the minimum resource demands of all
applications into physical servers. So, GRA comprises three
mapping functions as shown in Fig. 6.

a) The mapping function from the average arrival rate
to the average service rate: The first mapping function is to
decide the minimum average service rate (the average number
of requests to be served during one time slot) needed based on
the estimated average arrival rate of the application (i.e., the
number of application requests during one time slot) and the
predefined SLA. Studies [74], [77]–[80] have applied queuing
models to formulate the relationship between the estimated
average arrival rate and average service rate demand of given
SLA for each application/application-tier.

Kimish et al. [81] argued that an application running
in a particular server follows the M/M/1 queueing model,
i.e., the application arrival and service rates are all Poisson
distributions. Liu et al. [86] also assumed the inter-arrival
time of the request sequence of the whole application fol-
lows an exponential distribution. Meanwhile, they considered
the service time sequence of the application requests to be
exponentially distributed no matter how many VMs or servers
are serving the application. Studies [77], [78], [80] considered
that one application can be separated into different tiers and
formulated the queuing model based on each application-tier
rather than the whole application. Wang et al. [77] and Italo
et al. [78] assumed the application configuration shown in
Fig. 7, i.e., all the applications can be separated into M tiers,
each of which is served by one VM. Meanwhile, all the
application requests from the clients should be served by all
the application-tiers, i.e., the departure rate of application-tier
i − 1 is the arrival rate of application-tier i. Based on the
above assumption, each VM that serves the application-tier
is assumed to follow the M/M/1 queuing model with FCFS
scheduling, and so the entire application is modeled as an
interconnected network of M M/M/1 queues, one for each tier.
In other words, the average application response time is the
sum of time delays in every M/M/1 queue model from all tiers.
Massimiliano et al. [79] argued that not all the applications’
workflows pass through tier by tier, i.e., different application

requests may not need to process through all the tiers (all
the application’s functions) in the application configuration.
Peter et al. [80] modeled the application as a Directed Acyclic
Graph (DAG) where nodes represent application-tiers (i.e.,
application functions) and edges represent the relationships
between tiers (i.e., if the output of one application-tier is
the input of another application-tier, then there is a directed
line between the two tiers). Associated with each edge is a
rate indicating the number of requests of the destination node
triggered per request of the source node. According to the
application configuration, each tier’s requests served by a VM
are modeled as a M/G/1/PS queue, i.e., the average service
rate of each tier’s requests running on the VM is assumed to
have an arbitrary distribution, the service discipline is assumed
to be processor sharing, and the average request arrival rates
on each tier are assumed to have a Poisson distribution. Wood
et al. [21] modeled one application served by one VM as a
G/G/1 queuing system, and so the VM’s average service rate
is not only determined by the application’s average arrival rate
but also decided by the variance of application request inter-
arrival times and server time.

b) The mapping function from the average service rate
demand to the minimum resource demand: The second map-
ping function is to find the relationship between the average
application service rate demand and the minimum resource
demand. So, by combining with the first mapping func-
tion, the relationship between the average arrival rate of the
application/application-tier and the minimum resource demand
is established by the given application’s SLA.

It is normally assumed that only one VM serves one
application/application-tier, and most studies tried to determine
the minimum size of the VM. The average service time of the
VM which is serving a particular application-tier is assumed
to be linearly proportional to the amount of resources allocated
to the VM [78]. Kimish et al. [81] considered the relationship
between the average service rate and the minimum resource
demand as a black box, and the application/application-tier’s
performance is tested under different resource provisioning
before it is deployed in the data center, i.e., the data center
provides limited types of VMs/servers to host the applica-
tions (different types of VMs/servers have different resource
configurations which are similar to the types of instances
provided by Amazon EC2 [82] and Windows Azure [83]),
and the application/application-tier is first run in every type
of VM/PM and tested with every type of VM/PM’s average
service rate. Therefore, the average application/application-
tier’s service rate of different types of VM/PM is obtained
and GRA can select different types of VM/PM according to
the average application/application-tier’s arrival rate.

Instead of mapping the application service rate to the
minimum resource, some studies directly mapped the arrival
rate to the minimum resource under the constraint of the SLA
in terms of the response time. In doing so, the first mapping
function becomes unnecessary. Van et al. [84] claimed that the
response time is linearly proportional to the application arrival
rate when the CPU utilization is 100% and different types of
CPU exhibit different linear curves to indicate the relationship
between the response time and arrival rate by given the SLA.
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Fig. 6. Global resource manager configuration.

Fig. 7. Application configuration in data center [77].

So, based on different arrival rates, we can select different
types of CPUs to meet the application’s SLA in terms of
response time. Ying et al. [85] showed that the application
arrival rate is proportional to the application resource demand
and provided an empirical formula to setup the relationship
among the arrival rate, resource demand and application per-
formance. Wang et al. [71] proposed that the average arrival
rate of each application-tier is linearly proportional to the CPU
consumption (i.e., the number of CPU cycles consumed by
running a specific application-tier) over the average response
time, and the coefficient of the linear function is calculated
based on the historical data traces, which include arrival
rates and response time of different application-tiers, CPU
consumption and CPU capacity over different time slots. Via
experiments, Liu et al. [86] demonstrated that when only
one VM serves the application/application-tier, the average
response time is a convex function of the CPU utilization for
a given application/application-tier average arrival rate, but if
the application/application-tier is deployed in more than one
VMs, the mapping function is very complicated, and so pre-
testing the application performance under different resource
provisioning is the only way to solve the mapping function.

All in all, the best solution to establish the mapping function
between the arrival rate and the minimum resource demand
is to test the application or application-tier over different
particular hardware configurations.

c) The mapping function from the minimum resource
demand to servers: By building the first two mapping func-
tions, the relationship among the minimum resource demand,
SLA and the arrival rate of application/application-tier is
established, i.e., the expression of resources demand =
f(SLA, arrival rate) for each application/application-tier
is known, but assigning the minimum resources to the
applications/application-tiers is not equal to maximizing the
resource utilization. Finding the minimum number of awaked
servers that can provide all the applications/application-tiers’
minimum resource demand is the optimal solution to reach
the maximum resource utilization in the data center. Therefore,
mapping the minimum resource demand to the physical servers
efficiently is an important step in resource management.

Recently, a third mapping function, the VM placement
problem, has been formulated as a bin packing problem
[86]–[88], which can be depicted as follows:

• Given: 1) N number of VMs and the resource de-
mands of each VM dri (where 1 ≤ i ≤ N and r
denotes different types of resource demands, i.e., r ∈
{cpu,mem, bandwidth, disk}); 2) the resource capacity
of the servers in the data center Cr (note that the
servers in the data center are considered to have the same
configurations and we will discuss the VM placement
problem among heterogeneous servers in Section V-B1).

• Obtain: The VM location indicator variable, xi,j (i.e.,
xi,j = 1 indicates the VM is placed in the jth server;
else, xi,j = 0).

• Objective: Minimize the total number of awaked servers.
• Constraints: 1) each VM is placed in one server, i.e.,

∀i,
∑

j xi,j = 1; 2) the capacity of each server is not
violated, i.e., ∀j,∀r,

∑
i d

r
ixi,j ≤ Cr.

The bin packing problem is a widely accepted NP-hard
problem [89] and many traditional heuristic algorithms (such
as First Fit, Best Fit, Best Fit Decreasing, etc.) have been
proposed to solve it. However, the efficiency of the bin packing
based VM placement strategy excessively depends on the
predication of the VM resources, i.e., if the VM resource



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XX 2016 12

Fig. 8. An example of n application-tier resource allocation.

demands are under-estimated/over-estimated, the VM place-
ment strategy may result in SLA violation/resource utilization
degradation.

Jin et al. [90] proposed that VM resource demands are
divided into deterministic (such as CPU resource) and stochas-
tic resource demands (such as bandwidth resource). The
deterministic resource demands are static during each time
slot, while the stochastic resource demands varies and the
distribution of each stochastic resource demand r follows a
normal distribution N(µr

i , δ
r
i
2), where µr

i is the expectation
of stochastic resource r’s demand for VM i, and δri

2) is the
variance of stochastic resource r’s demand for VM i. Thus,
the authors formulated the stochastic VM placement problem
in which the objective and the variables are the same as the
traditional bin packing VM placement. Yet, in addition to
guaranteeing that the hosting VMs’ total deterministic resource
demands do not exceed the server’s capacity, the formulation
includes one more constraint that for each stochastic resource
demand, the resource underprovisioning probability (that the
hosting VMs’ total resource demand exceeds the server’s
capacity) is less than α. Other studies [91], [92] formulated the
VM placement problem as a stochastic integer programming
by considering the VM resource demands and the VM cost
(e.g., the electricity price) as stochastic values. However, their
objective is to minimize the total cost of serving the VMs
rather than minimizing the total number of awaked servers.

Considering the VM placement as a bin packing problem
or stochastic programming leads to rearranging all the VMs’
placements for each time slot. Thus, in order to improve
the complexity as well as reduce the number of migrations,
many studies design generic algorithms to find the sub-optimal
solution of the VM placement [93]–[95]. The basic idea of
these algorithms is to only rearrange the hotspot servers’ (i.e.,
servers cannot satisfy resource demands of their hosting VMs)
VMs to the suitable places. Specifically, the algorithms try to
migrate the VMs from hotspot servers to the lightly loaded
servers. The lightly loaded servers are ordered by a certain
criteria (e.g., CPU usage, memory usage or some resource
load indicator function). The VM migration attempts are made,

starting with the first lightly loaded server (which has the
most amount of idle resource) and continuing until the set
of hotspot servers is exhausted or there is no lightly loaded
server left. Liu et al. [86] proposed that instead of supplying
one large VM (which can accommodate the minimum resource
demand) serving one application/application-tier, provisioning
more smaller size VMs, which can be collaboratively working
for the same application/application-tier, is more intriguing
since higher resource utilization in terms of a smaller number
of awaked servers, can be reached, thereby a novel VM-
splitting and assignment heuristic algorithm was proposed.
Other studies [71], [78], [96] argued that optimizing VM
placement globally would drain the network resource and
degrade the VMs’ performance. This is because implementing
VM placement would trigger live migration of a huge amount
of VMs that incurs huge bandwidth and causes service in-
terruption. So, they tried to optimize the resource allocation
locally, i.e., they assigned resources to different VMs (which
may serve different applications) within one server. For in-
stance, in Fig. 8, there are two applications and each can be
separated into n-tier and distributed into n physical servers.
GRA tries to allocate resources to VMs on each server in
order to satisfy the whole applications’ SLA. Although it
is not an optimal resource allocation solution and somehow
cannot guarantee applications’ SLA, this method relaxes the
complexity of the VM placement problem and avoids live VM
migration.

2) Application workload based local resource manager:
Similar to the other two resource management schemes, ap-
plying the application workload based LRM in each server
can potentially improve the resource utilization and enhance
applications’ QoS by adjusting the resource allocation among
VMs in a small time scale. The VM workload based local
resource scheduling strategies mentioned earlier can also be
implemented in the application workload based LRM. On
the other hand, different from VM based LRM, application
based LRM can acquire the application level information
(e.g., average arrival rate of an application/application-tier,
applications’ SLA, etc.) from its GRM to deploy its unique
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local resource scheduling strategy in a server.

Fig. 9. Local resource manager architecture [71].

Wang et al. [71] constructed LRM shown in Fig. 9. Each
VM is running one application-tier and the sensor in the
server senses each VMs CPU utilization in each time slot. The
utilization controller compares the recent CPU utilization with
the CPU utilization demand µref

v (i.e., arrival rate
service rate ), which is

given by GRM. If the recent CPU utilization is larger than
the CPU utilization demand, the Arbiter would increase the
CPU entitlement of the specific VM, and vice versa. Also,
the Arbiter should consider some policies (e.g., priorities of
different application-tiers) enforced in the VMs. The Actuator
(which is considered as a LRM) is to implement the CPU
entitlement quota of each VM in the real physical CPU.
Instead of measuring each VM’s CPU utilization, Wang et al.
[64] proposed to monitor the performance of each application
in a server (each VM is used to host one application) peri-
odically. The resource controller in the server is to compare
each application’s performance with its predefined SLA and
make the resource allocation decision, i.e., if the current
application performance is worse than its SLA, then it would
have more chance to obtain more CPU entitlement, and vice
versa. Ying et al. [85] traced each VM’s resource demand at
each time slot and adjusted the local resource provisioning to
minimize the sum of the application utility function, which is
determined by the resource demand, resource provision, SLA
of the application, and the application priority.

V. COMPARISONS OF DIFFERENT RESOURCE
MANAGEMENT MECHANISMS IN THE HETEROGENEOUS

DATA CENTER

In a real data center, it is difficult to achieve optimal
resource management because of the complicated data center
environment, and most of the studies discuss the resource
management mechanism in a homogeneous data center, which
does not exhibit all the realistic heterogeneity features that
will be delineated in the following. In this section, we will
first explain the heterogeneity characteristics in the real data
center and then analyze the difficulty of implementing different
resource management mechanisms in the heterogeneous data
center.

A. Heterogeneity characteristics of a data center
We provide a brief overview of four heterogeneity features

of a data center that present impediment to resource manage-

ment:
Resource heterogeneity: Hardware provided by the data center
is heterogeneous [7], [97], [98], i.e., configurations of servers
in the data center are not identical. For instance, different
servers may be equipped with different types of CPU, and
different amount of RAM and hard disk. Resource hetero-
geneity is very common in a large-scale data center because
of necessary and frequent replacements of out-of-order servers
and installation of new state-of-the-art servers that are more
powerful than the existing ones to accommodate the dramatic
increment of resource demands in the data center [81], [99]–
[101]. Meanwhile, the high performance servers are equipped
with more energy efficient components (e.g., energy efficient
CPU, memory and NIC) to serve applications so that the
hybrid (in the sense of having energy and non-energy efficient
servers) data center can decrease the OPEX of data center
venders.
Application type heterogeneity: Applications running in the
data center may rely on different types of resource to de-
termine their performance [7]. For example, CPU-intensive
applications (e.g., GZIP data compression [102], scientific
computing [101], etc.) consume more CPU resource than other
types of resource to enhance their performance, and other
memory (Multigrid application [103], multimedia applications
[104], etc.) or network I/O (e.g., web services [105]) intensive
applications’ performance depends on the amount of memory
or bandwidth assigned to them. Therefore, application type
heterogeneity affects the performance of different applications
differently, and presents great challenges to resource allocation
among different applications in the data center.
SLA heterogeneity: SLA is a QoS contract signed between the
service provider (i.e., the SaaS provider who rents resources
in the data center) and the infrastructure provider (i.e., the
data center provider). In other words, the service provider
requires its service to be guaranteed with a certain kind of
QoS. The infrastructure provider, on the other hand, tries to
manage its resources and meets the QoS as much as it can;
otherwise, it would pay a penalty. Basically, SLA defines
the QoS metric, i.e., the QoS related cost function [106],
[107]. However, different service providers have their own
definitions of QoS [15], [108]. Some studies define QoS as
the average response time that one application request is
fulfilled by the VM(s) in the data center [79], [81], [86], [109],
[110] or the probability of the average response time needs
to be achieved [78], while some define QoS as the average
packet loss percentage as their performance metric [15], [111],
and some depict QoS as the throughput (i.e., requests per
second [112] or the number of completed jobs per time slot
[113], [114]). SLA heterogeneity results in selecting different
models to estimate the application performance, thus leading
to complicated resource management.
Workload heterogeneity: Workload in the data center exhibits
spatial and temporal dynamics. Spatial dynamics refers to
different features exhibited by different workload data traces
of VMs/servers/applications, and these features can be char-
acterized by three parts: usage mode, intensity and duration.
Dynamic usage mode among data traces indicates that work-
loads of different VMs/servers/applications’ exhibit different
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TABLE I
THE COMPARISON OF THREE RESOURCE MANAGEMENT MECHANISMS IN THE HETEROGENEOUS DATA CENTER

Resource heterogeneity Application type heterogeneity SLA heterogeneity Workload heterogeneity

VM workload prediction H L N H
VM workload based resource allocation N L N N

PM workload prediction H L N H
PM workload based resource allocation N L N N

Application workload prediction N N N L
Application workload based resource allocation L L L N

characteristics,, e.g., some express a seasonal, weekly or diur-
nal cycle over time [74], [75], [115] and some workload data
traces show sudden huge spikes, i.e., sudden workload surges
[76], [116], which are considered as unpredictable workload
and degrade the application performance. Dynamic intensity
implies that the ratio of the peak workload to the average
workload is different among different data traces. Dynamic
duration implies that the length of the workload data trace
varies, i.e., the makespan of one application/application-tier
running on a specific hardware is dynamically changed, e.g.,
the durations of some short-term jobs running in particular
VMs are less than 15 minutes, but some jobs run longer than
300 minutes [117].

On the other hand, temporal dynamics means that the
workload data trace of a VM/PM/application may change
its features over time. Temporal dynamics often exists in
the VM/PM workload data trace because of changes of the
ownership of VMs, VM migration and server consolidation.
Therefore, owing to the heterogeneity of workload features,
there is no unique model that can predict every object’s
future workload accurately, thus rendering resource allocation
inefficient.

B. Comparison of three resource management mechanisms in
heterogeneous data center

In this section, we will discuss how the different kinds of
heterogeneities in the data center degrade the performance of
the three resource management mechanisms. We measure the
degree of performance degradation into three levels: H (High,
i.e., the heterogeneity feature degrades the performance of the
corresponding resource management mechanism significantly
and there is no suitable solution to solve the problem), L (Low,
i.e., the heterogeneity feature may complicate the correspond-
ing resource management mechanism, but can be solved by
applying suitable methods), N (None, i.e., the heterogeneity
feature does not affect the performance of the corresponding
resource management mechanism). Table I summarizes the
comparison results.

1) The impact of the resource heterogeneity: Resource
heterogeneity makes each server’s resource capacity het-
erogeneous, and thus degrades the prediction accuracy of
VM/PM workload prediction (mentioned in Section II). Fur-
thermore, resource heterogeneity degrades the performance
of the VM/PM workload based resource allocation strategy
because the strategy tries to find two or more VMs/servers

such that the sum of their resource utilization is less than
a threshold when performing VM/PM consolidation, and if
the servers’ resource capacities are different, the summation
of resource utilization makes no sense (i.e., summation of
resource utilization would probably reach 100% because of
the different capacities of servers). For instance, suppose there
are two PMs, i.e., PM 1 and PM 2, and the CPU capacity of
PM 1 is two times higher than that of PM 2 (for simplicity,
we only consider CPU resource in this example); meanwhile,
as shown in Fig. 10, initially (i.e., in time slot t0), each PM
hosts only one VM, i.e., VM A and VM B, respectively, and
the CPU utilization of VM A and VM B is 80% and 60%,
respectively. In time slot t1, the CPU utilization of VM A
drops to 20%, and so VM A can be consolidated into PM 2 if
we only consider the sum of the VMs’ CPU utilization being
less than a threshold (assumed to be 90%). However, the CPU
utilization of VM A will be higher than 20% after VM A has
been migrated into PM 2, whose capacity is half that of PM
1, and so it is possible that the CPU utilization of PM 2 will
exceed the threshold, and will result in the SLA violation.

Fig. 10. Effects of the resource heterogeneity on the performance of the VM
workload based resource allocation strategy.

One solution to relax the problem resulting from resource
heterogeneity is to predict the amount of resources that each
VM/PM needs rather than the resource utilization, but it is a
big challenge to precisely predict the exact resource demand
of each VM/PM, especially to estimate the CPU resource de-
mand. Zhang et al. [100] separated the heterogeneous servers
into N sub-clusters and each sub-cluster comprises a number
of homogeneous servers. As shown in Fig. 11, the proposed
resource management model has two levels of management.
In the global resource management, instead of predicting the
resource utilization of VMs and servers, the global sched-
uler first predicts the resource usage of each sub-cluster
and subsequently calculates their residual resources. Based
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on the estimated residual resources of each sub-cluster, the
global scheduler distributes the incoming application workload
among the sub-clusters. The amounts of assigned application
workloads for each sub-cluster are proportional to their esti-
mated residual resources. In sub-cluster resource management,
the local scheduler first maps the resource utilization of the
sub-cluster into the scheduling delay (i.e., the scheduling delay
is expressed as a linear function of the resource utilization for
each sub-cluster). Then, the local scheduler tries to minimize
the number of awake servers in its sub-cluster and minimize
the SLA (in terms of the upper bound of the scheduling delay)
cost simultaneously.

Fig. 11. A data center resource management model [100].

On the other hand, in the application workload based
resource management, GRM predicts the number of incoming
requests for each application, and thus resource heterogeneity
does not affect the application workload prediction accuracy.
However, resource heterogeneity complicates the mapping
function from the minimum resource demands to physical
servers (i.e., the third mapping function mentioned in Section
IV-B). Placing the minimum resource demands in terms of
VMs into the minimum number of physical servers with
heterogeneous features can be formulated as a vector bin
packing problem, which is proven to be NP hard [119]. The
heterogeneous features of physical severs are depicted as the
different capacities and efficiency (in terms of the amount
of power consumption by running a unit of workload). It is
obvious that GRM prefers to pick the physical servers with
higher capacity to host the suitable VMs in order to minimize
the number of the awake servers. However, it is not the best
solution if the objective is to maximize the resource utilization
of the awake servers (note that minimizing the number of the
awake servers is not equivalent to maximizing the resource
utilization of the data center in the heterogeneous data center)
or maximize the energy efficiency of the data center. For
instance, suppose there are three clusters of PMs (PMs from
the same cluster have the same configurations), denoted as
PM A, PM B and PM C, and the capacity of each PM in
cluster PM A, PM B and PM C is 1 unit, 0.5 unit and 0.8
unit, respectively; meanwhile, the energy efficiencies of the
PMs from different clusters are related as follows: PM C>PM
B>PM A. Assume four VMs are to be allocated in the PMs,
i.e., VM 1, VM 2, VM 3 and VM 4, and the resource demands
of VM 1, VM 2, VM 3, and VM 4 are 0.5, 0.5, 0.5, and
0.4 unit, respectively. Fig. 12 illustrates different strategies for
awaking different PMs to host the VMs (note that we consider
the resource utilization threshold of each PM to be 100% in

this example) in order to achieve different objectives, i.e.,
minimizing the number of the awake PMs, maximizing the
resource utilizations of the awake PMs and maximizing the
energy efficiencies of the awake PMs. However, most of the
recent studies [88], [120], [121] preferred to first pick the PMs
with higher power efficiency in hosting the suitable VMs in
order to improve the energy efficiency.

2) The impact of the application type heterogeneity:
Application type heterogeneity results in different applica-
tions/VMs/PMs requiring different demands of different re-
source types, and thus leads to the unbalanced demands among
different types of resource in a server, i.e., some servers
may have higher CPU demands but lower memory and disk
demands, and some may have lower CPU demands but higher
memory and disk demands. Thus, it is necessary to consider
the features of multi-dimensional resource demands to improve
the resource utilization, reduce the energy consumption of
the data center as well as guarantee the applications’ SLA
[122], [123]. Obviously, application type heterogeneity in-
creases the complexity of VM/PM workload prediction be-
cause GRM needs to estimate multi-dimensional instead of
one-dimensional resource utilization of VMs/servers and set
up a different prediction model to estimate each dimensional
resource utilization of each VM/PM. Yet, application type
heterogeneity does not affect the application workload pre-
diction, which is to estimate the average number of incoming
application requests.

Moreover, application type heterogeneity complicates the
applications/VMs/PMs based resource allocation, i.e., it is
more complicated to map the resource demands into the
minimum number of physical servers by considering the multi-
dimensional nature of the resource demands (this is proven to
be NP hard [124], [125]). The heuristic solutions of VM, server
and application workload based multi-dimensional resource
allocation are similar (if only application type heterogeneity
is considered), which can be divided into three categories:
Single dimensional mapping heuristics: the basic idea of this
type of solutions is to map the multi-dimensional resource
demands into single dimension, and thus perform VM/PM
consolidation. Wood et al. [21] defined the volume of each
VM/PM as the product of the VM/PM’s CPU, network and
memory utilization, i.e.,:

vi =
1

1− ucpu
i

× 1

1− unet
i

× 1

1− umen
i

, (1)

where vi is the volume of VM/PM i, and ucpu
i , unet

i and umen
i

are the CPU, network and memory utilization of VM/PM i,
respectively. Thus, the larger value of vi implies the higher
multidimensional resource utilization of VM/PM i. Thereby,
the suitable VMs in the server with the highest volume are
migrated to the servers with lower volume value. Arzuaga
and Kaeli [126] defined the Virtual Server Load (VSL) as the
resource demand of each physical server. Denote j as the index
of the VMs which are running in server i, r as the index of
different types of resource (e.g., r ∈ {cpu,memory, disk}),
ui
j,r as the resource r usage of VM j in server i, and cir as

resource r capacity of server i, respectively. Then, the VSL
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Fig. 12. The illustration for awaking different types of PMs to host the VMs in order to achieve different objectives.

of server i can be expressed as follows:

V SLi =
∑
r

wr ×

∑
j

ui
j,r

cir

, (2)

where wr is a weight associated with resource r. Based on the
definition of VSL, a load-balancing VM migration framwork
is proposed to balance the VSL values among servers by
migrating suitable VMs from the servers with larger VSL
values to the servers with smaller VSL values.

Although mapping the multi-dimensional resource demands
into one dimension decrease the complexity of VM mi-
gration/placement, it sometimes misleads the real resource
demands of VMs/servers, and thus results in inappropriate VM
migration/placement [88], [127].
Multi-dimension aware heuristics: Rather than ignoring the
relationships across multi-dimensions, multi-dimension aware
heuristics is to consider the server’s complimentary demands
for different dimensions simultaneously during VM migra-
tion/placement. Singh et al. [128] proposed the VectorDot
scheme to balance the multi-dimensional workload among
physical servers. The basic idea of VectorDot is to place
the VM (which has, for instance, high CPU demands but
low memory demands) to the suitable server (which has low
CPU utilization but high memory utilization), i.e., the VM’s
resource demands is complementary to the resource utilization
of the target server. In order to measure the complementarity
of the VM among servers, the dot product is defined in the
paper. Thus, the VM is migrated to the available server (i.e.,
the server with enough space to hold the VM) with higher dot
product value. Norm-based Greed scheme [129] proposed the
similar idea, however, the method defined resource distance
metric (i.e.,

∑
r
wruj,rhi,r, where wr is a weight of resource

r, uj,r is VM j’s demands of resource r, and hi,r is server i’s
residual capacity of resource r), rather than the dot product to
measure the complementarity between a VM and a server.

3) The impact of the SLA heterogeneity: The application
SLA heterogeneity does not affect the performance of the
VM/PM/application workload prediction algorithm, because
the variation of the VM/PM/application’s resource demands is

not determined by the SLA. Also, VM/PM workload based
resource allocation is not impacted by the SLA, since no
matter what kind of QoS contract is signed in the SLA,
once the SLA is violated, the average resource utilization of
the server must have exceeded a predefined threshold in the
VM/PM workload based resource allocation. In other words,
ensuring every dimensional resource utilization of the server
less than a threshold can satisfy the SLA.

The application SLA heterogeneity, however, complicates
the application workload based resource allocation because
different types of SLA may generate different mapping func-
tions to generate the average service rate based on the appli-
cation average arrival rate, and calculate different minimum
resource requirement of the application consequently. For
instance, if the SLA is depicted as the application’s average
response time, normally, different queuing models are applied
to formulate the relationship between the average service rate
and the average arrival rate of the application; however, if
the SLA is defined as the average packet loss percentage or
the average throughput of the application, it is difficult to
map the average arrival rate into the average service rate of
the application by applying queuing models. Therefore, when
applying application workload based resource management,
suitable models should be designed and investigated in order to
establish the relationship between the average arrival rate and
the actual resource demands based on different types of SLAs.
Song et al. [15], [130] proposed that the performance of the
application (which can be defined as the application’s average
response time, throughput, average packet loss percentage,
etc.) is a linear function with respect to the application average
arrival rate and the amount of resources assigned to the
application, and the coefficients of the linear function can be
measured with plentiful experiments. Thereby, by obtaining
the function, it is easy to calculate the minimum resource pro-
visioning based on the application average arrival rate and the
SLA. Rather than modeling the different mapping functions in
terms of resource demand = f(SLA, arrival rate), Zhan
et al. [114] separated the applications with different SLAs into
different priority levels, which are based on the requirement
of the response time. For example, a web server application
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(who needs immediate response) has a higher priority than
a MapReduce application (whose SLA is defined as the
application’s throughput), and thus the web server application
can be assigned with more resources and the MapReduce
applications can be queued if the resources are not available.

4) The impact of the workload heterogeneity: The workload
prediction accuracy does not determine or affect the resource
allocation strategy applied in GRM of the data center, but
it is the main factor in determining the efficiency of GRM.
Meanhiwle, workload heterogeneity is the key jeopardy in
degrading the performance of the prediction algorithm. As
mentioned in the previous section, VM/PM/application work-
load in the data center exhibits spatial and temporal dynamics.
In order to solve the spatial dynamics problem among different
workload time series, it is necessary to build the prediction
model individually by analyzing the features of corresponding
VM/PM/application workload time series. For instance, if the
workload time series has the clear seasonal component with
low noise (i.e., fewer random fluctuations), it is better to apply
Moving Average (MA) prediction model to estimate the future
workload [131], [132]; on the other hand, if the workload
time series has some noise and changes within trend, but no
seasonal behavior, then the Simple Exponential Smoothing
model may perform better [134]; moreover, if the workload
time series has the clear seasonal component with some noise,
then GRM can apply the Auto Regressive Integrated Moving
Averages (ARIMA) stochastic process model to predict the
workload [74], [137]. Vazquez et al. [135] evaluated the accu-
racy of several common workload prediction models by testing
the models to forecast the real cloud computing workloads
including Google cluster [8] and Intel Netbatch [136]. Also,
the complexity and the prediction period of different prediction
models should be considered in selecting a suitable model
to estimate the workload. For instance, if the workload is
a seasonal time series, then ARIMA can perform long-term
workload estimation at the expenses of higher complexity,
while MA can only precisely predict the short-term (i.e.,
next one or two time slots) workload at the gain of lower
complexity. Herbst et al. [138] theoretically analyzed different
prediction models for application scenarios as well as their
pros and cons with respect to the complexity, the historical
data requirements (i.e., how many historical data points are
needed to predict the future data points) and the prediction
period.

The temporal dynamics implies that the features of a specific
workload time series may vary over time. For instance, the
workload has clear seasonal components initially, but, as the
time passes by, the workload time series loses the seasonal
component but exhibits active periods with clear trends. The
temporal dynamics of the workload may degrade the prediction
accuracy significantly because the historical workload data set
cannot reflect the features of workload time series in the future.
The VM/PM workload exhibits temporal dynamics most of the
time. This is because, as mentioned previously, the application
workload mainly depends on the human activities, which
exhibit periodic features most of time; however, the VM/PM
workload is not only determined by the human activities but
also affected by the VM/PM based resource allocation, and

thus the application/application-tier running in the VMs/PMs
changes over time. For example, suppose there are two ap-
plications, namely, app-A and app-B, with different features
(i.e., their workload time series have different features), and
each of them has two VMs initially. If app-A’s workload drops
and only needs one VM, and meanwhile, if app-B’s workload
increases and requires more resources, then GRM will release
one of the VMs from app-A and re-assign it to app-B to satisfy
its resource demands. Eventually, the features of the reassigned
VM’s workload time series is altered over time (because the
application running in the reassigned VM is changed), thus
degrading the workload prediction accuracy. One way to solve
the accuracy degradation of the VM/PM workload prediction
is to fix the number of VMs/servers for serving a specific appli-
cation, i.e., no matter whether the application’s workload in the
data center increases/decreases, GRM can only adjust the size
of VMs/servers without changing the number of VMs/servers
serving the application. Herbst et al. [138] proposed a new
workload classification and forecasting system to solve the
VM/PM workload temporal dynamics problem. The basic
idea of the proposed workload classification and forecasting
system, which is quite similar to [19], is to automatically
select the most suitable prediction model (which yields the
minimum Mean Absolute Scaled Error) from the model set
in each time slot. Thus, once the features of the workload
time seires are changed, the system can adaptively choose the
suitable prediction model after a certain time period. However,
the drawback of the proposed method is high complexity, i.e.,
two or more prediction models need to be executed in parallel
to compare the prediction accuracy.

VI. OPEN ISSUES

Several works have contributed to maximize the resource
utilization by applying the resource management schemes as
presented in the previous sections. However, there are still
some issues which need to be addressed. This section discuss
several open issues and possible research directions in the
resource management of the data center.

A. Network aware resource management

With an explosive growth of data center traffic, network
bandwidth constraint becomes increasingly more critical. Tra-
ditional resource management only tries to assign the PM
resources to the VMs in order to guarantee the corresponding
SLAs while ignoring the resource management at the network
layer. As mentioned in Sec. II-B2, provisioning sufficient
resources to the VMs in the local PMs may not satisfy the
SLAs if the resource is under-provisioned at the network layer.
In other words, allocating insufficient network resources to
the VMs may degrade the performance of the VMs, thus
violating the applications’ SLAs. For example, traditionally,
the web service application comprises three tiers, i.e., a front-
end Web server tier, a middle application tier, and a backend
database/storage tier. It is desirable to guarantee efficient band-
width provisioning among the three tiers’ communications
to avoid application performance degradation. The optimal
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network aware resource management is to minimize the num-
ber of the awaked PMs while guaranteeing each link in the
network not to be congested, i.e., the network resources are
not under-provisioned. However, the VM placement problem
is coupled with the network resource allocation problem, i.e., a
bad VM placement may incur insufficient networking resource
provisioning to the VMs; this coupling thus complicates the
network aware resource management.

Many studies have considered the network aware resource
management problem as the Virtual Data Center (VDC) em-
bedding problem. Specifically, each application is running on a
Virtual Data Center (VDC), which consists of not only a num-
ber of VMs but also the virtual switches and virtual links in
providing the virtual network connectivities among VMs, and
so allocating the resources to the application can be considered
as embedding the VDC into the physical data center. Basically,
the framework of the VDC embedding problem is shown in
Fig. 13. Different VMs, which communicate with each other
to serve the same application, form a VDC and every VDC
has its own IP address space2. VMs within the same VDC
can communicate with each other just as they are in the same
layer-2 Ethernet. VMs in different VDCs can communicate
through layer-3 gateways. The VDC predictor estimates its
VDC resource demands, which include the number of VMs,
the resource capacity of each VM, and the bandwidth demand
matrix among the VMs. The VDC solver is a centralized
resource manager in the data center. On the one hand, the VDC
solver receives the information of the physical data center,
such as the topology of the data center and the status and
resource utilization of the PMs and switches; on the other
hand, it generates solutions for efficiently provisioning the
resources to each VDC.

Fig. 13. The framework of the VDC embedding.

Based on the VDC embedding framework, Rabbani et al.
[139] proposed a heuristic algorithm to efficiently solve the
VDC embedding problem, which is proven to be NP-hard
[139], [140]. The algorithm comprises three steps, i.e., VM

2Note that IP address spaces of different VDCs may overlap.

mapping, virtual switch (vswitch) mapping and virtual link
(vlink) mapping:

• VM mapping: The basic idea of VM mapping in the
heuristic algorithm is to balance the resource demands
among the PMs. Specifically, each VM selects the PM
with the minimum PM cost among the feasible PMs,
which have enough residual resources3 to host the VM.
The PM cost of PM i, denoted as PMcost(i), is defined
as follows:

PMcost(i) =
b (i)

|r (i)− r|
, (3)

where r (i) is the residual CPU resource of PM i, r is
the average residual CPU resource among PMs and b (i)
is the occupied bandwidth resource of PM i. Thus, a
smaller value of PMcost(i) indicates that the PM has less
occupied bandwidth and more residual CPU resource.

• vswitch mapping: In the second step, the heuristic
algorithm tries to map each vswitch in VDC into the
physical switch with the minimum communications cost
among the feasible physical switches, which have enough
residual capacity to host the resource demands of the
vswitch. The communications cost of physical switch j,
denoted as pswitchcost(j), is defined as follows:

pswitchcost(j) =
N∑
j=1

h (j, k) b(j), (4)

where N is the number of the VMs that are connected to
the vswitch in the VDC, h (j, k) is the number of hops
between VM j and physical switch k, and b(j) is the
bandwidth demand of VM i. The intuition behind the
vswitch mapping is that it prefers to map the vswitch
into the lower layer physical switch that generates a fewer
number of hops and thus results in a lower cost.

• vlink mapping: In the third step, the heuristic algorithm
tries to map each vlink into the corresponding physical
link. The basic idea is to find the shortest physical path
between the two VMs among the available physical paths
such that the residual bandwidth capacity of each selected
physical link is no less than the bandwidth demand of the
vlink.

Guo et al. [140] proposed a similar algorithm to solve
the VDC embedding problem. Specifically, in order to reduce
the complexity for solving the VM embedding problem, the
neighboring PMs are grouped into clusters of different sizes
before any VDC allocation takes place. Thus, each VDC only
needs to search for the suitable PM cluster to host itself rather
than searching the entire data center. In the first step, the VDC
solver would select a suitable PM cluster to host the VDC.
The number of PMs of the selected PM cluster should be
larger than the number of VMs in the VDC and the aggregate
ingress and egress bandwidth of the PM cluster should be
larger than those of the VDC. In the second step, the VDC
solver tries to map the VMs in the VDC into the PMs in the
selected PM cluster. The basic idea of the VM mapping is very

3The paper [139] only considers the CPU and bandwidth resource demands
of VMs when performing VM mapping.
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similar to [139], which is to allocate the VMs into feasible
PMs (which have enough residual resources to host the VMs)
while balancing the residual bandwidth among PMs. In the
third step, the VDC solver tries to allocate physical paths for
all the VM-pairs, and at the same time tries to find the shortest
available path between the two VMs by applying the Breadth
First Search algorithm.

The intuition behind the two mentioned VDC embedding
heuristic algorithms are very similar, but the complexity of
the algorithms are very high, i.e., if the VDC solver cannot
find a feasible physical path (i.e., the residual bandwidth of all
the physical paths is less than the bandwidth demand of the
VM pair) for a VM pair in the last step, the algorithms need
to return to the first step to find another feasible VM mapping.
This kind of back-tracking leads to high time complexity. In
order to reduce the complexity of the algorithm, studies [141],
[142] proposed the affinity-aware VM allocation method to
place the affine VMs (i.e., the VMs with a large amount of
communications or data exchanges among them) within the
same ToR (Top of Rack) PMs as much as possible. This is
because the communications links that only traverse the ToR
switch have lower blocking probability as compared to the
communications links that need to traverse the aggregation
or core switches. Different from the VDC embedding based
resource management (which first maps the VMs into feasible
PMs, and then determines the bandwidth allocation for each
VM pair), bandwidth demands of the VM pairs determine
the VM mapping in the affinity-aware VM allocation method.
However, the proposed affinity-aware VM allocation method
cannot guarantee that all the VM pairs can acquire sufficient
bandwidth provisioning on the corresponding physical path.
Meng et al. [143] proposed a traffic-aware VM placement
algorithm to reduce the network cost. The basic idea of the
algorithm is to partition VMs into VM-clusters according
to the traffic between different VMs as well as the data
center network characteristics, and then place the VM-clusters
into different slot-clusters (i.e., PM clusters) to minimize the
network cost. However, the algorithm does not consider the
capacity of the slot-cluster, i.e., some VM-clusters may not
find the suitable slot-clusters to host them because of the
capacity limitations of the slot-clusters.

Kliazovich et al. [144] demonstrated that there is a tradeoff
between minimizing the number of awaked PMs in the data
center and avoiding the network congestion (which tries to
minimize the maximum link utilization). Specifically, in or-
der to avoid network congestion, the bandwidth-aware VMs
should be distributed among the PMs as much as possible.
However, this methodology contradicts the energy efficient
resource management strategy, which tries to concentrate all
the VMs within the minimum number of PMs. Many studies
proposed different methodologies to optimize the tradeoff.
Jiang et al. [145] tried to jointly optimize the VM placement
and the routing path selection among VM pairs in order
to optimize the tradeoff. Specifically, they formulated the
objective function f as follows:

f =
1

L

L∑
l=1

hl + α
1

M

M∑
m=1

gm, (5)

where L is the total number of the physical links in the data
center, hl is the cost of link l (which is a convex function of the
link utilization), M is the total number of the PMs available
in the data center, gm represents the status of PM m (i.e., if
PM m is awaked, gm = 1; otherwise, gm = 0), and α is a
weighting factor in order to allow operators to freely adjust the

tradeoff between the link cost (i.e., 1
L

L∑
l=1

hl) and the capacity

cost (i.e., 1
M

M∑
m=1

gm). Thus, the joint optimization problem,

denoted as P0, can be formulated as follows:

• Given: 1) the resource demands for each VM, 2) the
available resources for each PM, and 3) the bandwidth
demand for each VM pair.

• Obtain: 1) the VM location indicator variable xi,m (i.e.,
xi,m = 1 indicates VM i is in PM m; else xi,m = 0); 2)
the routing indicator variable ypi,j (i.e., ypi,j = 1 indicates
the traffic from VM i to VM j is routed on path p; else,
ypi,j = 0).

• Objective: Minimize f .
• Constraints: 1) each VM is placed in one PM; 2) the

resource capacity of each PM is not violated; 3) the traffic
of each PM pair is routed on one physical path.

In order to efficiently solve the optimization problem, the
authors leveraged the idea of Markov chain approximation
method [146] to obtain an approximated solution of P0.

Belabed et al. [147] argued that applying the virtual bridg-
ing4 and multipath forwarding (mentioned in Sec. II-B2c)
techniques in the routing optimization can achieve better
tradeoff between the link cost and the capacity cost. Note
that recent Ethernet switching solutions in the data center
network, such as Provider Backbone Bridges with Traffic
Engineering (PBB-TE) [148], the Shortest Path Bridging (SPB)
protocol [149] and the Transparent Interconnection of a Lot of
Links (TRILL) protocol [150], can enable multipath forwarding
of the Ethernet frames, which can potentially provide better
load balancing among different paths. In order to enable the
multipath forwarding in solving the joint optimization problem
(i.e., P0), the authors declared the variable ypi,j in P0 as a non-
negative real variable, rather than a binary variable.

Meanwhile, in order to enable virtual bridging in solving
the joint optimizing problem, the authors proposed that each
PM can be considered as a switch to route the traffic of
VM pairs. Note that enabling the virtual bridging function
in the hypervisor may consume extra resources of the PM for
routing the traffic, but this may reduce the available resources
for each PM to host the VMs. Thus, the second constraint
in P0 needs to be modified. Specifically, suppose each VM
is characterized by a |D|-dimensional (note that D is a set
of resource dimensions and each dimension corresponds to a
different resource type such as CPU, memory or disk space)
resource demand vector ri =

[
ri,1, · · · , ri,|D|

]
, where ri,d is

the VM i’s resource demand for dimensional d (d ∈ D), then,

4Virtual bridging is to offload the traffic (generated from the VM pair)
switching operations from the access and aggregate switches to the software
hypervisor level in the PM, if the two VMs are in the same PM.
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for each PM m, we have the following constraint:

∀d ∈ D, τd
∑
i

rtraffici xi,m +
∑
i

ri,dxi,m ≤ Cd
m, (6)

where rtraffici is the amount of traffic demand for VM i, τd

is a coefficient that maps the traffic demand of VM i into
the resource demand (for routing the traffic demand using
virtual bridge in the PM) for dimensional d, and Cd

m is the
resource capacity of PM m for dimensional d. The new joint
optimization problem has been proven to be NP-hard [147].
In order to find the suboptimal solution, the authors mapped
the joint optimization problem into the single source facility
location problem (SSFLP), which is a well-studied problem,
and applied the repeated matching heuristic algorithm [151],
which can reach good optimality gaps for solving SSFLP, to
generate the suboptimal values of xi,m and ypi,j .

The above works tried to propose heuristic algorithms to
solve the network aware resource management problem and
each of them has its tradeoff between the complexity and the
performance. However, a number of VM migrations among
PMs are introduced for implementing the network aware
resource management algorithms, and the VM migrations
consume a huge amount of the bandwidth resource in the
switches [152], which may significantly increase the traffic
load of the data center network, thus resulting SLA violation.
Thus, it is necessary to design an optimal network aware
resource management by considering the bandwidth demands
introduced in the VM migrations.

B. Resource management in the green data center

In order to reduce the OPEX and CO2 footprints for running
the data center, the concept of green data center is introduced,
i.e., the data center is both powered by renewable energy
as well as brown energy [153]–[156]. Renewable energy is
generated at the site of the data center, and once the renewable
energy is insufficient or unavailable to satisfy the energy
demands of the data center, brown energy, which acts as
backup energy supplement, is obtained from the electrical
grid (note that the renewable energy could be drawn from the
nearby renewable power plants to power the data center, but
this kind of renewable energy is not free for the data center
providers. Thus, from minimizing the OPEX point of view,
we consider green energy as the on-site renewable energy and
brown energy as the energy from the electrical grid or the
renewable power plants). The goal of the resource management
in the green data center is to optimally allocate resources to
applications in order to minimize the brown energy usage,
while guaranteeing the applications’ SLAs.

Normally, the power supply system of a green data center is
shown in Fig. 14, in which the on-site green energy collector
locally extracts energy from the green energy source and
converts it into electrical power, the charge controller regulates
the electrical power from the green energy collector, and
the inverter converts the electrical power between AC and
DC. The smart meter records the electric energy from the
power grid and renewable power plants consumed by the data
center. Many studies [154], [155] argued that the introduced

Fig. 14. The power supply system of a green data center.

batteries in the green data center may induce many problems:
1) batteries incur extra energy losses because of self-discharge;
2) equipping batteries increases the CAPEX of the green-
powered system; 3) batteries contain chemicals, which are
harmful to the environment. Therefore, it is beneficial to build
a battery-absent green data center. Since green energy cannot
be ”banked”, in order to minimize the brown energy usage,
the generated green energy should be fully utilized in each
time slot. Therefore, it is necessary to adjust the resource
provisioning based on the amount of the available green energy
of the data center. GreenSlot [157], [158] and GreenHadoop
[155] systems have been proposed to schedule the workload
based on the green energy supply. The jobs in the data center
are grouped into two types: deferrable jobs (which have loose
deadline, such as batch processing jobs) and non-deferrable
jobs (which need to be handled immediately, such as web
services). The basic idea of the two proposed systems is to
buffer the deferrable jobs if the green energy is insufficient
and execute them before their deadlines.

Although there are many disadvantages to equip the system
with battery, in reality, data centers have already been equipped
with uninterrupted power supplies (UPSs) to protect against
possible power failures [159]. Moreover, though batteries
consume extra energy by self-discharging, they can bank
the excessive green energy instead of wasting it. Thus, it is
realistic to consider the green data center as a battery enabled
system.Since green energy can be banked into batteries (i.e.,
the green energy provisioning can be adjusted over time), fully
utilizing the generated green energy may not be the optimal
solution in the battery enabled green data center. For instance,
green energy can be banked (i.e., not fully utilized) at the
current time slot and utilized at latter time slots when the
green energy generation is not sufficient to satisfy the energy
demands of the data center and the electricity price is relatively
high. Therefore, designing an efficient green energy provision-
ing strategy is critical to minimize the brown energy cost of
the resource management in the data center. However, it is
difficult to design an optimal green energy provisioning strat-
egy, because the current green energy provisioning decision
is coupled with the future decisions (e.g., the current green
energy provisioning decision may leave insufficient battery
capacity, and so the green energy generated in the near future
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may be wasted). Inspired by the green energy supplement strat-
egy in cellular networks [160], the green energy provisioning
strategy and the resource management in the data center can
be designed in a similar manner. Specifically, GRM predicts
the green energy generation, the resource demands of the data
center as well as the electricity price in each fine-grained
time slot (e.g., one hour) during one coarse-grained time slot
(e.g., one day) based on different kinds of prediction models.
Then, according to the these prediction results, an offline
green energy provisioning strategy is designed to minimize
the electricity cost by determining the amount of green energy
available for the data center as well as the amount of the energy
stored in the battery in each fine-grained time slot during one
coarse-grained time slot. However, the actual green energy
generation, resource demands and electricity may differ from
the prediction results; an online resource management should
be designed to dynamically adjust the resource provisioning
to serve the application workloads in order to maintain the
amount of energy stored in the battery to be no less than the
value generated from the offline green energy provisioning
strategy, while guaranteeing the application SLA. For in-
stance, if the green energy generation is over-estimated/under-
estimated, less/more resource should be provisioned to serve
the workload in order to maintain the amount of energy level
in the battery (which are pre-determined by the offline green
energy provisioning strategy).

C. Cooling aware resource management

Generally, the architecture of a data center is depicted in
Fig. 15, where the IT equipment includes the computing
(PMs) and communication (switches) resources in the data
center, the power infrastructure generates and delivers the
power to the IT equipment and the cooling supply system, and
the cooling supply system produces and delivers the cooling
resources to remove the heat from the IT equipment. Normally,
the cooling supply system comprises two major components:
cooling resource generator and cooling resource distributor.
Cooling resource generator, i.e., the outside air economizer and
water economizer in Fig. 15, is to chill down the returned hot
air/water from the Computer Room Air Conditioning (CRAC)
units and send back the cooling air/water to the CRAC units.
Cooling resource distributor, i.e., CRACs in Fig. 15, is to
disperse the cooled air/water to the IT equipment and collect
the returned hot air/water.

The cooling supply system is very important to ensure
proper operation of the IT equipment. However, the energy
consumption of the cooling supply system is tremendous;
it was reported that about 35%–55% of the total energy
consumption of the data center is consumed by the cooling
supply system [161]. Moreover, the report of U.S. Environ-
mentral Protection Agency also stated that the cooling supply
system consumes about 50% of the total energy consumption
in the data center [162]. Therefore, minimizing the energy
consumption of the cooling supply system can significantly
reduce the data center’s total energy consumption.

The cooling supply system is to ensure the IT equipment
under redline temperature [164], and the temperature of the IT

Fig. 15. The architecture of a data center.

equipment depends on the amount of resource provisioning.
Therefore, Liu et al. [163] modeled the power consumption
of the cooling supply system pcooling as a function of IT
power consumption d (which is determined by the amount
of resource provisioning) and the environment parameters, i.e.,
pcooling = kd3, where k is an coefficient which is proportional
to the temperature difference between the returned hot air from
the IT equipment (denoted as tRA) and the outside cooling air
(denoted as tOA). In other words, pcooling = α(tRA−tOA)d

3,
where α is a parameter decided by the air flow rate. Abdulla et
al. [165] also modeled the cooling supply system pcooling as
a nonlinear function with respect to the power consumption
of the IT equipment as well as the environment parameters
(e.g., tRA, the air flow rate and the air density). We define
the cooling power efficiency η as the IT power consumption d
divided by the cooling power consumption pcooling . In other
words, the amount of heat generated by the IT equipment,
which consumes eta units of power, can be removed by the
cooling system using 1 unit of power. Thus, intuitively, when
η is high (i.e., the value of α(tRA − tOA) is small), in
order to minimize the energy consumption of the cooling
supply system, GRM should assign more resources to serve
the applications, and vice versa. Moreover, if green energy
is considered in the cooling aware resource management, in
order to achieve the objective (i.e., minimize the brown energy
usage while guaranteeing the applications’ SLAs), the resource
provisioning strategy would be much more complicated by
incorporating the green energy generation and cooling power
efficiency into the resource management.

VII. CONCLUSION

We have presented an overview on different kinds of re-
source management mechanisms for a data center to maximize
the resource utilization. Resource management basically com-
prises two components: Global Resource Manager (GRM) and
Local Resource Manager (LRM). GRM can essentially opti-
mize the coarse-grained resource allocation from the global
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point of view. LRM locally adjusts the resource allocation in
a small time scale. Our studies indicate that proactive resource
allocation by predicting the future workload can enhance the
performance of resource management. Based on predicting the
workloads of different objects (VM, PM or application), we
have categorized the resource management mechanisms into
three types: VM, PM, and application based resource man-
agement mechanisms. We have reviewed different prediction
algorithms and allocation strategies recently proposed for the
three management mechanisms.

Most of the resource management mechanisms have been
implemented based on the assumption of the data center
being homogeneous. Qualitative comparisons have been made
among the three resource management mechanisms if the data
center is heterogeneous. We have investigated four heterogene-
ity features existed in recent data centers and discuss the de-
gree of performance degradation when three kinds of resource
management mechanisms are implemented in a heterogeneous
data center. It is challengeable to design an optimal resource
management by considering all the heterogeneity features of
a data center.
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