Protocol 2 – Delay Difference and Delay Differential Equations
In this lab, you’re going to work with models of the form:
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In other words, the change in x between now and one time step in the future is a function not only of the current value of x (as it is in the ‘standard’ difference equations and ODEs we’ve been working with to date), but also of the value of x at a specific earlier time, 
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 time intervals ago.  The interval between that earlier time and the present is referred to as the lag or delay, and such models are referred to as delay, lagged, or retarded(!) models.
The past couple decades have seen a dramatic increase in the application of delay models to problems in biology, physics and engineering.  Regulation of respiration, secretion of hormones, algal blooms, epidemics, population biology, cell signal transduction, white blood cell counts in leukemia patients, regulation of red blood cell production, and transcriptional regulation are just some of the biological problems that have been successfully addressed with delay models.  Fortunately, there has been a corresponding upsurge in interest on the part of mathematicians and, while delay models are less tractable than ‘non-delay’ models, significant advances in our understanding of the mathematics of delay models have enhanced their utility for biologists.

Today, you are going to explore the temporal dynamics of discrete and continuous variants of the basic logistic model.  The discrete model is perhaps different from the one you’re used to:
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where N is the population size, r is a measure of the reproductive rate of individuals, and 
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is the lag in time steps.  The continuous model is the more familiar:
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where 
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is now a continuous lag, and K is the carrying capacity of the habitat for the species.
A Discrete Delay Model 

function delay_diff(r,delay)
clc; clf;
n_gen = 1000;
N = zeros(n_gen,3);
Nd = N;
t = zeros(1,n_gen);
N(1,1) = .1;
N(1,2) = 1.01;
N(1,3) = 5;
Nd(1:1+delay,1) = N(1,1);
Nd(1:1+delay,2) = N(1,2);
Nd(1:1+delay,3) = N(1,3);
for i = 1:n_gen-1
    t(i+1) = i+1;
    for j = 1:3
        N(i+1,j) = N(i,j)*exp(r*(1-N(i,j)));
    end
end
for i = 1+delay:n_gen-1
    t(i) = i;
    for j = 1:3
        Nd(i+1,j) = Nd(i,j)*exp(r*(1-Nd(i-delay,j)));
    end
end
figure(1); plot(t(1:100),N(1:100,:),'-k',t(1:100),Nd(1:100,:),'-');
axis([0, 100, 0, max(max(Nd))]);
legend('No delay');
figure(2); plot(t(n_gen-99:n_gen),N(n_gen-99:n_gen,:),'-k',t(n_gen-99:n_gen),Nd(n_gen-99:n_gen,:),'-');
axis([n_gen-99,n_gen, 0, max(max(Nd))]);
legend('No delay');
figure(3); plot(N(1:n_gen-1,1),N(2:n_gen,1),'-*k', N(1:n_gen-1,2),N(2:n_gen,2),...
    '-*k',N(1:n_gen-1,3),N(2:n_gen,3),'-*k', Nd(1:n_gen-1,1),Nd(2:n_gen,1),'-*b',...
    Nd(1:n_gen-1,2),Nd(2:n_gen,2),'-g',Nd(1:n_gen-1,3),Nd(2:n_gen,3),'-r');
shg;
Exercises 
Use the table provided on the next page to record your observations about the dynamics of the output of delay_diff.m.
1. First, refresh your memory about the behavior of the discrete logistic model by starting with r = 0.1, delay = 0, and run the script.  You’ll note that five figures are produced:

· Figure 1 – displays the entire time series of 1000 steps.  Three starting values for N (0.1, 1.01, and 5.0) are used, to facilitate your interpretation of the phase plot.

· Figure 2 – displays the first 100 time steps, to make it easier to visualize the early dynamics of the solutions.

· Figure 3 – displays the last 100 time steps, so you can observe the behavior of the solutions once any transient early dynamics have disappeared.

· Figure 4 – displays the phase plot of N(t+1) vs. N(t).

· On all figures, the results for the ‘non-delay’ model (delay = 0) are plotted as black asterisks connected by a solid black line.  The delay model results are plotted with a green [y(0) = 0.1], blue [y(0) = 1.01], or red line [y(0) = 5.0].

2. Now, run the script using the values for r given in the table:

· Note carefully the behavior of the solutions as illustrated in Figures 1, 2, and 3.

· Use Matlab’s Zoom tools as necessary to get a clear picture, especially of the early dynamics of the solutions.  Feel free to change the axis limits, if you wish.
· Note any correlations between the appearance of the phase plot and the temporal dynamics of the solutions.  Describe your results in terms of stable and unstable fixed points, stable spirals, unstable spirals, limit cycles, and/or bifurcations.

3. Finally, repeat Exercise 2, using the non-zero values for delay given in the table.

· What is the impact of time lags on the solutions’ behavior?  Interpret your results in terms of the population biology of the species.

	r
	delay = 0
	delay = 1
	delay = 2
	delay = 3

	0.1
	
	
	
	

	0.5
	
	
	
	

	0.9
	
	
	
	

	1.0
	
	
	
	

	1.1
	
	
	
	

	1.5
	
	
	
	

	2.0
	
	
	
	

	2.2
	
	
	
	


Optional Exercise 
1. You’ll recall from last semester that as r ( 4, chaotic behavior appeared in the discrete logistic model.  Set the value of delay to zero, and input a value of r that produces a chaotic solution.  Now, set delay equal to 1, 2, and finally, 3.  What does the appearance of the resulting time series and phase plots suggest about the impact of lagged effects on the behavior of delay models? 

Continuous delay equations (dde23.m)

Matlab includes a solver for delay differential equations, dde23.m.  This function works similarly to Matlab’s ODE solvers you worked with last semester.  However, perhaps because its development was outsourced, it has some idiosyncratic features, some good, some not so good, that we’ll discuss in lab.   
The following code implements a simple call to dde23.m, using it to solve the most familiar version of the logistic model (coded in dde_demof.m).
function [] = dde_demo(r, lag)
clc; clf;
K = 100;
y0 = 1.00;
options = ddeset('RelTol',1e-4,'AbsTol',1e-7,...
                 'InitialY',y0);
sol = dde23('dde_demof',lag,y0,[0, 20],options,r,K);
figure(1); plot(sol.x,sol.y);
axis([0 20 0 1.1*max(max(sol.y))]);
title('Lagged logistic equation')
xlabel('time t');
ylabel('y(t)');
figure(2); plot(sol.y(1:length(sol.y)-1),sol.y(2:length(sol.y)));
title('Phase plot for lagged logistic equation');
xlabel('y(t-1)');
ylabel('y(t)');
shg;
********************************

function v = dde_demof(t,y,Z,r,K)
v = r*y*(1 - Z/K);
Exercises 

1. Start with r = 1.5 and lag = 0.00001 (dde23 won’t accept lags of zero); run the script and note the important features of both the time series and the phase plot.

2. Increase lag in increments of 0.1-0.2 until you reach a value of 2.5, each time noting the appearance of the time series and of the phase plot. 

a. What happened to the frequency of the oscillations as lag was increased?  Does that make biological ‘sense’?  Or, do you think it’s an artifact of the math?

3. Increase r, in an attempt to induce chaotic behavior in the model.  Were you successful?
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