
AN OBATA-TYPE THEOREM ON A THREE-DIMENSIONAL CR MANIFOLD

S. IVANOV AND D. VASSILEV

Abstract. We prove a CR version of the Obata’s result for the first eigenvalue of the sub-Laplacian

in the setting of a compact strictly pseudoconvex pseudohermitian three dimensional manifold with

non-negative CR-Paneitz operator which satisfies a Lichnerowicz type condition. We show that

if the first positive eigenvalue of the sub-Laplacian takes the smallest possible value then, up to a

homothety of the pseudohermitian structure, the manifold is the standard Sasakian three dimensional

unit sphere.
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1. Introduction

The classical theorems of Lichnerowicz [19] and Obata [23] give correspondingly a lower bound for

the first eigenvalue of the Laplacian on a compact manifold with a lower Ricci bound and characterize

the case of equality.

A CR analogue of the Lichnerowicz theorem was found by Greenleaf [11] for dimensions 2n+1 > 5,

while the corresponding results for n = 2 and n = 1 were achieved later in [20] and [8], respectively. As

a continuation of this line of results in the setting of geometries modeled on the rank one symmetric

spaces in [13] it was proven a quaternionic contact version of the Lichnerowicz result.

The CR Lichnerowicz type result states that on a compact 2n+1-dimensional strictly pseudoconvex

pseudohermitian manifold satisfying a certain positivity condition the first eigenvalue of the sub-

Laplacian is grater than or equal to the first eigenvalue of the standard Sasakian sphere. Greenleaf

[11] showed the result for n ≥ 3, while S.-Y. Li and H.-S. Luk adapted in [20] Greenleaf’s proof to

cover the case n = 2. They also gave a version of the case n = 1 assuming further a condition on the

covariant derivative of the pseudohermitian torsion. Later, H.-L. Chiu [8] found a three-dimensional

version, the n = 1 case, of Greenleaf’s result where the additional assumption was the CR-invariant

condition that the CR-Paneitz operator is non-negative. We remark that if n > 1 the CR-Paneitz
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operator is always non-negative, while in the case n = 1 the vanishing of the pseudohermitian torsion

implies that the CR-Paneitz operator is non-negative, see [8] and[5]. Further results in the CR case

appeared in [4, 3, 2], [1] and [6] adding a corresponding inequality for n = 1, or characterizing the

equality case in the vanishing pseudohermitian torsion case (the Sasakian case).

The problem of the existence of an Obata-type theorem in pseudohermitian manifold was considered

in [2] where the following CR analogue of Obata’s theorem was conjectured.

Conjecture 1.1 ([2]). Let (M, θ) be a closed pseudohermitian (2n+1)-manifold with n ≥ 2. In

addition we assume the CR-Paneitz operator is nonnegative if n = 1. Suppose there is a positive

constant k0 such that the pseudohermitian Ricci curvature Ric and the pseudohermitian torsion A

satisfy the inequality (1.5). If n
n+1k0 is an eigenvalue of the sub-Laplacian then (M, θ) is the standard

(Sasakian) CR structure on the unit sphere in Cn+1.

This conjecture was proved in the case of a vanishing pseudohermitian torsion (Sasakian case) in

[2] for n ≥ 2 and in [3] for n = 1. The non-Sasakian case was considered in [7] where Conjecture 1.1

was established under some assumptions on the divergence and the second covariant derivative of the

pseudohermitian torsion.

A dimension independent proof of the results due to Greenleaf, S.-Y. Li & H.-S. Luk, and H.-

L. Chiu based on the non-negativity of the CR-Paneitz operator can be found in the Appendix of

[15]. The key to this direct exposition of the known results is the last inequality in the proof of [15,

Theorem 8.8] which states that for any smooth function f on a compact pseudohermitian manifold

(M, θ) satisfying (1.5) we have

(1.1) 0 ≥
∫
M

[(
−n+ 1

n
λ+ k0

)
|∇f |2 +

∣∣(∇2f)[−1]
∣∣2 − 3

2n
Pf (∇f)

]
V olθ

Here, following [18, 10] for a given function f we define the one form,

(1.2) P (X) ≡ Pf (X) = ∇3f(X, eb, eb) +∇3f(JX, eb, Jeb) + 4nA(X, J∇f)

and also a fourth order differential operator (the so called CR-Paneitz operator in [8]),

(1.3)

Cf = −∇∗P = (∇eaP )(ea) = ∇4f(ea, ea, eb, eb)+∇4f(ea, Jea, eb, Jeb)−4n∇∗A(J∇f)−4n g(∇2f, JA),

where {e1, . . . , e2n} is an orthonormal basis and a summation over repeated indices is understood.

Taking into account the divergence formula on a compact pseudohermitian manifold, the non-

negativity condition of the Paneitz operator means that we have∫
M

f · Cf V olθ = −
∫
M

Pf (∇f)V olθ ≥ 0

for any smooth function f . In the three dimensional case this condition is a CR invariant since it is

independent of the choice of the contact form. This follows from the conformal invariance of C proven

in [12].

A new method to attack the problem was developed by the authors in [15] where Conjecture 1.1

was proved under the additional assumption of a divergence-free torsion. The new approach of [15]

is based on the explicit form of the Hessian with respect to the Tanaka-Webster connection of an

extremal eigenfunction f , i.e., an eigenfunction with eigenvalue n/(n + 1)k0, and the formula for

the pseudohermitian curvature. Specifically, in the extremal case inequality (1.1) is used in [15] to

determine, among other things, the horizontal Hessian of an extremal eigenfunction f,4f = n
n+1k0f ,

which after a rescaling can be put in the form [15]

(1.4) ∇2f(X,Y ) = −fg(X,Y )− df(ξ)ω(X,Y ), X, Y ∈ H = Ker θ.

The new idea in [15] is to determine the full Hessian with respect to the Tanaka-Webster connection

based on (1.4). One of the notable consequences of this is the elliptic equation satisfied by the extremal
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first eigenfunction, which allows the use of Riemannian unique continuation results. This fact was

later used in [21] where the divergence-free condition of [15] was shown to be superfluous for the

results of [15] to hold true. In fact, in this very recent paper [21] S.-Y. Li and X. Wang established

Conjecture 1.1 for n > 1 completing our approach [15] with the introduction of a new integration by

parts idea, cf. [21, Lemma 4], involving suitable powers of the extremal function. One should note that

in [21] the authors reproved a number of results from [15] using complex notation. For example, the

formulas in the crucial [21, Proposition 4] are stated in [15, Lemma 3.1], [15, Lemma 4.3], equation

(4.4) in [15], and the last equation in the proof of [15, Lemma 4.1], while [21, Lemma 2 ] follows

directly (is a special case of) of equations (4.2) and (4.3) in [15]. After all these results of [15] the

authors of [21] add a new and a very important step, namely [21, Lemma 4], which makes possible

the above explained improvement of the result of [15] in the case n > 1.

In the three dimensional case, [21, Proposition 5] is not correctly proved and a correct proof

is contained in Section 6.2 of [15]. Furthermore, the proof of Conjecture 1.1 presented in [21] for

dimension three has a gap since formula (4.8) in [21] does not hold in dimension three which prevents

the use of Lemma 3 and equality (4.3). Therefore [21, Corollary 1] can not be applied in the three

dimensional case.

The purpose of this paper is to settle Conjecture 1.1 in dimension three where we prove the following

Theorem.

Theorem 1.2. Let (M, θ) be a compact strictly pseudoconvex pseudohermitian CR manifold of di-

mension three with a non-negative CR-Paneitz operator. Suppose there is a positive constant k0 such

that the pseudohermitian Ricci curvature Ric and the pseudohermitian torsion A satisfy the inequality

(1.5) Ric(X,X) + 4A(X, JX) ≥ k0g(X,X), X ∈ H = Ker θ.

If λ = 1
2k0 is an eigenvalue of the sub-Laplacian, then up-to a scaling of θ by a positive constant

(M, θ) is the standard (Sasakian) CR structure on the unit three-dimensional sphere in C2.

The value of the scaling is determined, for example, by the fact that the standard pseudohermitian

structure on the unit sphere has first eigenvalue equal to 2. The corresponding eigenspace is spanned

by the restrictions of all linear functions to the sphere.

The proof or Theorem 1.2 is based on the explicit form of the Hessian [15] with respect to the

Tanaka-Webster connection of an extremal eigenfunction f and the integration by parts involving

powers of the extremal eigenfunction introduced in [21]. After these initial steps we prove Theorem 1.2

as a consequence of Theorem 5.4 taking into account the already established CR Obata theorem for

pseudohermitian manifold with a vanishing pseudohermitian torsion. Thus, the new result here is

Theorem 5.4 which shows that if on a three dimensional compact pseudohermitian manifold satisfying

(1.5) and having, further, non-negative Paneitz operator we have an eigenfunction f with a horizontal

Hessian given by the above formula (1.4), then the pseudohermitian torsion vanishes, i.e., we have a

Sasakian structure. The new idea in dimension three is to compare the calculated in [15] Ricci tensor

with the Lichnerowicz type assumption (1.5) which results in the formula for the full Hessian with

respect to the Tanaka-Webster connection of an extremal eigenfunction expressed in Lemma 5.1.

Remark 1.3. Following the preprint [16], which became the current paper, a correction of the results of

[21] in the three dimensional case appeared in [22]. Despite its priority the paper [16] is not referenced

in [22] even though a number of results in [22] were already proven in [16] and [15]. Notably, the

correction of [21] contained in [22] uses the above mentioned idea of [15] which allows the ”recovery”

of formula (5.2) from [16] for the full Hessian of an extremal eigenfunction in dimension three. This

is a crucial fact in the proofs of [22, Theorem 9 & Theorem 10]. In the higher dimensional case, [22,

Theorem 5 & Theorem 8] appeared earlier in [15] with the additional assumption that the torsion is

divergence free, see [15, Theorem 1.3]. In [22] the ”novelty” in the general torsion case is the non-

trivial reduction to the zero torsion case, similarly to [15] but here using [21, Lemma 4], while the
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remaining parts of the argument are identical to those in [15]. These results of [15] are not mentioned

in [22]. Finally, in the three dimensional case, the first complete proof of [22, Theorem 10] is given in

the earlier paper [16] while the divergence-free torsion case appeared in [15], but both results are not

cited in [22].

Convention 1.4.

a) We shall use X,Y, Z, U to denote horizontal vector fields, i.e. X,Y, Z, U ∈ H = Ker θ.

b) {e1, . . . e2n} denotes a local orthonormal basis of the horizontal space H.

c) The summation convention over repeated vectors from the basis {e1, . . . e2n} will be used. For

example, for a (0,4)-tensor P , the formula k = P (eb, ea, ea, eb) means

k =

2∑
a,b=1

P (eb, ea, ea, eb);

Acknowledgments The research is partially supported by Contract “Idei”, DID 02-39/21.12.2009.

S.I is partially supported by Contract 130/2012 with the University of Sofia ‘St.Kl.Ohridski’

2. Pseudohermitian manifolds and the Tanaka-Webster connection

In this section we will briefly review the basic notions of the pseudohermitian geometry of a CR

manifold. Also, we recall some results (in their real form) from [24, 25, 26, 18], see also [9, 17, 14],

which we will use in this paper.

A CR manifold is a smooth manifold M of real dimension 2n+1, with a fixed n-dimensional complex

sub-bundle H of the complexified tangent bundle CTM satisfying H ∩ H = 0 and [H,H] ⊂ H. If

we let H = ReH ⊕H, the real sub-bundle H is equipped with a formally integrable almost complex

structure J . We assume that M is oriented and there exists a globally defined compatible contact

form θ such that the horizontal space is given by H = Ker θ. In other words, the hermitian bilinear

form

2g(X,Y ) = −dθ(JX, Y )

is non-degenerate. The CR structure is called strictly pseudoconvex if g is a positive definite tensor

on H. The vector field ξ dual to θ with respect to g satisfying ξydθ = 0 is called the Reeb vector field.

The almost complex structure J is formally integrable in the sense that ([JX, Y ] + [X, JY ]) ∈ Hand

the Nijenhuis tensor NJ(X,Y ) = [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X, JY ] = 0.

A CR manifold (M, θ, g) with a fixed compatible contact form θ is called a pseudohermitian man-

ifold . In this case the 2-form

dθ|H := 2ω

is called the fundamental form. Note that the contact form is determined up to a conformal factor,

i.e. θ̄ = νθ for a positive smooth function ν, defines another pseudohermitian structure called pseudo-

conformal to the original one.

2.1. The Tanaka-Webster connection. The Tanaka-Webster connection [24, 25, 26] is the unique

linear connection ∇ with torsion T preserving a given pseudohermitian structure, i.e., it has the

properties

(2.1)

∇ξ = ∇J = ∇θ = ∇g = 0,

T (X,Y ) = dθ(X,Y )ξ = 2ω(X,Y )ξ, T (ξ,X) ∈ H,
g(T (ξ,X), Y ) = g(T (ξ, Y ), X) = −g(T (ξ, JX), JY ).

For a smooth function f on a pseudohermitian manifold M we denote by ∇f its horizontal gradient,

(2.2) g(∇f,X) = df(X).
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The horizontal sub-Laplacian 4f and the norm of the horizontal gradient ∇f = df(ea)ea of a smooth

function f on M are defined respectively by

(2.3) 4f = − trgH(∇df) = ∇∗df = − ∇df(ea, ea), |∇f |2 = df(ea) df(ea).

The function f 6≡ 0 is an eigenfunction of the sub-Laplacian if

(2.4) 4f = λf,

where λ is a necessarily non-negative constant.

It is well known that the endomorphism T (ξ, .) is the obstruction a pseudohermitian manifold to

be Sasakian. The symmetric endomorphism Tξ : H −→ H is denoted by A,

A(X,Y )
def
= T (ξ,X, Y ),

and is called the (Webster) torsion of the pseudohermitian manifold or pseudohermitian torsion. It is

a completely trace-free tensor of type (2,0)+(0,2),

(2.5) A(ea, ea) = A(ea, Jea) = 0, A(X,Y ) = A(Y,X) = −A(JX, JY ).

Let R = [∇,∇] − ∇[,] be the curvature of the Tanaka-Webster connection. The pseudohermitian

Ricci tensor Ric, the pseudohermitian scalar curvature S and the pseudohermitian Ricci 2-form ρ are

defined by

Ric(C,B) = R(ea, C,B, ea), S = Ric(ea, ea), ρ(C,B) =
1

2
R(C,B, ea, Iea), C,B ∈ Γ(TM).

As well known ρ, sometimes called the Webster Ricci tensor, is the (1,1)-part of Ric. In dimension

three we have Ric(., .) = ρ(J., .). We refer the reader to [15] for a quick summary using real expression

of the well known properties of the curvature R of the Tanaka-Webster connection established in

[25, 26, 18], see also [9, 17, 14].

2.2. The Ricci identities for the Tanaka-Webster connection. We shall use repeatedly the

following Ricci identities of order two and three for a smooth function f , see also [15, 14],

(2.6)
∇2f(X,Y )−∇2f(Y,X) = −2ω(X,Y )df(ξ)

∇2f(X, ξ)−∇2f(ξ,X) = A(X,∇f)

∇3f(X,Y, Z)−∇3f(Y,X,Z) = −R(X,Y, Z,∇f)− 2ω(X,Y )∇2f(ξ, Z)

∇3f(X,Y, Z)−∇3f(Z, Y,X) = −R(X,Y, Z,∇f)−R(Y,Z,X,∇f)− 2ω(X,Y )∇2f(ξ, Z)

− 2ω(Y,Z)∇2f(ξ,X) + 2ω(Z,X)∇2f(ξ, Y ) + 2ω(Z,X)A(Y,∇f)

∇3f(ξ,X, Y )−∇3f(X, ξ, Y ) = (∇∇fA)(Y,X)− (∇YA)(∇f,X)−∇2f(AX,Y )

∇3f(X,Y, ξ)−∇3f(ξ,X, Y ) = ∇2f(AX,Y ) +∇2f(X,AY ) + (∇XA)(Y,∇f) + (∇YA)(X,∇f)

− (∇∇f )A(X,Y ).

An important consequence of the first Ricci identity is the following fundamental formula

(2.7) g(∇2f, ω) = ∇2f(ea, Jea) = −2ndf(ξ).

On the other hand by (2.3) the trace with respect to the metric is the negative sub-Laplacian

g(∇2f, g) = ∇2f(ea, ea) = −4f.

We also recall the horizontal divergence theorem allowing ”integration by parts” [24]. Let (M, g, θ)

be a pseudohermitian manifold of dimension 2n+1. For a fixed local 1-form θ the form V olθ = θ∧ωnis

a globally defined volume form since V olθ is independent on the local one form θ. The (horizontal)

divergence of a horizontal vector field/one-form σ ∈ Λ1 (H) is defined by

∇∗ σ = −tr|H∇σ = −(∇eaσ)ea.
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The divergence formula [24] gives the ”integration by parts” identity for a one-form of compact support∫
M

(∇∗σ)V olθ = 0.

3. The vertical Bochner formula

We recall explicitly the vertical Bochner formula from [15] since it will provide an important step

in the proof of the main result. The proof below is contained in Remark 3.5 of [15].

Proposition 3.1 ([15],”vertical Bochner formula”). For any smooth function f on a pseudohermitian

manifold of dimension (2n+ 1) the following identity holds

(3.1) −4(ξf)2 = 2|∇(ξf)|2 − 2df(ξ) · ξ(4f) + 4df(ξ) · g(A,∇2f)− 4df(ξ)(∇∗A)(∇f).

Proof. To prove (3.1) we use the last of the Ricci identities (2.6) and the fact that the torsion is trace

free to obtain

−1

2
4(ξf)2 = ∇3f(ea, ea, ξ)df(ξ) +∇2f(ea, ξ)∇2f(ea, ξ)

=
[
∇3f(ξ, ea, ea) + 2g(∇2f,A)− 2(∇∗A)(∇f)

]
df(ξ) + |∇(ξf)|2

= |∇(ξf)|2 − df(ξ) · ξ(4f) + 2df(ξ) · g(A,∇2f)− 2df(ξ)(∇∗A)(∇f),

which completes the proof of (3.1). �

4. The Hessian of an extremal function in the extremal three dimensional case

In this section we recall some results from [15] determining the full Hessian of an ”extremal first

eigenfunction” that is an eigenfunction with the smallest possible eigenvalue assuming the Greenleaf’s

positivity condition.

Let M be a compact strictly pseudoconvex CR 3-manifold satisfying Greenleaf’s positivity condition

which in real notation takes the form

Ric(X,X) + 4A(X, JX) ≥ k0 g(X,X)

such that the CR-Paneitz operator is non-negative on f . If 1
2k0 is an eigenvalue of the sub-Laplacian,

4f = 1
2k0f then the corresponding eigenfunctions satisfy the next identities, cf. Section 3 of [15],

(4.1) ∇2f(X,Y ) = −k0
4
fg(X,Y )− df(ξ)ω(X,Y ).

Furthermore by Remark 3.2 of [15], we have

(4.2) Ric(∇f,∇f) + 4A(J∇f,∇f) = k0|∇f |2,
∫
M

Pf (∇f)V olθ = 0.

Since the horizontal space is two dimensional we can use ∇f , J∇f as a basis at the points where

|∇f | 6= 0. In fact, we have |∇f | 6= 0 almost everywhere. This follows from [15, Lemma 5.1] showing

that f satisfies a certain elliptic equation which implies that f cannot vanish on any open set since

otherwise f ≡ 0 which is a contradiction.

The ”mixed” parts of the Hessian are given in the second and the third equations in the proof of

Theorem 5.2 in [15] as follows

(4.3)
∇2f(ξ, J∇f) = −|∇f |2 +A(J∇f,∇f) = −1

4
Ric(∇f,∇f) = −S

8
|∇f |2,

∇2f(ξ,∇f) = −1

3
A(∇f,∇f), ∇2f(∇f, ξ) =

2

3
A(∇f,∇f).

The Ricci identities together with (4.3) imply

(4.4) ∇2f(J∇f, ξ) = −|∇f |2 + 2A(J∇f,∇f).
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Using a homothety we can reduce to the case λ1 = 2 and k0 = 4, which are the values for the standard

Sasakian round 3-sphere. Henceforth, we shall work under these assumptions. Thus, for an extremal

first eigenfunction f (by definition f 6≡ 0) we have the equalities

(4.5) λ = 2, 4f = 2f,

∫
M

(4f)2 V olθ = 2

∫
M

|∇f |2 V olθ.

In addition, the horizontal Hessian of f satisfies (4.1), which with the assumed normalization takes

the form given in equation (1.4).

5. Vanishing of the pseudohermitian torsion.

In this section we show the vanishing of the pseudo-hermitian torsion. We shall assume, unless

explicitly stated otherwise, that M is a compact strictly pseudoconvex pseudohermitian CR manifold

of dimension three for which (1.5) holds and f is a smooth function onM satisfying (1.4). In particular,

we have done the normalization, if necessary, so that (1.5) holds with k0 = 4.

Lemma 5.1. Let f be an extremal eigenfunction of the sublaplacian on a compact strongly pseudo-

convex 3-dimensional pseudohermitian manifold. Then we have

(5.1) A(∇f,∇f) = 0

and the ”mixed” derivatives are given by

(5.2) ∇2f(ξ, Y ) = df(JY ) +A(Y,∇f), ∇2f(Y, ξ) = df(JY ) + 2A(Y,∇f).

Proof. Using the ”vertical” Bochner formula (3.1) and taking into account that g(A,∇2f) = 0, after

an integration by parts we obtain

(5.3) 0 =

∫
M

|∇(ξf)|2 − df(ξ) · ξ(4f) + 2df(ξ) · g(A,∇2f)− 2df(ξ)(∇∗A)(∇f)V olθ

=

∫
M

|∇(ξf)|2 − 2(ξ f)2 − 2∇2f(ea, ξ)A(ea,∇f)V olθ

=

∫
M

−2(ξ f)2 +
1

|∇f |2
[(
∇2f(∇f, ξ)

)2
+
(
∇2f(J∇f, ξ)

)2]
V olθ

+

∫
M

−2

|∇f |2
[
∇2f(∇f, ξ)A(∇f,∇f) +∇2f(J∇f, ξ)A(J∇f,∇f)

]
V olθ

using that
1

|∇f |2
|A(∇f,∇f)| ≤ ||A|| def= sup

M
|A| a.e.

since |∇f | 6= 0 almost everywhere. Using (4.3) and (4.4), (5.3) takes the form

(5.4)

∫
M

[ −8

9|∇f |2
(
A(∇f,∇f)

)2
+ |∇f |2 − 2|ξf |2 − 2A(J∇f,∇f)

]
V olθ = 0.

Now, we recall [15, Lemma 8.6] and [15, Lemma 8.7] implying an identity which in the case n = 1

reduces to

(5.5) 2

∫
M

A(J∇f,∇f)V olθ =

∫
M

[
− 1

2
g(∇2f, ω)2 +

1

2
(4f)2 +

1

2
P (∇f)

]
V olθ.

Taking into account (2.7), (4.5) and the fact that in the extremal case we have
∫
M
Pf (∇f) = 0 by

(4.2), (5.4) and (5.5) imply

(5.6)
16

9

∫
M

(A(∇f,∇f)

|∇f |

)2
V olθ = 0,

hence the claimed result for the torsion A. The formulas for the mixed derivatives follow taking also

into account (4.3), and (4.4). �
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Lemma 5.1 implies a number of crucial identities which we record in the following Corollaries.

Corollary 5.2. The following identities hold true almost everywhere

|∇f |2A(JY,∇f) = df(Y )A(∇f, J∇f),(5.7)

|∇f |4|A|2 = 2
(
A(∇f, J∇f)

)2
.(5.8)

In addition, we have

(5.9) |∇f |2|A| = −
√

2A(∇f, J∇f).

Proof. Since ∇f, J∇f form a basis of H almost everywhere, then (5.7) follows from (5.1) by a direct

verification. Then, (5.8) follows since the horizontal space is two dimensional. Notice that Lichnerow-

icz’ condition implies that

(5.10) A(∇f, J∇f) ≤ 0,

which, together with (5.8) imply (5.9). �

The proof of [15, Lemma 4.2] shows that (5.2) gives the following fact.

Lemma 5.3. Let M be a strictly pseudoconvex pseudohermitian CR manifold of dimension three. If

f is an eigenfunction of the sub-Laplacian satisfying (1.4), then the following formula for the third

covariant derivative holds

(5.11) ∇3f(X,Y, ξ) = −df(ξ)g(X,Y ) +fω(X,Y )−2fA(X,Y )−2df(ξ)A(JX, Y ) + 2(∇XA)(Y,∇f).

We turn to the proof of our main result.

Theorem 5.4. Let M be a compact strictly pseudoconvex pseudohermitian CR manifold of dimension

three for which the Lichnerowicz condition (1.5) holds and the Paneitz operator is non-negative. If f

is an eigenfunction satisfying (1.4) then the pseudohermitian torsion vanishes, A = 0.

Proof. First we show

g(∇f,∇|A|2) = 0.

Indeed, Lemma 5.3 gives

(5.12) g(A,∇3f(., ., ξ)) = −2f |A|2 + 2g(A,∇A(., .,∇f)).

Next we compute the above scalar product using the Ricci identities. In fact, in the last Ricci identity

we make the substitution

∇3f(ξ,X, Y )) = −df(ξ)g(X,Y )− (ξ2f)ω(X,Y ),

which follows from the Hessian equation (4.1), to obtain the equation

(5.13) ∇3f(X,Y, ξ) = −df(ξ)g(X,Y )− (ξ2f)ω(X,Y )− 2f ·A(X,Y )

+∇A(X,Y,∇f) + 2df(ξ)A(JX, Y )−∇A(∇f,X, Y ).

Now, (5.13) implies

(5.14) g(A,∇3f(., ., ξ)) = −2f |A|2 + 2g(A,∇A(., .,∇f))− g(A,∇A(∇f, ., .)).

Equations (5.12) and (5.14) show that

(5.15) g(A,∇A(∇f, ., .)) = 0, g(A,∇3f(., ., ξ)) = −2f |A|2 + 2g(A,∇A(., .,∇f))

hence

(5.16) g(∇f,∇|A|2) = 2g(A,∇A(., .,∇f)) = 0.
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Equation (5.16) implies that for any k > 0 we have

(5.17) g(∇f,∇|A|k) = 0.

For simplicity, suppose A 6= 0 everywhere. For the complete argument, which requires the introduction

of a cut-off function we refer to [21, Lemma 4]). Since M is compact there is a constant a > 0 such

that at every point of M we have

(5.18) a < |A|, hence |A|2 ≤ 1

a
|A|3.

The divergence formula gives

(5.19)

∫
M

|A|3f2(k+1) V olθ = −1

2

∫
M

|A|3f2k+14f V olθ =
1

2

∫
M

g(∇(|A|3f2k+1),∇f)V olθ

=
2k + 1

2

∫
M

|A|3f2k|∇f |2 V olθ +
1

2

∫
M

f2k+1g(∇|A|3,∇f)V olθ

=
2k + 1

2

∫
M

|A|3f2k|∇f |2 V olθ,

taking into account (5.17).

With the help of (5.9), the divergence formula and (5.17) we can compute the last integral as

follows

(5.20)
√

2

∫
M

|A|3f2k|∇f |2 V olθ = −
∫
M

|A|2f2kA(∇f, J∇f)V olθ −
∫
M

|A|2f2kA(ea, J∇f)df(ea)V olθ

=

∫
M

g(∇|A|2, AJ∇f)f2k+1 V olθ + 2k

∫
M

|A|2f2kA(∇f, J∇f)V olθ

+

∫
M

|A|2f2k+1∇A(ea, ea, J∇f)V olθ +

∫
M

|A|2f2k+1A(ea, J∇ea(∇f))V olθ.

The last integral equals zero due to (1.4). The first integral is zero due to (5.7) and (5.17). Therefore,

the first and last equality in (5.20) give

(5.21)
√

2(2k + 1)

∫
M

|A|3f2k|∇f |2 V olθ =

∫
M

|A|2f2k+1∇A(ea, ea, J∇f)V olθ.

Therefore, using (5.18) and Hölder’s inequality we have

(5.22)
√

2(2k + 1)

∫
M

|A|3f2k|∇f |2 V olθ ≤ ||∇∗A||
∫
M

|A|2f2k+1|∇f |V olθ

≤ ||∇
∗A||
a

∫
M

|A|3f2k+1|∇f |V olθ ≤
||∇∗A||

a

(∫
M

|A|3f2(k+1) V olθ

)1/2 (∫
M

|A|3f2k|∇f |2 V olθ
)1/2

=
||∇∗A||

a

(∫
M

|A|3f2(k+1) V olθ

)1/2 ( 2

2k + 1

∫
M

|A|3f2(k+1) V olθ

)1/2
,

using (5.19) in the last equality. Now, equation (5.19) gives

√
2(2k + 1)

∫
M

|A|3f2k|∇f |2 V olθ ≤
||∇∗A||

a

(2k + 1

2

)1/2(∫
M

|A|3f2k|∇f |2 V olθ
)
,

which gives a contradiction by taking k sufficiently large. Therefore the torsion vanishes, |A| = 0.

�

5.1. Proof of Theorem 1.2. We apply Theorem 5.4 to conclude that the pseudohermitian torsion

vanishes. The claim of the Theorem 1.2 follows by applying the known result in the torsion-free

(Sasakian) case, see [3] for the original proof or the later proof in [15] valid also in certain non-compact

cases.
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