
AN OBATA TYPE RESULT FOR THE FIRST EIGENVALUE OF THE SUB-LAPLACIAN

ON A CR MANIFOLD WITH A DIVERGENCE-FREE TORSION

S. IVANOV AND D. VASSILEV

Abstract. We prove a CR version of the Obata’s result for the first eigenvalue of the sub-Laplacian in the setting

of a compact strictly pseudoconvex pseudohermitian manifold which satisfies a Lichnerowicz type condition and

has a divergence free pseudohermitian torsion. We show that if the first positive eigenvalue of the sub-Laplacian

takes the smallest possible value then, up to a homothety of the pseudohermitian structure, the manifold is the

standard Sasakian unit sphere. We also give a version of this theorem using the existence of a function with

traceless horizontal Hessian on a complete, with respect to Webster’s metric, pseudohermitian manifold.
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1. Introduction

The classical theorems of Lichnerowicz [29] and Obata [33] give correspondingly a lower bound for the

first eigenvalue of the Laplacian on a compact manifold with a lower Ricci bound and characterize the case

of equality. In [29] it was shown that for every compact Riemannian manifold (M,h) of dimension n for

which the Ricci curvature is greater than or equal to that of the round unit n-dimensional sphere Sn(1), i.e.,

Ric(X,Y ) ≥ (n− 1)h(X,Y ), we have that the first positive eigenvalue λ1 of the (positive) Laplace operator is

greater than or equal to the first eigenvalue of the sphere, λ1 ≥ n.
Subsequently in [33] it was shown that the lower bound for the eigenvalue is achieved iff the Riemannian

manifold is isometric to Sn(1). Lichnerowicz proved his result using the classical Bochner-Weitzenböck formula.

In turn, Obata showed that under these assumptions the trace-free part of the Riemannian Hessian of an

eigenfunction f with eigenvalue λ1 = n vanishes,

(1.1) D2f = −fh,

after which he defined an isometry using analysis based on the geodesics and Hessian comparison of the distance

function from a point. More precisely, Obata showed in [33] that if on a complete Riemannian manifold there

exists a non-constant function satisfying (1.1) then the manifold is isometric to the unit sphere. Later Gallot

[18] generalized these results to statements involving the higher eigenvalues and corresponding eigenfunctions

of the Laplace operator.

From the sub-ellipticity of the sub-Laplacian defined in many well studied sub-Riemannian geometries it

follows that its spectrum is discrete on a compact manifold. It is therefore natural to ask if there is a sub-

Riemannian version of the above results. In fact, a CR analogue of the Lichnerowiecz theorem was found by

Greenleaf [22] for dimensions 2n + 1 > 5, while the corresponding results for n = 2 and n = 1 were achieved

later in [32] and [16], respectively. As a continuation of this line of results in the setting of geometries modeled

on the rank one symmetric spaces in [26] it was proven a quaternionic contact version of the Lichnerowicz result.

The CR Lichnerowicz type result states that on a compact 2n+ 1-dimensional strictly pseudoconvex pseudo-

hermitian manifold satisfying a certain positivity condition the first eigenvalue of the sub-laplacian is grater than

or equal to the first eigenvalue of the standard Sasakian sphere. For the exact statement of the CR Lichnerowicz

type result we refer the reader to Theorem 8.8. We give a proof of Theorem 8.8 using the known techniques

from [22], [32], [16], but use an argument based solely on the non-negativity of the CR-Paneitz operator thereby

slightly simplifying the known proofs. Greenleaf [22] showed the result for n ≥ 3, while S.-Y. Li and H.-S. Luk

adapted Greenleaf’s proof to cover the case n = 2. They also gave a version of the case n = 1 assuming further

a condition on the covariant derivative of the pseudohermitian torsion. Part b) in Theorem 8.8 was established

by H.-L. Chiu in [16]. We remark that if n > 1 the CR-Paneitz operator is always non-negative, cf. Lemma 8.4

while in the case n = 1 the vanishing of the pseudohermitian torsion implies that the CR-Paneitz operator is

non-negative, see [16] and[11].

Other results in the CR case relevant for this paper have been proved in [10, 9, 8], [3] and [14] adding a

corresponding inequality for n = 1, or characterizing the equality case in the vanishing pseudohermitian torsion

case (the Sasakian case).

The problem of the existence of an Obata-type theorem in pseudohermitian manifold was considered in [8]

where the following CR analogue of Obata’s theorem was conjectured.

Conjecture 1.1 ([8]). Let (M, θ) be a closed pseudohermitian (2n+1)-manifold with n ≥ 2. In addition we

assume the CR-Paneitz operator is nonnegative if n = 1. Suppose there is a positive constant k0 such that the

pseudohermitian Ricci curvature Ric and the pseudohermitian torsion A satisfy the inequality (1.2). If n
n+1k0

is an eigenvalue of the sub-Laplacian then (M, θ) is the standard (Sasakian) CR structure on the unit sphere in

Cn+1.

This conjecture was proved in the case of a vanishing pseudohermitian torsion (Sasakian case) in [8] for n ≥ 2

and in [9] for n = 1. The non-Sasakian case was also considered in [15] where Conjecture 1.1 was established

under the following assumptions on the pseudohermitian torsion (in complex coordinates):

(i) for n ≥ 2, Aαβ, β̄ = 0, and Aαβ, γγ̄ = 0, [15, Theorem 1.3] ;

(ii) for n = 1, A11, 1̄ = 0, and P1f = 0 [15, Theorem 1.4],
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where

Pαf = fβ̄
β̄
α + inAαβf

β

is the operator characterizing CR-pluriharmonic functions when n = 1, see also the paragraph after Remark

8.3. The first condition, Aαβ, β̄ = 0, means that the (horizontal real) divergence of A with respect to the

Tanaka-Webster connection ∇ vanishes,

(∇∗A) (X) = −(∇eaA) (ea, X) = 0, X ∈ H = Ker θ.

One purpose of this paper is to establish Conjecture 1.1 in the (non-Sasakian) case of a divergence-free

pseudohermitian torsion where we prove the following result.

Theorem 1.2. Let (M, θ) be a compact strictly pseudoconvex pseudohermitian CR manifold of dimension

2n + 1. Suppose there is a positive constant k0 such that the pseudohermitian Ricci curvature Ric and the

pseudohermitian torsion A satisfy the inequality

(1.2) Ric(X,X) + 4A(X, JX) ≥ k0g(X,X), X ∈ H = Ker θ.

Furthermore, suppose the horizontal divergence of the pseudohermitian torsion vanishes,

∇∗A = 0.

a) If n ≥ 2 and λ = n
n+1k0 is an eigenvalue of the sub-Laplacian, then up-to a scaling of θ by a positive

constant (M, θ) is the standard (Sasakian) CR structure on the unit sphere in Cn+1.

b) If n = 1 and λ = 1
2k0 is an eigenvalue of the sub-Laplacian, the same conclusion can be reached assuming

in addition that the CR-Paneitz operator is non-negative, i.e., for any smooth function f on M we have∫
M

f · (Cf)V olθ ≥ 0,

where Cf is the CR-Paneitz operator given by (8.1).

The value of the scaling is determined, for example, by the fact that the standard psudohermitian structure

on the unit sphere has first eigenvalue equal to 2n. The corresponding eigenspace is spanned by the restrictions

of all linear functions to the sphere.

Our approach is based on Lemma 3.1 where we find the explicit form of the Hessian with respect to the

Tanaka-Webster connection of an extremal eigenfunction f , i.e., an eigenfunction with eigenvalue n/(n+ 1)k0,

and the formula for the pseudohermitian curvature. As mentioned earlier a proof of Greenleaf’s result based on

the non-negativity of the CR-Paneitz operator can be found in the Appendix. This proof shows formula (3.1)

for the horizontal Hessian of f , which after a rescaling can be put in the form

∇2f(X,Y ) = −fg(X,Y )− df(ξ)ω(X,Y ), X, Y ∈ H = Ker θ.

We prove Theorem 1.2 as a consequence of Theorem 4.7 and Theorem 5.2 taking into account the already

established CR Obata theorem for pseudohermitian manifold with a vanishing pseudohermitian torsion. Thus,

the key new results are Theorem 4.7 and Theorem 5.2 which show correspondingly in the case n ≥ 2 and n = 1

that if the pseudohermitian torsion is divergence-free and we have an eigenfunction f with a horizontal Hessian

given by the above formula then the pseudohermitian torsion vanishes, i.e., we have a Sasakian structure.

The local nature of the analysis leading to the proof of Theorem 1.2 allows us to prove our second result,

which is the following CR-version of Obata’s Theorem [33].

Theorem 1.3. Let (M, θ) be a strictly pseudoconvex pseudohermitian CR manifold of dimension 2n + 1 ≥ 5

with a divergence-free pseudohermitian torsion, ∇∗A = 0. Assume, further, that M is complete with respect to

the Riemannian metric

(1.3) h = g + θ2.

If there is a smooth function f 6≡ 0 whose Hessian with respect to the Tanaka-Webster connection satisfies

(1.4) ∇2f(X,Y ) = −fg(X,Y )− df(ξ)ω(X,Y ), X, Y ∈ H = Ker θ,

then up to a scaling of θ by a positive constant (M, θ) is the standard (Sasakian) CR structure on the unit sphere

in Cn+1.

In dimension three the above result holds provided the pseudohermitian torsion vansihes, A = 0.
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We finish the introduction by recalling that Lichnerowicz’ type results (not in sharp forms) in a general

sub-Riemannian setting were shown in [1], [2] (these two papers apply only to the vanishing pseudohermitian

torsion CR case) and [24]. It will be interesting to consider whether the results of [1], [2], [13] and [14] can be

extended to the non-Sasakian, but divergence free pseudohermitian torsion case.

Convention 1.4.

a) We shall use X,Y, Z, U to denote horizontal vector fields, i.e. X,Y, Z, U ∈ H = Ker θ.

b) {e1, . . . , e2n} denotes a local orthonormal basis of the horizontal space H.

c) The summation convention over repeated vectors from the basis {e1, . . . , e2n} will be used. For example,

for a (0,4)-tensor P , the formula k = P (eb, ea, ea, eb) means

k =

2n∑
a,b=1

P (eb, ea, ea, eb);

Acknowledgments The authors would like to thank Alexander Petkov for pointing to us that Lemma

8.7 holds for all n as a simple consequence of the Ricci identity thus simplifying our initial approach for the

special case n = 1. The research is partially supported by Contract “Idei”, DO 02-257/18.12.2008 and Contract

“Idei”, DID 02-39/21.12.2009. S.I is partially supported by Contract 181/2011 with the University of Sofia

‘St.Kl.Ohridski’

2. Pseudohermitian manifolds and the Tanaka-Webster connection

In this section we will briefly review the basic notions of the pseudohermitian geometry of a CR manifold.

Also, we recall some results (in their real form) from [35, 36, 37, 30], see also [17, 28, 27], which we will use in

this paper.

A CR manifold is a smooth manifold M of real dimension 2n+1, with a fixed n-dimensional complex sub-

bundle H of the complexified tangent bundle CTM satisfying H ∩ H = 0 and [H,H] ⊂ H. If we let H =

ReH⊕H, the real sub-bundle H is equipped with a formally integrable almost complex structure J . We assume

that M is oriented and there exists a globally defined compatible contact form θ such that the horizontal space

is given by

H = Ker θ.

In other words, the hermitian bilinear form

2g(X,Y ) = −dθ(JX, Y )

is non-degenerate. The CR structure is called strictly pseudoconvex if g is a positive definite tensor on H. The

vector field ξ dual to θ with respect to g satisfying ξydθ = 0 is called the Reeb vector field. The almost complex

structure J is formally integrable in the sense that

([JX, Y ] + [X, JY ]) ∈ H

and the Nijenhuis tensor

NJ(X,Y ) = [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X, JY ] = 0.

A CR manifold (M, θ, g) with a fixed compatible contact form θ is called a pseudohermitian manifold . In this

case the 2-form

dθ|H := 2ω

is called the fundamental form. Note that the contact form is determined up to a conformal factor, i.e. θ̄ = νθ

for a positive smooth function ν, defines another pseudohermitian structure called pseudo-conformal to the

original one.
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2.1. Invariant decompositions. As usual any endomorphism Ψ of H can be decomposed with respect to the

complex structure J uniquely into its U(n)-invariant (2, 0) + (0, 2) and (1, 1) parts. In short we will denote

these components correspondingly by Ψ[−1] and Ψ[1]. Furthermore, we shall use the same notation for the

corresponding two tensor, Ψ(X,Y ) = g(ΨX,Y ). Explicitly, Ψ = Ψ = Ψ[1] + Ψ[−1], where

(2.1) Ψ[1](X,Y ) =
1

2
[Ψ(X,Y ) + Ψ(JX, JY )] , Ψ[−1](X,Y ) =

1

2
[Ψ(X,Y )−Ψ(JX, JY )] .

The above notation is justified by the fact that the (2, 0) + (0, 2) and (1, 1) components are the projections

on the eigenspaces of the operator Υ = J ⊗ J, (ΥΨ)(X,Y )
def
= Ψ(JX, JY ) corresponding, respectively, to

the eigenvalues −1 and 1. Note that both the metric g and the 2-form ω belong to the [1]-component, since

g(X,Y ) = g(JX, JY ) and ω(X,Y ) = ω(JX, JY ). Furthermore, the two components are orthogonal to each

other with respect to g.

2.2. The Tanaka-Webster connection. The Tanaka-Webster connection [35, 36, 37] is the unique linear

connection ∇ with torsion T preserving a given pseudohermitian structure, i.e., it has the properties

(2.2)

∇ξ = ∇J = ∇θ = ∇g = 0,

T (X,Y ) = dθ(X,Y )ξ = 2ω(X,Y )ξ, T (ξ,X) ∈ H,
g(T (ξ,X), Y ) = g(T (ξ, Y ), X) = −g(T (ξ, JX), JY ).

For a smooth function f on a pseudohermitian manifold M we denote by ∇f its horizontal gradient,

(2.3) g(∇f,X) = df(X).

The horizontal sub-Laplacian 4f and the norm of the horizontal gradient ∇f = df(ea)ea of a smooth function

f on M are defined respectively by

(2.4) 4f = − trgH(∇df) = ∇∗df = − ∇df(ea, ea), |∇f |2 = df(ea) df(ea).

The function f 6≡ 0 is an eigenfunction of the sub-Laplacian if

(2.5) 4f = λf,

where λ is a necessarily non-negative constant.

It is well known that the endomorphism T (ξ, .) is the obstruction a pseudohermitian manifold to be Sasakian.

The symmetric endomorphism Tξ : H −→ H is denoted by A,

A(X,Y )
def
= T (ξ,X, Y ),

and is called the (Webster) torsion of the pseudohermitian manifold or pseudohermitian torsion. It is a com-

pletely trace-free tensor of type (2,0)+(0,2),

(2.6) A(ea, ea) = A(ea, Jea) = 0, A(X,Y ) = A(Y,X) = −A(JX, JY ).

Let R be the curvature of the Tanaka-Webster connection. The pseudohermitian Ricci tensor Ric, the pseudo-

hermitian scalar curvature S and the pseudohermitian Ricci 2-form ρ are defined by

Ric(A,B) = R(ea, A,B, ea), S = Ric(ea, ea), ρ(A,B) =
1

2
R(A,B, ea, Iea).

We summarize below the well known properties of the curvature R of the Tanaka-Webster connection [36, 37, 30]

using real expression, see also [17, 28, 27].

R(X,Y, JZ, JV ) = R(X,Y, Z, V ) = −R(X,Y, V, Z), R(X,Y, Z, ξ) = 0,

(2.7)
1

2

[
R(X,Y, Z, V )−R(JX, JY, Z, V )

]
= −g(X,Z)A(Y, JV )− g(Y, V )A(X, JZ) + g(Y,Z)A(X, JV )

+ g(X,V )A(Y, JZ)− ω(X,Z)A(Y, V )− ω(Y, V )A(X,Z) + ω(Y, Z)A(X,V ) + ω(X,V )A(Y,Z),

(2.8) R(ξ,X, Y, Z) = (∇YA)(Z,X)− (∇ZA)(Y,X),

(2.9)
Ric(X,Y ) = Ric(Y,X),

Ric(X,Y )−Ric(JX, JY ) = 4(n− 1)A(X, JY ),
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(2.10) 2ρ(X, JY ) = −Ric(X,Y )−Ric(JX, JY ) = R(ea, Jea, X, JY ),

(2.11) 2(∇eaRic)(ea, X) = dS(X).

The equalities (2.9) and (2.10) imply

(2.12) Ric(X,Y ) = ρ(JX, Y ) + 2(n− 1)A(JX, Y ),

i.e., ρ is the (1, 1)-part of the pseudohermitian Ricci tensor, sometimes also called the Webster Ricci tensor,

while the (2, 0) + (0, 2)-part is given by the pseudohermitian torsion A.

2.3. The Ricci identities for the Tanaka-Webster connection. We shall use repeatedly the following

Ricci identities of order two and three for a smooth function f , see also [27],

(2.13)

∇2f(X,Y )−∇2f(Y,X) = −2ω(X,Y )df(ξ)

∇2f(X, ξ)−∇2f(ξ,X) = A(X,∇f)

∇3f(X,Y, Z)−∇3f(Y,X,Z) = −R(X,Y, Z,∇f)− 2ω(X,Y )∇2f(ξ, Z)

∇3f(X,Y, Z)−∇3f(Z, Y,X) = −R(X,Y, Z,∇f)−R(Y,Z,X,∇f)− 2ω(X,Y )∇2f(ξ, Z)

− 2ω(Y,Z)∇2f(ξ,X) + 2ω(Z,X)∇2f(ξ, Y ) + 2ω(Z,X)A(Y,∇f)

∇3f(ξ,X, Y )−∇3f(X, ξ, Y ) = (∇∇fA)(Y,X)− (∇YA)(∇f,X)−∇2f(AX,Y )

∇3f(X,Y, ξ)−∇3f(ξ,X, Y ) = ∇2f(AX,Y ) +∇2f(X,AY ) + (∇XA)(Y,∇f) + (∇YA)(X,∇f)

− (∇∇f )A(X,Y ).

We note that the above Ricci identities for the Tanaka-Webster connection follow from the general Ricci identities

for a connection with torsion applying the properties of the pseudohermitian torsion listed in (2.2) and the

curvature identity (2.8). For example,

∇3f(ξ,X, Y )−∇3f(X, ξ, Y ) = −R(ξ,X, Y,∇f)−∇2f(T (ξ,X), Y )

= R(X, ξ, Y,∇f)−A(X, ea)∇2f(ea, Y ) = (∇∇fA)(Y,X)− (∇YA)(∇f,X)−A(X, ea)∇2f(ea, Y ),

where we used (2.8).

An important consequence of the first Ricci identity is the following fundamental formula

(2.14) g(∇2f, ω) = ∇2f(ea, Jea) = −2ndf(ξ).

On the other hand, by (2.4) the trace with respect to the metric is the negative sub-Laplacian

g(∇2f, g) = ∇2f(ea, ea) = −4f.

We also recall the horizontal divergence theorem [35]. Let (M, g, θ) be a pseudohermitian manifold of dimen-

sion 2n+ 1. For a fixed local 1-form θ the form

V olθ = θ ∧ ωn

is a globally defined volume form since V olθ is independent on the local one form θ. We define the (horizontal)

divergence of a horizontal vector field/one-form σ ∈ Λ1 (H) defined by

∇∗ σ = −tr|H∇σ = −(∇eaσ)ea.

The following Proposition, which allows ”integration by parts”, is well known [35].

Proposition 2.1. On a compact pseudohermitian manifold M the following divergence formula holds true∫
M

(∇∗σ)V olθ = 0.
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3. The Hessian of an extremal function in the extremal case.

Our goal is to determine the full Hessian of an ”extremal first eigenfunction” that is an eigenfunction with

the smallest possible in the sense of Theorem 8.8 eigenvalue.

Lemma 3.1. Let M be a compact strictly pseudoconvex CR manifold of dimension 2n+ 1, n ≥ 1 satisfying

Ric(X,X) + 4A(X,JX) = ρ(JX, Y ) + 2(n+ 1)A(JX, Y ) ≥ k0 g(X,Y )

while if n = 1 assume, further, that the CR-Paneitz operator is non-negative on f , i.e., (8.12) holds true.

If n
n+1k0 is an eigenvalue of the sub-Laplacian, then the corresponding eigenfunctions satisfy the identity

(3.1) ∇2f(X,Y ) = − k0

2(n+ 1)
fg(X,Y )− df(ξ)ω(X,Y ).

Proof. The result is a simple consequence of the proof of Theorem 8.8. Under the assumptions of the Lemma,

the first integral in the inequality (8.16) vanishes while the other terms are non-negative because of (8.17).

Therefore,

(∇2f)[−1] = 0

and (8.18) holds true. These imply the formula for the horizontal Hessian

∇2f(X,Y ) = − 1

2n
(4f) · g(X,Y ) +

1

2n
g(∇2f, ω) · ω(X,Y ).

Now, taking into account that f is an extremal first eigenfunction we obtain the coefficient in front of the metric.

Finally, the skew-symmetric part of the horizontal Hessian is determined by the first Ricci identity in (2.13). �

Remark 3.2. In the extremal case, in addition to the above identities we have from (8.15) in the proof of

Theorem 8.8 the following identities

(3.2) Ric(∇f,∇f) + 4A(J∇f,∇f) = k0|∇f |2,
∫
M

Pf (∇f)V olθ = 0.

Using a homothety we can reduce to the case λ1 = 2n and k0 = 2(n + 1), which are the values for the

standard Sasakian round sphere. Henceforth, we shall work under these assumptions. Thus, for an extremal

first eigenfunction f (by definition f 6≡ 0) and n ≥ 1 we have the equalities

λ = 2n, 4f = 2nf,

∫
M

(4f)2 V olθ = 2n

∫
M

|∇f |2 V olθ.

In addition, the horizontal Hessian of f satisfies (3.1), which with the assumed normalization takes the form

given in equation (1.4).

3.1. The divergence-free torsion and the vertical derivative of an extremal function. Here we show

one of our main observations that the vertical derivative of an extremal function is again an extremal function

provided the pseudohermitian torsion is divergence-free. We begin with an identity satisfied by every extremal

eigenfunction.

Lemma 3.3. Let M be a strictly pseudoconvex pseudohermitian CR manifold of dimension 2n + 1 ≥ 3. If

f is an eigenfunction of the sub-Laplacian satisfying (1.4), then the following formula for the third covariant

derivative holds true

(3.3) ∇3f(X,Y, ξ) = −df(ξ)g(X,Y )− (ξ2f)ω(X,Y )− 2fA(X,Y )

+ (∇XA)(Y,∇f) + (∇YA)(X,∇f)− (∇∇fA)(X,Y ).

Proof. We start by substituting the horizontal Hessian of f given in (1.4) in the forth Ricci identity of (2.13).

∇3f(X,Y, ξ) = ∇3f(ξ,X, Y )+∇2f(AX,Y )+∇2f(X,AY )+(∇XA)(Y,∇f)+(∇YA)(X,∇f)−(∇∇fA)(X,Y )

= ∇3f(ξ,X, Y )− fA(X,Y ) + df(ξ)A(X,JY )− fA(X,Y )− df(ξ)A(JX, Y )

+ (∇XA)(Y,∇f) + (∇YA)(X,∇f)− (∇∇fA)(X,Y )

= ∇3f(ξ,X, Y )− 2fA(X,Y ) + (∇XA)(Y,∇f) + (∇YA)(X,∇f)− (∇∇fA)(X,Y ).
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The first term, ∇3f(ξ,X, Y ), in the left-hand side is computed by differentiating the formula for the horizontal

Hessian, (1.4). A substitution of the thus obtained formula in the one above gives the desired (3.3) which

completes the proof. �

With the help of Lemma 3.3 we turn to our main result in this sub-section.

Lemma 3.4. Let M be a strictly pseudoconvex pseudohermitian CR manifold of dimension 2n+ 1 ≥ 3. If the

pseudohermitian torsion is divergence-free with respect to the Tanaka-Webster connection, (∇eaA)(ea, X) = 0,

and f is an eigenfunction satisfying (1.4) then the function ξf is an eigenfunction with the same eigenvalue,

(3.4) 4(ξf) = 2n(ξf).

In particular, if M is compact satisfying (1.2) then the horizontal Hessian of ξf is given by

(3.5) ∇2(ξf)(X,Y ) = ∇3f(X,Y, ξ) = −df(ξ)g(X,Y )− (ξ2f)ω(X,Y ).

Proof. From the last Ricci identity in (2.13) we have

4(ξf)− ξ(4f) = ∇3f(ea, ea, ξ)−∇3f(ξ, ea, ea) = 2g(A,∇2f)− 2(∇∗A)(∇f) + (∇∇fA)(ea, ea) = 0,

using that the torsion is trace- and divergence- free, and the fact that g(A,∇2f) = 0 by (1.4). Hence, (3.4)

holds.

The second part follows from the just proved (3.4) and Lemma 3.1. �

Remark 3.5. In the compact case, the above lemma can also be seen with the help of the following ”vertical

Bochner formula” valid for any smooth function f

(3.6) −4(ξf)2 = 2|∇(ξf)|2 − 2df(ξ) · ξ(4f) + 4df(ξ) · g(A,∇2f)− 4df(ξ)(∇∗A)(∇f).

However, the argument in Lemma 3.4 is purely local.

To prove (3.6) we use the last of the Ricci identities (2.13) and the fact that the torsion is trace free to obtain

−1

2
4(ξf)2 = ∇3f(ea, ea, ξ)df(ξ) +∇2f(ea, ξ)∇2f(ea, ξ)

=
[
∇3f(ξ, ea, ea) + 2g(∇2f,A)− 2(∇∗A)(∇f)

]
df(ξ) + |∇(ξf)|2

= |∇(ξf)|2 − df(ξ) · ξ(4f) + 2df(ξ) · g(A,∇2f)− 2df(ξ)(∇∗A)(∇f),

which completes the proof of (3.6).

4. Vanishing of the pseudohermitian torsion in the extremal case for n ≥ 2

In this section we prove Theorem 4.7 which is one of our main results valid in dimension at least five, i.e., we

assume n ≥ 2. The assumptions in this section, unless noted otherwise, are that M is a strictly pseudoconvex

pseudohermitian CR manifold of dimension at least five and f satisfies (1.4).

4.1. Curvature in the extremal case. We start with a calculation of the curvature tensor. This is achieved

by using (1.4), (2.10) and the Ricci identities (2.13). After some standard calculations we obtain the following

formula

(4.1) R(Z,X, Y,∇f) =
[
df(Z)g(X,Y )− df(X)g(Z, Y )

]
+∇df(ξ, Z)ω(X,Y )

−∇df(ξ,X)ω(Z, Y )− 2∇df(ξ, Y )ω(Z,X) +A(Z,∇f)ω(X,Y )−A(X,∇f)ω(Z, Y ).

Taking the traces in (4.1) we obtain using (2.7)

(4.2)
Ric(Z,∇f) = (2n− 1)df(Z)−A(JZ,∇f)− 3∇df(ξ, JZ)

Ric(JZ, J∇f) = R(JZ, Jea, ea,∇f) = df(Z)− (2n− 1)A(JZ,∇f)− (2n+ 1)∇df(ξ, JZ).

We note that the above derivation of (4.1) and (4.2) holds also when n = 1.
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4.2. The vertical parts of the Hessian in the extremal case. Subtracting the equations in (4.2) and using

(2.9) we obtain

(4.3) ∇df(ξ, JZ) = −df(Z) +A(JZ,∇f)

after dividing by n− 1 since n > 1. Equation (4.3) and the Ricci identity yield

(4.4) ∇2f(ξ, Y ) = df(JY ) +A(Y,∇f), ∇2f(Y, ξ) = df(JY ) + 2A(Y,∇f).

At this point we have not yet determined ξ2f , but this will be achieved in Lemma 4.4.

4.3. The relation between A and A∇f .

Lemma 4.1. Let M be a strictly pseudoconvex pseudohermitian CR manifold of dimension 2n+ 1 ≥ 5. If f is

a function satisfying (1.4), then we have the following identity

(4.5) |∇f |2|A|2 = 2|A∇f |2.

Proof. A substitution of (4.4) in (4.1) implies

R(X,Y, Z,∇f) = df(X)g(Y, Z)− df(Y )g(X,Z) + df(JX)ω(Y, Z)− df(JY )ω(X,Z)− 2df(JZ)ω(X,Y )

− 2ω(X,Y )A(Z,∇f) + 2A(X,∇f)ω(Y, Z)− 2A(Y,∇f)ω(X,Z).

Consequently, we obtain

(4.6) R(X,Y, Z,∇f)−R(JX, JY, Z,∇f)

= 2ω(Y,Z)A(X,∇f)− 2ω(X,Z)A(Y,∇f) + 2g(Y,Z)A(JX,∇f)− 2g(X,Z)A(JY,∇f).

On the other hand, from (2.7) we have

(4.7) R(X,Y, Z,∇f)−R(JX, JY, Z,∇f)

= −2g(X,Z)A(Y, J∇f)− 2g(Y,∇f)A(X,JZ) + 2g(Y,Z)A(X, J∇f) + 2g(X,∇f)A(Y, JZ)

− 2ω(X,Z)A(Y,∇f)− 2ω(Y,∇f)A(X,Z) + 2ω(Y,Z)A(X,∇f) + 2ω(X,∇f)A(Y,Z).

Comparing equations (4.6) and (4.7), and also taking into account the type of A, A(JX, Y ) = A(X, JY ), we

come to

(4.8) 0 = −2df(Y )A(X, JZ) + 2df(X)A(Y, JZ)− 2df(JY )A(X,Z) + 2df(JX)A(Y,Z).

For X = ∇f in (4.8) we obtain the identity

|∇f |2A(Y,Z) = df(Y )A(∇f, Z)− df(JY )A(∇f, JZ)

which proves (4.5). �

4.4. The vertical derivative of an extremal eigenfunction.

Lemma 4.2. Let M be a strictly pseudoconvex pseudohermitian CR manifold of dimension 2n + 1 ≥ 5. If

f is an eigenfunction of the sub-Laplacian satisfying (1.4), then the following formula for the third covariant

derivative holds true

(4.9) ∇3f(X,Y, ξ) = −df(ξ)g(X,Y ) + fω(X,Y )− 2fA(X,Y )− 2df(ξ)A(JX, Y ) + 2(∇XA)(Y,∇f).

Proof. Differentiating the last identity in (4.4) we obtain

∇3f(X,Y, ξ) = ∇2f(X, JY ) + 2(∇XA)(Y,∇f) + 2A(Y,∇X(∇f)).

Now, invoking (1.4) gives the desired formula. �

Lemma 4.3. Let M be a strictly pseudoconvex pseudohermitian CR manifold of dimension 2n+ 1 ≥ 5. If f is

an eigenfunction satisfying (1.4) then we have

(4.10) ∇2f(ξ, ξ) = ξ2f = −f − 1

n
(∇eaA)(ea, J∇f).
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Proof. Comparing equations (4.9) and (3.3) we obtain the identity

− (ξ2f)ω(X,Y ) + (∇XA)(Y,∇f) + (∇YA)(X,∇f)− (∇∇fA)(X,Y )

= fω(X,Y )− 2df(ξ)A(JX, Y ) + 2(∇XA)(Y,∇f).

Taking a trace we obtain (4.10). �

Lemma 4.4. Let M be a strictly pseudoconvex pseudohermitian CR manifold of dimension 2n+ 1 ≥ 5. If the

pseudohermitian torsion is divergence-free, (∇∗A)(X) = 0, and f is an eigenfunction satisfying (1.4) then the

next formulas hold true

(4.11) ∇2f(ξ, ξ) = ξ2f = −f, (∇XA)(Y,∇f) = fA(X,Y ) + df(ξ)A(X, JY ).

Proof. The first part follows immediately from Lemma 4.3. However, both parts can be seen as follows. Using

(3.5) in (4.9) we obtain the identity

(4.12) (∇XA)(Y,∇f) = fA(X,Y ) + df(ξ)A(X, JY )− 1

2

[
∇2f(ξ, ξ) + f

]
ω(X,Y ).

Equation (4.12) yields

(4.13) (∇XA)(JY,∇f) = (∇XA)(Y, J∇f) = fA(X, JY ) − df(ξ)A(X,Y ) − 1

2

[
∇2f(ξ, ξ) + f

]
g(X,Y ),

where we used (2.6). Taking the trace of (4.13) using the fact that the pseudohermitian torsion is both

divergence-free and trace-free we obtain the proof of the lemma. �

4.5. The elliptic eigenvalue problem. A consequence of the above Lemma 4.4 is the following fact, which

plays a crucial role in resolving Conjecture 1.1 in the vanishing torsion case by allowing the reduction to the

Riemannian Obata theorem. Furthermore, the elliptic equation satisfied by an extremal eigenfunction shows

that |∇f | 6= 0, hence df 6= 0, in a dense set since f 6= const.

Corollary 4.5. Let M be a strictly pseudoconvex pseudohermitian CR manifold of dimension 2n + 1 ≥ 5. If

the pseudohermitian torsion of M is divergence-free, (∇∗A)(X) = 0, and f is an eigenfunction satisfying (1.4),

then f is an eigenfunction of the (positive) Riemannian Laplacian 4h associated to the Riemannian metric

(1.3) on M ,

(4.14) 4hf = (2n+ 1)f.

Proof. We denote by D the Levi-Civita connection of h. With respect to the local orthonormal basis ea, ξ,

a = 1, . . . , 2n, for any smooth function f we have

−4hf = h(Dea(Df), ea) + h(Dξ(Df), ξ).

Since g and θ are parallel for the Tanaka-Webster connection ∇ it follows ∇h = 0, which allows us to find the

relation between the two connections:

(4.15) h(∇EB,C) = h(DEB,C) +
1

2

[
h(T (E,B), C)− h(T (B,C), E) + h(T (C,E), B)

]
, E, B, C ∈ T(M).

Therefore we have

h(∇eaB, ea) = h(DeaB, ea)− h(T (B, ea), ea), h(∇ξB, ξ) = h(DξB, ξ)− h(T (B, ξ), ξ), B ∈ T(M).

With this relation in mind, taking into account the properties of the torsion, the formula for the Laplacian

reduces to

(4.16) −4hf = −4f + h(∇ξ(Df), ξ) = −4f + (∇2f)(ξ, ξ) = −4f + (ξ2f).

In particular, if f satisfies (1.4) then we have 4f = 2nf , while Lemma 4.4 gives ξ2 f = −f , hence the claimed

identity. �
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4.6. Vanishing of the pseudohermitian torsion in the case n > 1.

Lemma 4.6. Let M be a strictly pseudoconvex pseudohermitian CR manifold of dimension 2n+ 1 ≥ 5. If the

pseudohermitian torsion is divergence-free, (∇eaA)(ea, X) = 0, and f is an eigenfunction satisfying (1.4) then

(4.17) A∇f = 0.

Proof. From Lemma 3.4 it follows that ξf is also an extremal first eigenfunction. Therefore, the second equation

in (4.11) of Lemma 4.4 applied to ξf gives

(4.18) (∇XA)(Y,∇(ξf)) = (ξf)A(X,Y ) + (ξ2f)A(X, JY ).

A substitution of the second equality of (4.4) in (4.18) shows

−(∇XA)(Y, J∇f) + 2(∇XA)(Y,A∇f) = (ξf)A(X,Y ) + (ξ2f)A(X, JY ).

Noting that A(Y, JX) = A(JY,X) by the last equality of (2.6), the above identity together with Lemma 4.4

give

(4.19) 2(∇XA)(Y,A∇f) = (∇XA)(JY,∇f) + df(ξ)A(X,Y )− fA(X, JY ) = 0.

Therefore, using the symmetry of A and (4.11) of Lemma 4.4 we have

(4.20) 0 = (∇XA)(∇f,A∇f) = (∇XA)(A∇f,∇f) = fA(X,A∇f) + df(ξ)A(JX,A∇f).

Replacing X with JX in (4.20) yields

(4.21) 0 = fA(JX,A∇f)− df(ξ)A(X,A∇f).

From Corollary 4.5 it follows that f is an eigenfunction for a Riemannian Laplacian, hence it cannot vanish on

an open set unless f ≡ 0. Since by assumption f is non-trivial, equations (4.20) and (4.21), taking into account

f2 + (df(ξ))2 6= 0, a.e., imply

(4.22) A(X,A∇f) = 0, i.e, A∇f = 0.

�

Theorem 4.7. Let M be a strictly pseudoconvex pseudohermitian CR manifold of dimension 2n+ 1 ≥ 5. If the

pseudohermitian torsion is divergence-free, (∇eaA)(ea, Z) = 0 and f is an eigenfunction satisfying (1.4) then

the pseudohermitian torsion vanishes, A = 0.

Proof. Since the pseudohermitian torsion is divergence-free we have Lemma 4.6. Now, Lemma 4.1 shows that

A = 0. �

5. Vanishing of the pseudohermitian torsion in the extremal three dimensional case

In this section we prove our first main result in dimension three. We shall assume, unless explicitly stated

otherwise, that M is a compact strictly pseudoconvex pseudohermitian CR manifold of dimension three for which

(1.2) holds and f is a smooth function on M satisfying (1.4). In particular, we have done the normalization, if

necessary, so that (1.2) holds with k0 = 4. Since the horizontal space is two dimensional we can use ∇f , J∇f as

a basis at the points where |∇f | 6= 0. In fact, similarly to the higher dimensional case, we have |∇f | 6= 0 almost

everywhere. This follows from Lemma 5.1 showing that f satisfies a certain elliptic equation which implies that

f cannot vanish on any open set since otherwise f ≡ 0 which is a contradiction.

5.1. The elliptic value problem in dimension three. In dimension three we have the following result.

Lemma 5.1. Let M be a strictly pseudoconvex pseudohermitian CR manifold of dimension three and pseudo-

hermitian scalar curvature S. If the pseudohermitian torsion of M is divergence-free, (∇∗A)(X) = 0, and f is

an eigenfunction satisfying (1.4), then f satisfies the following elliptic equation

(5.1) 4hf =

(
2 +

S − 2

6

)
f − 1

12
g(∇f,∇S)

involving the (positive) Riemannian Laplacian 4h associated to the Riemannian metric (1.3).
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Proof. We start by proving the identity

(5.2) 6ξ2f = −(S − 2)f +
1

2
g(∇f,∇S).

On one hand from (2.14) applied to the function ξf we have

∇2f(Jea, ea, ξ) = 2ξ2f.

On the other hand we use (4.2) to find

3∇2f(Z, ξ) = −df(JZ) + 2A(Z,∇f)− ρ(Z,∇f)

taking into account (2.12). Now, differentiating the above identity, then taking a trace, after which using the

formula for the horizontal Hessian (1.4) gives

6ξ2f = 3∇2f(Jea, ea, ξ) = 4f + 2(∇∗A)(J∇f) + 2g(∇2f,A)− (∇∗ρ)(J∇f)−∇2f(Jea, ρea)

= 2f − (∇∗ρ)(J∇f)− [−fρ(ea, Jea) + (ξf)ρ(ea, ea)] = 2f − fS +
1

2
dS(∇f)

after using (2.11) and (2.12) for the last equality. This proves (5.2).

At this point we invoke the proof of Corollary 4.5. In fact, a substituition of the above found expression for

ξ2f into (4.16), which holds also in dimension three, gives (5.1). �

5.2. Vanishing of the pseudohermitian torsion in the case n = 1. Since ∇f, J∇f is a basis (not an

orthonormal one!) of the horizontal space almost everywhere the vanishing of the pseudohermitian torsion,

A = 0, is implied by A(∇f,∇f) = A(J∇f,∇f) = 0. We turn to the main result of this section.

Theorem 5.2. Let M be a compact strictly pseudoconvex pseudohermitian CR manifold of dimension three for

which the Lichnerowicz condition (1.2) holds. If the pseudohermitian torsion is divergence-free, (∇eaA)(ea, Z) =

0 and f is an eigenfunction satisfying (1.4) then the pseudohermitian torsion vanishes, A = 0, and the pseudo-

hermitian scalar curvature is a constant, S = 8.

Proof. Equation (3.2) yields

(5.3) Ric(∇f,∇f) =
S

2
|∇f |2 = 4|∇f |2 − 4A(J∇f,∇f).

Setting Z = ∇f in (4.2) and using (5.3) we have

(5.4) ∇2f(ξ, J∇f) = −|∇f |2 +A(J∇f,∇f) = −1

4
Ric(∇f,∇f) = −S

8
|∇f |2.

Taking Z = J∇f in (4.2) and using that in dimension three Ric(X, JX) = 0 give

(5.5) ∇2f(ξ,∇f) = −1

3
A(∇f,∇f), ∇2f(∇f, ξ) =

2

3
A(∇f,∇f).

By Lemma 3.4 we know that ξf is also an extremal eigenfunction, hence we have

(5.6) Ric(∇(ξf),∇(ξf)) = 4|∇(ξf)|2 − 4A(∇(ξf), J∇(ξf)).

Since ∇f and J∇f are orthogonal we have

|∇f |2∇(ξf) = ∇2f(∇f, ξ)∇f +∇2f(J∇f, ξ)J∇f.

Therefore, we have the following identities

(5.7) |∇f |4| ∇(ξf)|2 =
[ (
∇2f(∇f, ξ)

)2

+
(
∇2f(J∇f, ξ)

)2 ]
|∇f |2,

(5.8) |∇f |4Ric(∇(ξf),∇(ξf)) =
[ (
∇2f(∇f, ξ)

)2

+
(
∇2f(J∇f, ξ)

)2 ]
Ric(∇f,∇f),

(5.9) |∇f |4A(∇(ξf), J∇(ξf) =
[ (
∇2f(∇f, ξ )

)2

−
(
∇2f(J∇f, ξ)

)2 ]
A(∇f, J∇f)

− 2
(
∇2f(∇f, ξ)

)(
∇2f(J∇f, ξ)

)
A(∇f,∇f).
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Substituting (5.9), (5.8), (5.7) in (5.6) and using (5.3) we obtain

(5.10) |∇f |4
{(
∇2f(J∇f, ξ)

)2

A(∇f, J∇f) + ∇2f(∇f, ξ)∇2f(J∇f, ξ)A(∇f,∇f)

}
= 0.

Assumption (1.2) implies that in our case the pseudohermitian scalar curvature satisfies the inequality S ≥ 8,

hence (5.3) yields

(5.11) A(J∇f,∇f) =
(
1− S

8

)
|∇f |2 ≤ 0.

Equation (5.4), the Ricci identities and (5.11) imply the inequality

(5.12) ∇2f(J∇f, ξ) = ∇2f(ξ, J∇f) +A(J∇f,∇f) = A(J∇f,∇f)− S

8
|∇f |2 ≤ 0.

Taking into account (5.12) and (5.5) we obtain from (5.10)

(5.13) ∇2f(J∇f, ξ)A(∇f, J∇f) +
2

3

(
A(∇f,∇f)

)2

= 0.

The first term in (5.13) is nonnegative from (5.11) and (5.12). Therefore, we conclude

A(∇f, J∇f) = A(∇f,∇f) = 0, i.e. A = 0.

The claim for the pseudohermitian scalar curvature follows for example from (5.3). �

An immediate corollary from Lemma 5.1 and Theorem 5.2 is the fact that on a strictly pseudoconvex pseu-

dohermitian CR manifold of dimension three with a divergence-free pseudohermitian torsion every extremal

eigenfunction is an eigenfunction of the Riemannian Laplacians (4.14). In other words, Corollary 4.5 is valid

for n ≥ 1.

6. Proof of main Theorems

In this section we give the proofs of our main results.

6.1. Proof of Theorem 1.2. By Lemma 3.1 we obtain the formula for the horizontal Hessian of an extremal

eigenfunction. Now, we can apply Theorem 4.7 when n > 1 or Theorem 5.2 when n = 1 to conclude that the

pseudohermitian torsion vanishes. The claim of the Theorem follows by applying either the known result in

the Sasakian case or by applying Theorem 1.3. The first argument, essentially the one due to [8] and [9], goes

as follows. When the pseudohermitian torsion vanishes, A = 0, we have from Corollary 4.5 and the paragraph

at the end of Section 5 that for n ≥ 1 an extremal eigenfunction f is also an eigenfunction of the Riemannian

Laplacian associated to the metric (1.3), i.e.,

(6.1) 4hf = (2n+ 1)f.

On the other hand, Theorem 1.6 in [17] gives the following relation between the curvature Rh of the Levi-Civita

connection of the metric h and the curvature R of the Tanaka-Webster connection when the pseudohermitian

torsin vanishes

(6.2) Rh(E,B,C,D) = R(E,B,C,D) + g(JE,C)g(JB,D)− g(JB,C)g(JE,D)− 2g(E, JB)g(JC,D)

− θ(D)θ(B)g(E,C) + θ(D)θ(E)g(B,C)− θ(A)θ(C)g(B,D) + θ(B)θ(C)g(E,D), B, C,D,E ∈ T(M).

Taking the trace in (6.2) and using (2.8) with A = 0 we obtain for the Ricci tensor Rich of the Levi-Civita

connection the next expression

(6.3) Rich(X,Y ) = Rh(ea, X, Y, ea) +Rh(ξ,X, Y, ξ) = Ric(X,Y )− 2g(X,Y ), Rich(ξ, ξ) = 2n.

The inequality Ric(X,X) ≥ 2(n+ 1)g(X,X) together with (6.3) yields

(6.4) Rich(B,C) ≥ 2ng(B,C), B, C ∈ T(M).

An application of the Riemannian Lichnerowicz theorem gives the estimate λh ≥ 2n+ 1 for the first eigenvalue

of 4h. By Obata’s result equality is possible iff (M,h) is the unit round sphere. Recalling (6.1) completes the

proof.
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6.2. Proof of Theorem 1.3. We shall prove Theorem 1.3 by a reduction to the corresponding Riemannian

Obata theorem on a complete Riemannian manifold. In fact, we will show that the Riemannian Hessian

computed with respect to the Levi-Civita connection D of the metric h defined in (1.3) satisfies (1.1) and then

apply the Obata theorem [33] to conclude that (M,h) is isometric to the unit sphere.

For n > 1 by Theorem 4.7 it follows that A = 0. Therefore, (4.4) and (4.11) imply

(6.5) ∇2f(ξ, Y ) = ∇2f(Y, ξ) = df(JY ), ξ2f = −f.

Next, we show that (6.5) also holds in dimension three when the pseudohermitian torsion vanishes. In the three

dimensional case we have Ric(X,Y ) = S
2 g(X,Y ). After a substitution of this equality in (4.2), taking into

account A = 0, we obtain

(6.6) ∇2f(ξ, Z) = ∇2f(Z, ξ) =
(S − 2)

6
df(JZ).

Differentiating (6.6) and using (1.4) we find

(6.7) ∇3f(Y,Z, ξ) =
1

6

[
dS(Y )df(JZ) + (S − 2)fω(Y,Z)− (S − 2)df(ξ)g(Y, Z)

]
.

On the other hand, setting A = 0 in (3.3), we have

(6.8) ∇3f(Y,Z, ξ) = −df(ξ)g(Y,Z)− (ξ2f)ω(Y,Z).

In particular, the function ξf also satisfies (1.4). Therefore using Lemma 5.1 it follows that either ξf ≡ 0 or

ξf 6= 0 almost everywhere. In the first case it follows ∇f = 0 taking into account (6.6), hence f ≡ 0, which is

not possible by assumption. Thus, the second case holds, i.e., ξf 6= 0 almost everywhere.

Continuing our calculation, we note that (6.7) and (6.8) give

(6.9)
S − 8

6
df(ξ)g(Y,Z)−

(
ξ2f +

S − 2

6

)
ω(Y,Z)− 1

6
dS(Y )df(JZ) = 0,

which implies
S − 8

3
df(ξ)|∇f |2 = 0.

Thus, the pseudohermitian scalar curvature is constant, S = 8, invoking again Lemma 5.1. Equation (6.9)

reduces then to

(6.10)
(
ξ2f +

S − 2

6

)
ω(Y,Z) = 0

since dS = 0. The equality (6.10) yields

ξ2f = −f,

which together with (6.6) and S = 8 imply the validity of (6.5) also in dimension three.

Finally, we use [17, Lemma 1.3] which gives the relation between D and ∇. In the case A = 0 we obtain

(6.11) DBC = ∇BC + θ(B)JC + θ(C)JB − ω(B,C)ξ, B,C ∈ T(M),

where J is extended with Jξ = 0. Notice that Ω in [17] is equal to −ω. Using (6.11) together with (1.4) and

(6.5) we calculate that (1.1) holds. The proof of Theorem 1.3 is complete.

7. Some examples

In this short section we give some cases in which Theorem 4.7 can be applied.

Corollary 7.1. Let M be a strictly pseudoconvex pseudohermitian CR manifold of dimension 2n+1 ≥ 3. If the

vertical part of the Ricci tensor of the Tanaka-Webster connection vanishes, Ric(ξ,X) = 0, or the vertical part

of the Ricci 2-form of the Tanaka-Webster connection is zero, ρ(ξ,X) = 0 and f is an eigenfunction satisfying

(1.4) then the pseudohermitian torsion vanishes, A = 0.

In particular, if the vertical curvature of the Tanaka-Webster connection is zero, and f is an eigenfunction

satisfying (1.4) then the pseudohermitian torsion vanishes, A = 0.
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Proof. Suppose that either

0 = Ric(ξ,X) = R(ξ, ea, ea, X) = R(ξ,X, ea, Z) = 0

or

0 = ρ(ξ,X) = R(ξ,X, ea, Jea) = R(ξ,X, ea, Z) = 0.

In both cases (2.8) yields (∇eaA)(ea, X) = 0, since the pseudohermitian torsion A is trace-free, symmetric and

of type (0,2)+(2,0) with respect to J . Hence, the pseudohermitian torsion is divergence-free and the proof

follows from Theorem 4.7. �

The formula (2.8) yields that the vertical curvature of the Tanaka-Webster connection vanishes if and only

if the pseudohermitian torsion is a Codazzi tensor with respect to ∇,

(∇YA)(Z,X) = (∇ZA)(Y,X).

Due to Corollary 7.1, interesting examples where Theorem 1.2 and Theorem 1.3 can be applied are provided

by pseudohermitian structures for which the pseudohermitian torsion A is a Codazzi tensor with respect to the

Tanaka-Webster connection. This includes, of course, the case of a parallel pseudohermitian torsion (contact

(κ, µ)-spaces), (∇XA)(Y,Z) = 0, for horizontal X,Y and Z, see [6] and [34].

8. Appendix

8.1. The CR-Paneitz operator. The purpose of this section is to record, for self-sufficiency, some of the

results of [30] and [20] using real variables. For a full description and further references about conformally

invariant operators see [21], [19] and, in particular, [23] for the three dimensional case.

Definition 8.1 ([30, 20]). a) Let B(X,Y ) be the (1, 1) component of the horizontal Hessian (∇2f)(X,Y ),

B(X,Y ) ≡ B[f ](X,Y ) = (∇2f)[1](X,Y ) =
1

2

[
(∇2f)(X,Y ) + (∇2f)(JX, JY )

]
and then define B0(X,Y ) to be the completely traceless part of B,

B0(X,Y ) ≡ B0[f ](X,Y ) = B(X,Y ) +
4f
2n

g(X,Y )− 1

2n
g(∇2f, ω)ω(X,Y ).

b) Given a function f we define the one form,

(8.1) P (X) ≡ Pf (X) = ∇3f(X, eb, eb) +∇3f(JX, eb, Jeb) + 4nA(X, J∇f)

and also a fourth order differential operator (the so called CR-CR-Paneitz operator in [16]),

(8.2) Cf = −∇∗P = (∇eaP )(ea) = ∇4f(ea, ea, eb, eb)+∇4f(ea, Jea, eb, Jeb)−4n∇∗A(J∇f)−4n g(∇2f, JA).

Remark 8.2. On a compact pseudohermitian manifold the divergence formula gives∫
M

f · Cf V olθ = −
∫
M

Pf (∇f)V olθ

for a smooth function f . Therefore, the non-negativity condition (8.12) can also be written as

−
∫
M

Pf (∇f)V olθ ≥ 0.

In the three dimensional case this condition is a CR invariant since it is independent of the choice of the contact

form. This follows from the conformal invariance of C proven in [23]. In the case of vanishing pseudohermitian

torsion, we have, up to a multiplicative constant, C = �b�̄b, where �b is the Kohn Laplacian.

From [30], see also [5] and [4], it is known that if n ≥ 2, a function f ∈ C3(M) is CR-pluriharmonic, i.e,

locally it is the real part of a CR holomorphic function, if and only if B0[f ] = 0. In fact, as shown in [20] with

the help of the next Lemma only one fourth-order equation Cf = 0 suffices for B0[f ] = 0 to hold. Furthermore,

the CR-Paneitz operator is non-negative. When n = 1 the situation is more delicate. In the three dimensional

case, CR-pluriharmonic functions are characterized by the kernel of the third order operator P [f ] = 0 [30].

However, the single equation Cf = 0 is enough again assuming the vanishing of the pseudohermitian torsion
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[20], see also [21]. On the other hand, [11] showed that if the pseudohermitian torsion vanishes the CR-Paneitz

operator is essentially positive, i.e., there is a constant Λ > 0 such that∫
M

f · (Cf)V olθ ≥ Λ

∫
M

f2 V olθ.

for all real smooth functions f ∈ (Ker C)⊥, i.e.,
∫
M
f · φV olθ = 0 if Cφ = 0. In addition, the non-negativity of

the CR CR-Paneitz operator is relevant in the embedding problem for a three dimensional strictly pseudoconvex

CR manifold. In the Sasakian case, it is known that M is embeddable, [31], and the CR CR-Paneitz operator

is nonnegative, see [16], [11]. Furthermore, [12] showed that if the pseudohermitian scalar curvature of M is

positive and C is non-negative, then M is embeddable in some Cn.

Remark 8.3. In the quaternionic contact setting the paper [25] describes differential operators and conformally

invariant two forms whose kernel contains the real parts of all anti-CRF functions. In particular, there is a

partial result characterizing real parts of anti-CRF functions. The ”extra” assumption concerns an analog of

the ∂∂̄ lemma in the quaternionic setting.

We turn to one of the basic results relating the above defined operators.

Lemma 8.4 ([20]). On a compact strictly pseudoconvex pseudohermitian CR manifold of dimension 2n + 1,

n ≥ 1,the following identity holds true

(∇eaB0)(ea, X) =
n− 1

2n
Pf (X),

∫
M

|B0|2 V olθ = −n− 1

2n

∫
M

Pf (∇f)V olθ =
n− 1

2n

∫
M

f · (Cf)V olθ.

In particular, if n > 1 the CR-Paneitz operator is non-negative.

Proof. Taking into account Ricci’s identity (2.13) we have

∇3f(ea, ea, X) = ∇3f(X, ea, ea) +Ric(X,∇f) + 4∇2f(ξ, JX) + 2A(JX, ξ)

∇3f(ea, Jea, JX) = ∇3f(JX, Jea, ea)− 2ρ(JX,∇f) +Ric(JX, J∇f)− 4n∇2f(ξ, JX)

− 2A(JX,∇f).

Therefore, using (2.9) and (2.14), which implies ∇2f(JX, ξ) = 1
2n∇

3f(JX, ec, Jec), we have

(8.3) 2∇ea(∇2f)[1](ea, X) = ∇3f(X, ea, ea)−∇3f(JX, ea, Jea) +
2(n− 1)

n
∇3f(JX, ea, Jea)

+ 4(n− 1)A(X, J∇f).

The trace part of B is computed as follows

(8.4) ∇ea
(

1

2n
∇2f(ec, ec)g − df(ξ)ω

)
(ea, X) =

1

2n
∇3f(X, ec, ec) +∇2f(JX, ξ)

=
1

2n
∇3f(X, ea, ea)− 1

2n
∇3f(JX, ea, Jea).

The above identities (8.3) and (8.4) imply

(∇B0)(ea, ea, X) =
n− 1

2n
P (X),

which completes the proof of the first formula. The second identity follows by an integration by parts. �

As was observed earlier in [16] and [11], see also [7], if the pseudohermitian torsion vanishes then the CR-

Paneitz operator is non-negative also in dimension three. For completeness, since it suffices for the proofs of

Theorem 8.8 and Theorem 1.2 in the case of vanishing pseudohermitian torsion, we note that (8.12) holds for

an eigenfunction of the sub-Laplacian, 4f = λf , using an idea of [20, Proposition 3.2]. Indeed, assuming A = 0

we have by the last Ricci identity (2.13) and (8.1) the identities

[ξ,4]f = 0, Pf (X) = ∇3f(X, eb, eb) +∇3f(JX, eb, Jeb).
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Therefore, with the help of (2.14) we have (recall (8.2))∫
M

|Pf |2 V olθ =

∫
M

4f · (Cf)V olθ +

∫
M

∇3f(Jea, eb, Jeb)
(
∇3(ea, ec, ec) +∇3f(Jea, ec, Jec)

)
V olθ

= λ

∫
M

f · (Cf)V olθ − 2n

∫
M

∇2f(eb, Jeb) [ξ,4]f V olθ = λ

∫
M

f · (Cf)V olθ.

Thus, since 4f is a non-negative operator, if the pseudohermitian torsion vanishes and f is an eigenfunction,

then the CR-Paneitz operator is non-negative for f , i.e., (8.12) holds for every eigenfunction. When dealing

with a divergence-free pseudohermitian torsion it is worth noting that the CR-Paneitz operator is non-negative

for any function satisfying (1.4). Indeed, in the case of a divergence-free pseudohermitian torsion the above

identities hold taking into account the last Ricci identity (2.13), the fact that A belongs to the (2, 0) + (0, 2)

space, and definition (8.2).

8.2. Greenleaf’s Bochner formula for the sub-Laplacian. The first eigenvalue of the sub-Laplacian is the

smallest positive constant in (2.5) which we denote by λ1.

Theorem 8.5 ([22]). On a strictly pseudoconvex pseudohermitian manifold of dimension 2n + 1, n ≥ 1, the

following Bochner-type identity holds

(8.5)
1

2
4|∇f |2 = −g(∇(4f),∇f) +Ric(∇f,∇f) + 2A(J∇f,∇f) + |∇df |2 + 4∇df(ξ, J∇f).

Proof. By definition we have

(8.6) − 1

2
4|∇f |2 = ∇3f(ea, ea, eb)df(eb) +∇2f(ea, eb)∇2f(ea, eb) = ∇3f(ea, ea, eb)df(eb) + |∇2f |2.

To evaluate the first term in the right hand side of (8.6) we use the Ricci identities (2.13). Taking into account

(∇XT )(Y,Z) = 0, applying successively the Ricci identities (2.13), we obtain

(8.7) ∇3f(ea, ea, eb)df(eb) = −g(∇(4f),∇f) +Ric(∇f,∇f) + 2A(J∇f,∇f) + 4∇2f(ξ, J∇f).

A substitution of (8.7) in (8.6) completes the proof of (8.5). �

We have to evaluate the last term of (8.5). We recall the notation (2.1) of the two components of the U(n)-

invariant decomposition of the horizontal Hessian ∇2f . The first integral formula for the last term in (8.5)

originally proved in [22] follows.

Lemma 8.6 ([22]). On a compact strictly pseudoconvex pseudohermitian CR manifold of dimension 2n + 1,

n ≥ 1, we have the identity

(8.8)

∫
M

∇2f(ξ, J∇f)V olθ = −
∫
M

[ 1

2n
g(∇2f, ω)2 +A(J∇f,∇f)

]
V olθ.

Proof. Integrating (2.14) we compute

(8.9) 4n2

∫
M

(ξf)
2
V olθ = −2n

∫
M

g(∇2f, ω) · df(ξ)V olθ.

Let us consider the horizontal 1-form defined by

D2(X) = df(JX)df(ξ)

whose divergence is, taking into account the second formula of (2.13),

(8.10) ∇∗D2 = g(∇2f, ω) · df(ξ)−∇2f(ξ, J∇f)−A(J∇f,∇f).

Integrating (8.10) over M and using (8.9) implies (8.8) which completes the proof of the lemma. �

We shall need one more representation of the last term in (8.5).
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Lemma 8.7. On a compact strictly pseudoconvex pseudohermitian CR manifold of dimension 2n + 1, n ≥ 1,

we have the identity

∇2f(ξ, Z) =
1

2n
∇3f(Z, Jea, ea)−A(Z,∇f).

In addition, ∫
M

∇2f(ξ, J∇f)V olθ =

∫
M

[
− 1

2n
(4f)

2
+A(J∇f,∇f)− 1

2n
Pf (∇f)

]
V olθ.

Proof. We compute using the first two Ricci identity in (2.13)

2∇3f(Z, Jea, ea) = ∇3f(Z, Jea, ea)−∇3f(Z, ea, Jea) = −2ω(Jea, ea)∇2f(Z, ξ)

= 4n
(
∇2f(ξ, Z) +A(Z,∇f)

)
,

which proves the first formula. The second identity follows from the above formula, the definition (8.1) of Pf
and an integration by parts. �

8.3. The CR Lichneorwicz type theorem. At this point we are ready to give in details, using real notation

as in [28, 27], the known version of the Lichnerowicz’ result on a compact strictly pseudo-convex CR manifold

[22], [32], [16].

Theorem 8.8 ([22], [32], [16]). Let (M, θ) be a compact strictly pseudoconvex pseudohermitian CR manifold of

dimension 2n + 1. Suppose there is a positive constant k0 such that the pseudohermitian Ricci curvature Ric

and the pseudohermitian torsion A satisfy the inequality

(8.11) Ric(X,X) + 4A(X, JX) ≥ k0g(X,X).

a) If n > 1, then any eigenvalue λ of the sub-Laplacian 4 satisfies the inequality

λ ≥ n

n+ 1
k0.

b) If n = 1 the same estimate holds,

λ ≥ 1

2
k0,

assuming in addition that the CR-Paneitz operator is non-negative, i.e., for any smooth function f we have

(8.12)

∫
M

f · Cf V olθ ≥ 0,

where Cf is defined in (8.2).

As well known the standard CR structure on the sphere achieves equality in this inequality. We note that the

assumption on the pseudohermitian Ricci curvature of the Tanaka-Webster connection and the pseudohermitian

torsion can be put in the equivalent form

Ric(X,X) + 4A(X, JX) = ρ(JX,X) + 2(n+ 1)A(JX,X)

using the pseudohermitian Ricci 2-form ρ of the Tanaka-Webster connection. We turn to the proof of Theorem

8.8.

Proof. Integrating the Bochner type formula (8.5) we obtain

0 =

∫
M

[
− (4f)2 +

∣∣(∇2f)[1]

∣∣2 +
∣∣(∇2f)[−1]

∣∣2 + Ric(∇f,∇f) + 2A(J∇f,∇f) + 4∇2f(ξ, J∇f)
]
V olθ.

We use Lemma 8.7 to represent the last term, which turns the above identity in the following form

(8.13) 0 =

∫
M

[
− (4f)2 +

∣∣(∇2f)[1]

∣∣2 +
∣∣(∇2f)[−1]

∣∣2 +Ric(∇f,∇f) + 6A(J∇f,∇f)

− 2

n
(4f)2 − 2

n
P (∇f)

]
V olθ.

Lemma 8.6 and Lemma 8.7 give the following identity

(8.14) 2

∫
M

A(J∇f,∇f)V olθ =

∫
M

[
− 1

2n
g(∇2f, ω)2 +

1

2n
(4f)2 +

1

2n
P (∇f)

]
V olθ.
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After a substitution of (8.14) in (8.13) we come to the key identity

(8.15) 0 =

∫
M

[
Ric(∇f,∇f) + 4A(J∇f,∇f)− n+ 1

n
(4f)2

]
V olθ

+

∫
M

[ ∣∣(∇2f)[1]

∣∣2 − 1

2n
(4f)2 − 1

2n
g(∇2f, ω)2 +

∣∣(∇2f)[−1]

∣∣2 − 3

2n
P (∇f)

]
V olθ.

If we assume (1.2) and use an eigenfunction 4f = λf in (8.15) we obtain the inequality

(8.16) 0 ≥
∫
M

(
k0 −

n+ 1

n
λ

)
|∇f |2 V olθ +

∫
M

[ ∣∣(∇2f)[1]

∣∣2 − 1

2n
(4f)2 − 1

2n
g(∇2f, ω)2

]
V olθ

+

∫
M

[ ∣∣(∇2f)[−1]

∣∣2 − 3

2n
P (∇f)

]
V olθ.

A projection on the span of the orthonormal set
{

1√
2n
g, 1√

2n
w
}

in the (1, 1) space gives the inequality

(8.17) |(∇2f)[1]|2 ≥
1

2n
(4f)2 +

1

2n

(
g(∇2f, ω)

)2
with equality holding if and only if

(8.18) (∇2f)[1] =
1

2n
(4f) · g +

1

2n
g(∇2f, ω) · ω.

We obtain from (8.16) and (8.17) the inequality

0 ≥
∫
M

[(
−n+ 1

n
λ+ k0

)
|∇f |2 +

∣∣(∇2f)[−1]

∣∣2 − 3

2n
P (∇f)

]
V olθ,

which, taking into account Lemma 8.4 and the assumptions of the Theorem, implies Greenleaf’s inequality

λ ≥ n

n+ 1
k0.

The proof of Theorem 8.8 is complete. �
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