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1. Introduction

To introduce the questions addressed in this paper we recall that a Carnot group G is a simply
connected nilpotent Lie group such that its Lie algebra g admits a stratification g =

r⊕
j=1

Vj , with

[V1, Vj ] = Vj+1 for 1 ≤ j < r, [V1, Vr] = {0}. We assume that a scalar product < ·, · > is given
on g for which the V ′

j s are mutually orthogonal. Every Carnot group is naturally equipped with
a family of non-isotropic dilations def ined by

δλ(g) = exp ◦∆λ ◦ exp−1(g), g ∈ G,

where exp : g → G is the exponential map and ∆λ : g → g is defined by ∆λ(X1 + ... + Xr) =

λX1 + ...+λrXr. The topological dimension of G is N =
r∑

j=1
dim Vj , whereas the homogeneous

dimension of G, attached to the group of dilations {δλ}λ>0, is given by Q =
r∑

j=1
j dimVj . We

denote by dH = dH(g) a fixed Haar measure on G. One has dH(δλ(g)) = λQdH(g), so that the
number Q plays the role of a dimension with respect to the group dilations.

The Euclidean distance to the origin | · | on g induces a homogeneous norm | · |g on g and (via
the exponential map) one on the group G in the following way (see also [15]). For ξ ∈ g, with
ξ = ξ1 + ... + ξr, ξi ∈ Vi, we let

|ξ|g =

(
r∑

i=1

|ξi|2r!/i

)2r!

,(1.1)

and then define |g|G = |ξ|g if g = exp ξ. Such homogeneous norm on G can be used to define
a pseudo-distance on G:

ρ(g, h) = |h−1g|G.(1.2)

Let X = {X1, . . . ,Xm} be a basis of V1 and continue to denote by X the corresponding
system of sections on G. The pseudo-distance (1.2) is equivalent to the Carnot-Carathéodory
distance d(·, ·) generated by the system X, i.e., there exists a constant C = C(G) > 0 such that

C ρ(g, h) ≤ d(g, h) ≤ C−1 ρ(g, h), g, h ∈ G,(1.3)
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see [36]. If B(x,R) = {y ∈ G | d(x, y) < R}, then by left-translation and dilation it is easy

to see that the Haar measure of B(x,R) is proportional to RQ, where Q =
r∑

i=1
i dim Vi is the

homogeneous dimension of G. One has for every f, g, h ∈ G and for any λ > 0

d(gf, gh) = d(f, h), d(δλ(g), δλ(h)) = λ d(g, h).

The sub-Laplacian associated to X is the second-order partial differential operator on G given
by

L = −
m∑

j=1

X∗
j Xj =

m∑

j=1

X2
j

(we recall that in a Carnot group one has X∗
j = −Xj , see [15]). By the assumption on the Lie

algebra one immediately sees that the system X satisfies the well-known finite rank condition,
therefore thanks to Hörmander’s theorem [22] the operator L is hypoelliptic. However, it fails
to be elliptic, and the loss of regularity is measured by the step r of the stratification of g. For
a function u on G we let |Xu| = (

∑m
j=1(Xju)2)1/2. For 1 ≤ p < Q we set

o
D 1,p(Ω) = C∞

o (Ω)
||·||D1,p(Ω) ,

where D1,p(Ω) indicates the space of functions u ∈ Lp∗(Ω) having distributional horizontal
gradient Xu = (X1u, ..., Xmu) ∈ Lp(Ω). The space D1,p(Ω) is endowed with the obvious norm

||u||D1,p(Ω) = ||u||Lp∗ (Ω) + ||Xu||Lp(Ω).

Here, p∗ = pQ
Q−p is the Sobolev exponent relative to p. The relevance of such number is em-

phasized by the following important embedding due to Folland and Stein [15], [16].

Theorem (Folland and Stein). Let Ω ⊂ G be an open set. For any 1 < p < Q there ex-
ists Sp = Sp(G) > 0 such that for u ∈ C∞

o (Ω)
(∫

Ω
|u|p∗dH

)1/p∗

≤ Sp

(∫

Ω
|Xu|pdH

)1/p

.(1.4)

We are interested in the following non-linear Dirichlet problem




Lu = − u

Q+2
Q−2

u ∈
o
D 1,2(Ω), u ≥ 0.

(1.5)

When Ω coincides with the whole group G we will talk of an entire solution to the problem
(1.5). We are interested in questions of existence and non-existence of weak solutions when:
• [i] Ω is bounded;
• [ii] Ω is unbounded, yet it is not the whole group;
• [iii] Ω coincides with the whole group.
The exponent Q+2

Q−2 = 2∗− 1 is critical for the case p = 2 of the embedding (1.4). To motivate
our results we recall that in the classical Riemannian setting the equation ∆u = −u(n+2)/(n−2)

is connected to the compact Yamab e problem [40], [3], [38], see also the book [4] and the survey
article [32]. There exists an analogue of such problem in CR geometry, namely: Given a compact,
strictly pseudo-convex CR manifold, find a choice of contact form for which the Webster-Tanaka
pseudo-hermitian scalar curvature is constant. The pde associated to the CR Yamabe problem
is the one that appears in (1.5). Although on the formal level this problem has many similarities
with its Riemann ian predecessor, the analysis is considerably harder since, as we mentioned,
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the sub-Laplacian L fails to be elliptic everywhere. In 1984-88 D. Jerison and J. Lee in a series
of important papers [24], [25], [26], [?] gave a complete solution to the CR Yamabe problem
when the CR manifold M has dimension ≥ 5 and M is not locally CR equivalent to the sphere
in Cn+1. They proved first that the CR Yamabe problem can be solved on any compact CR
mani fold M provided that the CR Yamabe invariant of M is strictly less than that of the sphere
in Cn+1. Similarly to Aubin’s approach in the Riemannian case, in order to determine when
the problem can be solved they then proved that the Yama be functional is minimized by the
standard Levi form on the sphere and its images under CR automorphisms. A crucial step in
this analysis is the explicit computation of the extremal functions in the special case when p = 2
and G is the Heisenberg grou p in the above stated Folland-Stein embedding . Jerison and Lee
made the deep discovery that, up to group translations and dilations, a suitable multiple of the
function

u(z, t) = ((1 + |z|2)2 + t2)−(Q−2)/4,(1.6)

is the only positive solution of (1.5) when Ω = Hn. Here, we have denoted with (z, t), z ∈ Cn, t ∈
R, the variable point in Hn.

In 1980 A. Kaplan [28] introduced a class of Carnot groups of step two in connection with
hypoellipticity questions. Such groups, which are called of Heisenberg type, constitute a direct
and important generalization of the Heisenberg group, a s they include, in particular, the nilpo-
tent component in the Iwasawa decomposition of simple groups of rank one. In his first work
on the subject Kaplan [28] constructed an explicit fundamental solution for the sub-Laplacian,
thus extending Follan d’s result for the Heisenberg group [14], see (1.8). In [6] Capogna, Danielli
and one of us found explicit formulas for the fundamental solution of the p-sub-Laplacian in any
group of Heisenberg type, and for the horizontal p-capacity of rings.

Some years ago we discovered that when G is a group of Heisenberg type, then problem (1.5)
possesses the following remarkable family of entire solutions.

Theorem 1.1. Let G be a group of Heisenberg type. For every ε > 0 the function

Kε(g) = Cε

(
(ε2 + |x(g)|2)2 + 16|y(g)|2)−(Q−2)/4

, g ∈ G,(1.7)

where Cε = [m(Q− 2)ε2](Q−2)/4, is a positive, entire solution of the Yamabe equation (1.5).

The symbols x(g), y(g) in (1.7) respectively denote the projection of the exponential coordi-
nates of the point g ∈ G onto the first and second layer of the Lie algebra g, whereas m indicates
the dimension of the first layer. One s hould compare (1.7) with the Jerison-Lee minimizer (1.6).
To give a glimpse of the complexity of the present situation with respect to the classical one we
recall Folland’s mentioned fundamental solution for the Kohn sub-Laplacian on Hn

Γ(z, t) = CQ(|z|4 + t2)−(Q−2)/4,(1.8)

where CQ is a suitable constant. Whereas Γ is (remarkably) a function of the natural homo-
geneous gauge ρ = ρ(z, t) = (|z|4 + t2)1/4, the Jerison-Lee minimizer in (1.6) is not. This is in
strong contrast with the famous results of Aubin [1], [2] and Talenti [39] who proved that for
every value of p the minimizers in the Sobolev embedding are functions with spherical symmetry.
After discovering the entire solutions Kε we formulated the following

Conjecture: In a group of Heisenberg type, up to group translations the functions Kε in (1.7)
are the only positive entire solutions to (1.5).
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If true, such conjecture would generalize Jerison and Lee’s cited result to groups of Heisen-
berg type. This problem turns out to be considerably harder than its already difficult Heisen-
berg group predecessor. In a forthcoming work we plan to come back to it and prove the full
conjecture. However, in section four we announce some partial progress toward it.

In closing we mention that the results described in this paper are contained in the two papers
[19], [20].

2. Bounded domains

We next describe the main results, starting with the case of bounded domains. In the following
definition the notion of starlikeness is expressed by means of the infinitesimal generator Z of the
group dilations {δλ}λ>0.

Definition 2.1. Let D ⊂ G be a connected open set of class C1 containing the group identity
e. We say that D is starlike with respect to the identity e (or simply starlike) along a subset
M ⊂ ∂D, if

< Z, η > (g) ≥ 0

at every g ∈ M . D is called starlike with respect to the identity e if it is starlike along
M = ∂D. We say that D is uniformly starlike with respect to e along M if there exists a
constant α = αD > 0 such that for every g ∈ M

< Z, η > (g) ≥ α.

A domain as above is called starlike (uniformly starlike) with respect to one of its points g
along M ⊂ ∂D, if g−1D is starlike (uniformly starlike) along g−1M with respect to e.

Theorem 2.2. Let D ⊂ G be C∞, bounded and starlike with respect to go ∈ D. Suppose that
u ∈ Γ0,α(D) is a non-negative solution of

{
Lu = − f(u)

u ∈
o
D 1,2(Ω), u ≥ 0,

(2.1)

with f ∈ C∞(R). Assume in addition that Xu ∈ L∞(D) and Zu ∈ L∞(D). If

2QF (u) − (Q− 2)uf(u) ≤ 0,(2.2)

then u ≡ 0. In particular, (2.1) has no non-trivial such solution when f(u) = uq, if q ≥ Q+2
Q−2 .

Remark 2.3. The inequality (2.2) is the analogue of the famous Pohožaev condition for Laplace
equation, see [37]. We mention that the first non-existence result for the Heisenberg group Hn

was obtained via an integral identity of Rellich-Pohoza ev type in [17]. In that paper however
the relevant solutions were a priori assumed to be globally smooth and the delicate question of
regularity at characteristic points was not addressed.

It is important to remark that the vector field Z is neither left-invariant, nor it is sub-
unitary according to C. Fefferman and D.H. Phong [13]. One easily sees that, in exponential
coordinates, the vector field Z involves commutators up to maximum length. In the classical case
the boundary regularity of the relevant solution which is necessary to apply the Rellich-Pohožaev
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identity is guaranteed, via standard elliptic theory, by suitable smoothness assumptions on the
ground domain Ω, see, e.g., [37]. The situation is drastically different in the sub-elliptic setting
even if the domain Ω is C∞, due to the presence of characteristic points on the boundary of Ω.
We recall that the characteristic set of a smooth domain Ω ⊂ G with respect to the system X is

Σ = ΣΩ,X = {g ∈ ∂Ω | Xj(g) ∈ Tg(∂Ω), j = 1, ..., m}.
A bounded domain with trivial topology in a group of Heisenberg type always has a non-

empty characteristic set. Theorem 2.2 constitutes the main motivation for our study of the
regularity near the characteristic set. Due to the well-know n counterexample of Jerison [23] to
the boundary regularity in a neighborhood of a characteristic point it is not clear a priori that
Theorem 2.2 has any content at all. The next two results prove that it does indeed, at lea st if
the ground domain Ω satisfy some very natural and easily verifiable geometric conditions.

Henceforth, we consider a C∞, connected, bounded open set Ω ⊂ G. We suppose that Ω
satisfies the following natural condition: There exist A, ro > 0 such that for every Q ∈ ∂Ω and
every 0 < r < r0

|(G \ Ω) ∩B(Q, r)| ≥ A|B(Q, r)|.(2.3)

Such geometric assumption is fulfilled if, e.g., Ω satisfies the uniform corkscrew condition, see
[7], [9]. These papers contain an extensive study of examples of domains which, in particular,
satisfy (2.3). For us it is impo rtant that (2.3) allows to adapt to the present setting the classical
arguments that lead, via Moser’s iteration, to obtain u ∈ Γ0,α(Ω̄) for some 0 < α < 1, see, e.g.,
[21], Section 8.10. Extending u with zero outside Ω, we can assume henceforth that

u ∈ Γ0,α(G).(2.4)

If we suppose further that Ω is a C∞ domain, and denote by Σ = ΣΩ,X the characteristic
set of Ω, then thanks to the results of Kohn and Nirenberg [29], for every Q ∈ ∂Ω \ Σ there
exists a neig hborhood U of Q such that u ∈ C∞(Ω̄ ∩ U). From these considerations it is clear
that the main new obstacle to overcome is the regularity of a weak solution to (1.5) near the
characteristic set Σ.

Since our assumptions on Ω are of a local nature, and they involve the geometry of the domain
near its characteristic set Σ, there is no restriction in assuming the existence of ρ ∈ C∞(G) and
of γΩ > 0 such that for so me R ∈ R

Ω = {g ∈ G | ρ(g) < R},(2.5)

and for which one has |Dρ(g)| ≥ γΩ > 0, for every g in some relatively compact neighborhood
K of ∂D. The outward pointing unit normal to ∂Ω is η = Dρ

|Dρ| .
We now assume that Ω be uniformly starlike along Σ, see Definition 2.1, with respect to one

of its points, which by performing a left-translation we can take to be the group identity e. We
explicitly remark that when this is the case, then by the compactness of Σ we can find a bounded
open set U and a constant δ > 0 such that Σ ⊂ U and for which, setting ∆ = ∂Ω ∩ U , one has

Zρ(go) ≥ δ > 0, for go ∈ ∆.(2.6)

We note that the uniform transversality condition (2.6) implies that the trajectories of Z
starting from points of ∆ fill a full open set ω interior to Ω. By possibly shrinking the set U we
can assume that ω = Ω ∩ U . To fix the notation we suppose that there exists λo > 0 such that

δλgo ∈ ω for λo < λ < 1.
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Hereafter, given a point g ∈ G we respectively denote with

x(g) = (x1(g), ..., xm(g)), y(g) = (y1(g), ..., yk(g))

the projection of the exponential coordinates of g on the first and second layer of the Lie algebra
g. We define ψ(g) = |x(g)|2.

In addition to (2.6) we assume that there exists Co > 0 such that the definining function ρ of
Ω satisfies the following convexity condition

Lρ ≥ Co < Xρ,Xψ > in ω.(2.7)

We emphasize that a sufficient condition for (2.7) to hold is the strict L-sub-harmonicity of
the defining function ρ of Ω near the characteristic set Σ. On the other hand, since on Σ we
evidently have < Xρ, Xsi >= 0, the L-sub-harmonicity of ρ on Σ (but not the strict one) is
also necessary.

The following two theorems constitute the main regularity results of this section.

Theorem 2.4. Consider a C∞ domain Ω in a Carnot group G satisfying (2.3), (2.6) and (2.7).
Let u be a weak solution of (1.5), then

Xu ∈ L∞(Ω).

In the next result we establish the boundedness of the Z−derivative of the solution of (1.5)
near the characteristic set. We stress once again that such derivative involves commutators of
the vectors Xj up to maximum order.

Theorem 2.5. Let G be a Carnot group of step two. Consider a C∞ connected, bounded open
set Ω ⊂ G satisfying (2.3), (2.6) and (2.7). Under these assumptions, if u is a weak solution of
(1.5) one has

Zu ∈ L∞(Ω).(2.8)

Remark 2.6. Unlike Theorem 2.4, in Theorem 2.5 we have assumed that the group G be of step
two. We do not presently know whether Theorem 2.5 continues to hold for groups of arbitrary
step.

We next provide an important class of domains to which Theorems 2.4, 2.5, and therefore
Theorem 2.2 apply. Let G be a Carnot group of step two. We define the function

fε(g) =
(
(ε2 + |x(g)|2)2 + 16|y(g)|2)1/4

, ε ∈ R.(2.9)

For R > 0 and ε ∈ R, with ε2 < R2, consider the C∞ bounded open set

ΩR,ε = {g ∈ G | fε(g) < R}.(2.10)

When ε = 0 it is clear that ΩR,ε is nothing but a gauge pseudo-ball centered at the group
identity e, except that the natural gauge is defined in (1.1) without the factor 16. Here we have
introduced such (immaterial) facto r for the purpose of keeping a consistent definition with the
case of groups of Heisenberg type discussed in the next section. For g ∈ G, we let

ΩR,ε(g) = {h ∈ G | fε(g−1h) < R} = g ΩR,ε.



THE NON-LINEAR DIRICHLET PROBLEM, ETC 7

It is very easy to verify that the domains ΩR,ε(g) fulfill the geometric assumptions (2.3), (2.6)
and (2.7), so that Theorems 2.4, 2.5 and 2.2 can be applied. This proves the fo llowing basic
result.

Theorem 2.7. Let G be a Carnot group of step two. Given any g ∈ G, R ∈ R and ε ∈ R with
ε2 < R2, the function u ≡ 0 is the only non-negative weak solution of (1.5) in ΩR,ε(g).

Besides having an interest in its own right, Theorem 2.7 also plays an important role in the
analysis of unbounded domains, to which task we now turn.

3. Unbounded domains different from the whole group

Our first objective is to introduce an appropriate notion of cones and half-spaces in a Carnot
group. This can be done in a natural way by means of the exponential map, or instead working
directly on the group by exploiting its homogeneous structure. This latter approach was fully
developed in [7]. Below, we will use the former approach. We recall that for a point g ∈ G
we denote with x(g) = (x1(g), ..., xm(g)) and y(g) = (y1(g), ..., yk(g)) the projection of the
exponential coordinates of g on the first and second layer of the Lie algebra g. We indicate with
Rk

+ the cone {(y1, ..., yk) ∈ Rk | yi ≥ 0, i = 1, ..., k}.

Definition 3.1. Let G be a Carnot group of step two. Given M, b ∈ R, and a ∈ Rk \ {0}, we
call the open sets

C+
M,b,a = {g ∈ G |< y(g),a > > M |x(g)|2 + b}

and

C−
M,b,a = {g ∈ G |< y(g),a > < −M |x(g)|2 + b}

characteristic cones. In the case in which a ∈ Rk
+ \ {0}, then we call the cone convex if M ≥ 0,

concave if M < 0. When M = 0 we use the notation H±
b,a to indicate the ch aracteristic

half-spaces

C+
0,b,a = {g ∈ G |< y(g),a > > b}, C−

0,b,a = {g ∈ G |< y(g),a > < b}.
The boundaries of such half-spaces are called characteristic hyperplanes.

The relevance of these domains becomes especially evident in the framework of groups of
Heisenberg type due to a remarkable notion of inversion and Kelvin transform which for the
Heisenberg group Hn were first developed by Korányi in [30]. Subs equently, such inversion
formula, as well as the Kelvin transform, were generalized in [11] and [10] to all groups of
Heisenberg type. We begin with the formal definition of group of Heisenberg type. Let G be a
group of step two with Lie algebra g = V1 ⊕ V2 and consider the map J : V2 → End(V1) defined
by

< J(ξ2)ξ′1, ξ1” > = < [ξ′1, ξ1”], ξ2 >, ξ′1, ξ1” ∈ V1, ξ2 ∈ V2.(3.1)

From the definition it is immediately obvious that

< J(ξ2)ξ1, ξ1 > = 0, ξ1 ∈ V1, ξ2 ∈ V2.

Definition 3.2. A Carnot group of step two, G, is called of Heisenberg type if for every vector
ξ2 ∈ V2 the map J(ξ2) : V1 → V1 defined by (3.1) is orthogonal, i.e.,

|J(ξ2)ξ1| = |ξ2| |ξ1|.(3.2)
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Definition 3.2 is due to A. Kaplan [28]. We are now ready to introduce the CR inversion and
Kelvin transform in a group of Heisenberg type, see [30], [11] and [10].

Definition 3.3. Let G be a group of Heisenberg type with Lie algebra g = V1 ⊕ V2. For g =
exp(ξ) ∈ G, with ξ = ξ1 + ξ2, the inversion σ : G∗ → G∗, where G∗ = G \ {e} is defined by

σ(g) =
(
− (|x|2 + 4J(ξ2)

)−1
ξ1,− ξ2

|x|4 + 16|y|2
)
,

where the map J is as in (3.1). One easily verifies that

σ2(g) = g, g ∈ G∗.

As in definition (2.9) in the sequel we will use the renormalized gauge

N(g) =
(|x(g)|4 + 16|y(g)|2)1/4

,(3.3)

since the latter is better suited than (1.1) to the structure of a group of Heisenberg type. This
fact is witnessed by the following remarkable fact which was discovered by Kaplan [28]. In a
group of Heisenberg type the fundamental solution Γ of the sub-Laplacian L is given by the
formula

Γ(g, h) = C(G) N(h−1g)−(Q−2), g, h ∈ G, g 6= h,(3.4)

where C(G) > 0 is a suitable constant. Equation (3.4) will play an important role in Definition
3.6 below. Writing σ(g) = exp (η), with η = η1 + η2, for the image of g we see easily from
Definition 3.3 and (3.2) that

|η1| =
|ξ1|

N(g)2
, and |η2| =

|ξ2|
N(g)4

(3.5)

An immediate consequence of (3.5) is that

N(σ(g)) = N(g)−1, g ∈ G∗.(3.6)

A direct verification shows that the inversion anticommutes with the group dilations, i.e.,

σ(δλ(g)) = δλ−1(σ(g)), g ∈ G∗.(3.7)

A corollary of (3.7) is that starlikeness behaves well under inversion. This is contained in the
following result.

Proposition 3.4. Let ρ ∈ C∞(G). The following formula holds

Z(ρ ◦ σ) = − (Zρ) ◦ σ.

In connection with Proposition 3.4 we mention that the starlikeness of the level sets of positive
L−harmonic functions in unbounded domains in Carnot groups was first obtained in [12].

The next proposition underlines the remarkable connection between the convex cones in groups
of Heisenberg type and the bounded domains introduced in (2.10).
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Proposition 3.5. Let G be a group of Heisenberg type with the inversion as in Definition 3.3.
For every M ≥ 0, b > 0,a ∈ Rk

+ \ {0}, define ε =
√

M/2b, R2 =
√

16M2 + |a|2/8b, and co
nsider the set

ΩR,ε = {g ∈ G | (|x(g)|2 + ε2)2 + 16|y(g)|2 < R4}.
One has

σ(C+
M,b,a) = (0,− a

32b
) ΩR,ε =

{
g ∈ G | (|x(g)|2 + ε2)2 + 16|y(g) +

a

32b
|2 < R4

}
.

In particular, the image through the inversion of the characteristic half-space H+
b,a = {g ∈

G |< y(g),a > > b} is the gauge ball B((0,− a
32b), R) = {g ∈ G | |x(g)|4 +

∣∣∣y(g) + textbfa
32b

∣∣∣
2

<

R4}.

In the sequel we denote by Ω* the image of a generic domain Ω under the inversion σ. We
stress that, since we have chosen not to define the inversion of the point at infinity, in the case
in which Ω is a neighborhood of ∞, by which we mean that there exists a ball B(e, R) such that
(G \B(e,R)) ⊂ Ω, then Ω∗ is a punctured neighborhood of the identity, i.e., Ω∗ = D \ {e}, for
an open set D such that e ∈ D. The reader shoul d keep this point in mind for the statement
of the next results.

Definition 3.6. Let G be a group of Heisenberg type, and consider a function u on G. The
CR Kelvin transform of u is defined by the equation

u*(g) = N(g)−(Q−2) u(σ(g)), g ∈ G∗.

An important subset of that of groups of Heisenberg type is the class of groups of Iwasawa
type. Such groups arise as the nilpotent component N in the Iwasawa decomposition KAN of
a simple group of rank one. When G is a group of Iwasawa type, then it was proved in [10] that
the inversion and the Kelvin transform possess some remarkable properties. In the following
theorem we collect the two which are most important in the sequel.

Theorem 3.7 (see [10]). Let G be a group of Iwasawa type. The Jacobian of the inversion is
given by

d(H ◦ σ)(g) = N(g)−2Q dH(g), g ∈ G∗.

The Kelvin transform u∗ of a function satisfies the equation

Lu*(g) = N(g)−(Q+2)(Lu)(σ(g)), g ∈ G∗.

The following theorem is an important consequence of the conformal properties of the inversion
and of the Kelvin transform expressed by Theorem 3.7.

Theorem 3.8. The Kelvin transform is an isometry between
o
D 1,2(Ω) and

o
D 1,2(Ω*).

Such result is used in combination with the conformal invariance of the Yamabe type equation
expressed by the following proposition.
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Proposition 3.9. Let u be a solution of

{
Lu = − up

u ∈
o
D 1,2(Ω), u ≥ 0,

(3.8)

and denote by u* its Kelvin transform. Then u* satisfies

Lu∗(g) = − N(g)p(Q−2)−(Q+2) u∗(g)p g ∈ Ω∗.(3.9)

In particular, when p = Q+2
Q−2 we conclude that if u satisfies problem (1.5), then u* is a solution

of the same problem in Ω*.

The following theorem asserts that if u∗ is a solution to (1.5) in a neighborhood of infinity,
then the Kelvin transform of u∗ has a removable singularity at the group identity e. It plays
a crucial role in converting the Yamabe prob lem (1.5) on an unbounded domain to the same
problem on a bounded one, via the CR inversion.

Theorem 3.10. Let G be an Iwasawa group. Suppose that u* is a solution of (1.5) in Ω*,
with Ω* a neighborhood of infinity. Let u be the Kelvin transform of u* defined in Ω, then the
group identity e is a removable singulari ty, i.e., u can be extended as a smooth function in a
neighborhood of e where the equation is satisfied.

Using Theorem 3.8, Proposition 3.9, and Theorems 3.10, 2.4, 2.5 and 2.2, we obtain the main
non-existence result for unbounded domains (which do not coincide with the whole group) .

Theorem 3.11. Let G be a group of Iwasawa type. Consider a C∞ unbounded open set Ω∗ ⊂ G
and denote by Ω its image through the inversion. Suppose that Ω = D \ {e}, where D is a
bounded open set, containing the identity, which satisfies all the hypothesis in Theorem 2.4. In
this situation there exists no solution to problem (1.5) in Ω∗, other than u∗ ≡ 0.

Here is a basic consequence of Theorem 3.11.

Corollary 3.12. Let G be a group of Iwasawa type and consider the unbounded domain Ω∗ =
{g ∈ G | N(gg−1

o ) > R}, where N is the gauge in (3.3), go ∈ G and R > 0 are fixed. There
exist no non-trivial solution to (1.5) in Ω∗.

Proof. By left-translation and rescaling we can suppose that go = e,R = 1. In this situation, it
is easy to verify Ω∗ is mapped by the inversion in D = Ω \ {e}, where Ω = {g ∈ G | N(g) < 1}.
To complete the proof it is enough to observe that, as it was proved in Theorem 2.7 (case ε = 0),
the domain Ω fulfills the assumptions in Theorem 2.4.

We finally consider a notable class of unbounded domains with non-compact boundary, the
convex characteristic cones, and prove that these sets do not support non-trivial solutions to the
Yamabe problem (1.5).

Theorem 3.13. Consider a group of Iwasawa type G. Let C±
M,b,a ⊂ G be a convex characteris-

tic cone as in Definition 3.1. There exists no solution to (1.5) in Ω∗ = C+
M,b,a, other than u ≡ 0.

In particular, there exist no non-trivial solutions for the characteristic half-spaces H±
b,a.
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Proof. Suppose u∗ is a non-trivial solution to (1.5) in C+
M,b,a and denote by u its Kelvin trans-

form. In view of Proposition 3.5, u is defined in (0,− a
32b) ΩR,ε, where ΩR,ε is the domain in

(2.10), with R and ε specified as in Proposition 3.5. By left-translation we obtain a new non-
trivial function, which for simplicit y we continue to denote with u, defined in the bounded open

set ΩR,ε. From Theorem 3.8 we infer that u ∈
o
D 1,2(ΩR,ε). Thanks to Proposition 3.9 we know

that u is a non-trivial solution to problem (1.5) in ΩR,ε. At this point we invoke Theorem 2.7
to reach a contradiction. The proof is thus completed.

In connection with Theorem 3.13 we mention that Lanconelli and Uguzzoni [31] have recently
obtained in the special case of the Heisenberg group Hn an interesting non-existence result
for the non-characteristic hyperplanes, i.e., those hyperplanes which are parallel to the grou p
center (the t-axis). Their analysis is essentially different from ours since, given the absence of
characteristic points on the boundary, their focus is on the asymptotic behavior of a solution
to (1.5) at infinity. In a note added in p roof in [31] it is said that in the forthcoming article
[41] Uguzzoni has obtained, for the characteristic hyperplanes Ha in the Heisenberg group, a
uniqueness result similar to the second part of our Theorem 3.13.

4. Entire solutions

We finally describe some progress toward the proof of the main Conjecture in section one.
Before proceeding we note that an important consequence of a suitable adaptation of the method
of concentration of compactness due to P. L. Lions [33], [34] allows to prove that in any Carnot
group (1.5) always admits at least one entire solution, see [42]. In this regard an elementary, yet
crucial observation, is that if u is an entire solution to (1.5), then such are also the two functions

τhu
def
= u ◦ τh, h ∈ G,(4.1)

where τh : G → G is the operator of left-translation τh(g) = hg, and

uλ
def
= λ(Q−2)/2 u ◦ δλ, λ > 0.(4.2)

We need the following definition.

Definition 4.1. Let G be a Carnot group of step two with Lie algebra g = V1 ⊕ V2. We say
that a function U : G → R has partial symmetry if there exist an element go ∈ G such that for
every g = exp(x(g) + y(g)) ∈ G one has

U(gog) = u(|x(g)|, y(g)),

for some function u : [0,∞)× V2 → R.
A function U is said to have cylindrical symmetry if there exist go ∈ G and φ : [0,∞) ×

[0,∞) → R for which

U(gog) = φ(|x(g)|, |y(g)|),
for every g ∈ G.

Our main result is the following.
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Theorem 4.2. Let G be a group of Iwasawa type. If U 6≡ 0 is an entire solution to (1.5) having
partial symmetry, then up to group translations and dilations we must have U = Kε, where Kε

is the function in Theorem ??.

Theorem 4.2 is a direct consequence of the following two results.

Theorem 4.3. Let G be an Iwasawa group. Suppose U 6≡ 0 is an entire solution of (1.5). If U
has partial symmetry, then U has cylindrical symmetry.

Theorem 4.4. Let U 6≡ 0 be an entire solution to (1.5) in a Iwasawa group G and suppose that
U has cylindrical symmetry. There exists ε > 0 such that

U(g) = [m(Q− 2)ε2](Q−2)/4 ((ε2 + |x(g)|2)2 + 16|y(g)|2)−(Q−2)/4.

All other cylindrically symmetric solutions are obtained from this one by the left-translations
(4.1).

One should notice that, unlike the Euclidean case, in the Folland-Stein embedding there exists
no spherical symmetrization, and therefore the search of minimizers cannot be reduced to an
ordinary differential equation, as in the famous results of Aubin i̧teA1, [2] and Talenti [39].
Therefore, after Theorem 4.3 is in force one still needs to confront the non-trivial problem of
the uniqueness of positive solutions of a certain non-linear pde in the Poincaré half-plane. This
aspect is taken care of by Theorem 4.4.

In closing we mention that some interesting existence and non-existence results for positive
entire solutions of the equation Lu = −K(x)up in Carnot groups were announced by G. Lu and
J. Wei in [35]. These authors also study the asympt otic behavior at infinity of the relevant
solutions. We also mention that we have recently received a preprint by I. Birindelli and J.
Prajapat [5] in which the authors prove in the context of the Heisenberg group Hn an interesting
non-existence theorem for positive entire solutions having cylindrical symmetry of the equation
Lu = −up, with sub-critical exponent p < (Q + 2)/(Q− 2).
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[11] M. Cowling & A. Korányi, Harmonic analysis on Heisenberg type groups from a geometric viewpoint, in “Lie
Group Representation III”, pp.60-100, Lec. Notes in Math., 1077 (1984), Springer-Verlag.

[12] D. Danielli & N. Garofalo, Geometric properties of solutions to subelliptic equations in nilpotent Lie groups,
Lect. Notes in Pure and Appl. Math., “Reaction Diffusion Systems”, Trieste, October 1995, Ed. G. Caristi
Invernizzi, E. Mitidieri, Ma rcel Dekker, 194 (1998).

[13] C. Fefferman & D.H. Phong, Subelliptic eigenvalue problems, Proceedings of the Conference in Harmonic
Analysis in Honor of A. Zygmund, Wadsworth Math. Ser., Belmont, CA, (1981), 530-606.



THE NON-LINEAR DIRICHLET PROBLEM, ETC 13

[14] G. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc., 79 (1973), 373-376.
[15] G. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Math., 13 (1975), 161-207.
[16] G. B. Folland & E. M. Stein, Estimates for the ∂̄b Complex and Analysis on the Heisenberg Group, Comm.
Pure Appl. Math., 27 (1974), 429-522.

[17] N. Garofalo & E. Lanconelli, Existence and non-existence results for semilinear elliptic problems in unbounded
domains, Indiana Univ. Math. J., 41 (1992) 71-98.

[18] N. Garofalo & D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the
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[22] H. Hörmander, Hypoelliptic second-order differential equations, Acta Math., 119 (1967), 147-171.
[23] , The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, II, J. of Funct. Anal.
43 (1981), 224-257.

[24] D. Jerison & J. Lee, A subelliptic, nonlinear eigenvalue problem and scalar curvature on CR manifolds,
Contemporary Math., 27 (1984), 57-63.

[25] , The Yamabe problem on CR manifolds, J. Diff. Eq., 25 (1987), 167-197.
[26] , Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. of the
Amer. Math. Soc., 1, 1 (1988), 1-13.

[27] , Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geom., 29 (1989), no.
2, 303–343.

[28] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic
forms, Trans. Amer. Math. Soc., 258 (1980), 147-153.

[29] J. J. Kohn & L. Nirenberg, Non-coercive boundary value problems, Comm. Pure and Appl. Math., 18,
18 (1965), 443-492.
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