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The equations

I Yamabe: (Mn, g): ḡ = u4/(n−2) g,

4
n− 1
n− 2

4u− S u = −S u2∗−1.

I CR Yamabe: (M2n+1, η, J), η̄ = u4/(Q−2)η,

4
n + 1

n
4u− S u = −S̄ u2∗−1.

I QC Yamabe: (M4n+3, η), η̄ = u4/(Q−2)η,

4
n + 2
n + 1

4u− S u = −S u2∗−1.

I 4f = −λ1f .



Riemannian Obata theorems

Theorem 1. a) (Uniqueness in Einstein class) Let (M, ḡ) be a
connected compact Riemannian manifold. If ḡ is Einstein and
g = φ2 ḡ with S̄ = S = n(n− 1), then φ = 1 unless (M, ḡ) is the
round unit sphere (Sn, gst).
b) (Yamabe problem on the round sphere) If g is conformal to gst on
Sn, g = φ2gst, with S = n(n− 1), then g = Φ∗gst for Φ ∈ Diff (Sn).

Theorem 2.Let (M, g) be an n-dimensional compact Riemannian
manifold with

Ric(X,X) ≥ (n− 1)g(X,X).

If λ 6= 0 is an eigenvalue,4f = −λf , then λ ≥ n (Lichnerowicz) and
λ = n iff (M, g) is isometric with Sn (Obata), in which case f is a
spherical harmonic of order one.



The PDE on Rn - extremals of the L2 Sobolev embedding
inequality

Stereographic proj., C : Sn \ N → Rn, (C−1)∗gst = 4u4/(n−2)dx2. The
Yamabe problem on the round sphere is equivalent to:
Theorem 3. (Aubin, Talenti) If u ≥ 0 satisfies the Yamabe equation
on Rn

4u = −n(n− 2) u2∗−1, u ∈ D1,2(Rn)

then up to a translation and rescaling u = (1 + |x|2)−(n−2)/2.

Rescaling: uλ(x) ≡ λn/2* δλu
def
= λn/2* u(λx), λ > 0.

Key: reduce to radial functions via symmetrization arguments. These
are not (fully) available in sub-Riemannian settings (ex. groups of
Iwasawa type) except for solutions with ”partial” symmetry w/
Garofalo or the lowest energy solutions (extremals for Folland-Stein
L2 Sobolev type inequality): Branson & Fontana & Morpurgo and
Frank & Lieb in the CR case, w/ Ivanov - Minchev in the quaternion
case, Christ & Liu & Zhang in the octonian case.



Uniqueness. Recall, g = φ2 ḡ and S = S̄ = n(n− 1)
Suppose ḡ is Einstein, 0 = Rico = Rico + n−2

φ (∇2φ)0. The contracted
Bianchi identity and S=const give∇∗Ric0 = n−2

2n ∇S = 0, hence

∇∗ (Rico∇φ) = (∇∗Rico)(∇φ)+g(Rico,∇2φ) =
n− 2

2n
g(∇S,∇φ)− φ

n− 2
|Rico|2.

This divergence formula shows that g is also an Einstein metric and
X = ∇φ is a gradient conformal vector field,

Rico = (∇2φ)0 = 0.

If X is a conformal vector field then we have the infinitesimal Yamabe
equation

4(div X) = − 1
n− 1

(div X)S− n
2(n− 1)

X(S).

Now, for S = n(n− 1) it follows f = 4φ satisfies4f = −nf . Thus
either f =const or f is an eigenfunction with the lowest possible
eigenvalue hence g is isometric to gst by Obata’s eigenvalue theorem.



The case of the sphere

Taking into account the divergence formula, using the stereographic
projection we can reduce to a conformal map of the Euclidean space,
which sends the Euclidean metric to a conformal to it Einstein metric.
By a purely local argument the resulting system can be integrated, in
effect proving also Liuoville’s theorem, which gives the form of u as
in Aubin and Talenti’s theorem in Rn and then φ on Sn after
transferring the equations back to the unit sphere.

Remark: Such argument was used in the quaternionic contact setting
to classify all qc-Einstein structures on the unit 4n + 3 dimensional
sphere (quaternionic Heisenberg group) conformal to the standard
qc-structure.



OBATA TYPE RESULTS ON CR AND QC MANIFOLDS



Sub-Riemannian conformal infinities
On the open unit ball B in Cn+1 consider the Bergman metric

h =
4
ρ

geuc +
1
ρ2

(
(dρ)2 + (Idρ)2) , ρ = 1− |x|2.

As ρ→ 0, ρ · h is finite only on H = Ker (I dρ), which is the kernel of
the contact form θ = I dρ. The conformal infinity of ρ · h is the
conformal class of a pseudohermitian CR structure on S2n+1.
In the quaternion case, consider the open unit ball B in Hn+1 and the
hyperbolic metric

h =
4
ρ

geuc +
1
ρ2

(
(dρ)2 + (I1dρ)2 + (I2dρ)2 + (I3dρ)2) .

The conformal infinity is the conformal class of a (QC) quaternionic
contact structure on S4n+3. Here, ρ · h defines a conformal class of
degenerate metrics with kernel

H = ∩3
j=1Ker (Ij dρ),

which carries a quaternionic structure.



CR SETTING



The solution in the Sasaki-Einstein case

Theorem 4.
a) (Jerison & Lee ’88) If θ is the contact form of a pseudo-Hermitian

structure proportional to the standard contact form θ̄ on the unit
sphere in Cn+1 and the pseudohermitian scalar curvature
Sθ =const, then up to a multiplicative constant θ = Φ∗ θ̄ with Φ a
CR automorphism of the sphere.

b) (X. Wang ’13, Ivanov & Vassilev ’14) The pseudoconformal class
of a Sasaki-Einstein pseudo-Hermitian structure different from the
standard Sasaki-Einstein structure on the round sphere contains a
unique (up to homothety) pseudo-Hermitian form of constant CR
scalar curvature.



CR manifolds
(M, θ, J) is strictly pseudoconvex pseudo-Hermitian manifold if

i) θ is a contact form, H = ker θ has a compatible Hermitian

structure: J : H → H, J2 = −idH , 2g(X,Y)
def
= dθ(X, JY),

X, Y ∈ H, g(X,Y) = g(JX, JY);

ii) g is positive definite on H;

iii) integrability: [JX,Y] + [X, JY] ∈ H and
[JX, JY]− [X,Y]− J[JX,Y]− J[X, JY] = 0.

Reeb field ξ: θ(ξ) = 1 and ξydθ = 0.
Tanaka-Webster connection. Unique linear connection∇ such that
(i) ξ, J, θ and g are parallel; (ii) the torsion satisfies:

I T(X,Y) = 2ω(X,Y)ξ, where ω(X,Y)
def
= g(JX,Y), X, Y ∈ H;

I the Webster torsion A, A
def
= T(ξ, .) : H → H, is symmetric and

anti-commutes with J, AJ = −JA.

Note: A = 0⇔ Sasakian structure⇔ Lξg = 0.



Curvature of the Tanaka-Webster connection
Define the Riemannian metric ”h = g + η2”. Let {εa}2n

a=1-ONB of the
horizontal space H.

I Tanaka-Webster curvature: R(A,B)C
def
= [∇A,∇B]C −∇[A,B]C

and R(A,B,C,D)
def
= h(R(A,B)C,D).

I Ricci tensor: Ric(A,B) = R(εa,A,B, εa)
def
=
∑2n

a=1 R(εa,A,B, εa);
scalar curvature S = Ric(εa, εa);

I Ricci form: ρ(A,B) = 1
2 R(A,B, εa, Jεa).

Proposition 5.We have the following type decomposition of the Ricci
tensor with B = ρ0, ρ(JX,Y) = B(JX,Y) + 1

2n g(X,Y),

Ric(X,Y) = 2(n− 1)A(JX,Y) + B(JX,Y) +
S
2n

g(X,Y).

A torsion-free pseudo-Einstein CR manifold is Sasaki- Einstein if
S = 4n(n + 1).



CR divergence formula
Theorem 6 (Jerison, D. & Lee, J. ’88). Let (M, θ̄) be a compact
Sasaki-Einstein manifold. If θ = 2hθ̄ is also of constant positive
pseudo-Hermitian scalar curvature S = 4n(n + 1), then (M, θ) is
again a Sasaki-Einstein space.
”Proof”: Divergence formula: for a certain horizontal vector field Xh

we have

∇∗Xh =
1
2

(
1
2

+ h
)(
|D|2 + |E|2

)
+

h
4
|Dh + Eh|2 +

h
2

Q(d, e, u),

where D(X,Y) = −4A(X,Y) and E = 2
n+2 B(X,Y) are up to a

constant multiple the Webster torsion and the traceless J-invariant
component of the Ricci tensor of the Tanaka-Webster connection.
With f = 1

2 + h + |∇h|2
4h , d = h−1DJ∇h, e = h−1EJ∇h, and

u = 1
n+2∇

∗(JD) we have

Xh = f [d + e]− dh(ξ) (Jd − Je + 6Ju) .



Infinitesimal CR transformations: LQθ = f θ and LQJ = 0.
If θ̄ = Φ∗t θ = u2/n

t θ, then 4(n+1)
n 4ut − Sut = −(S ◦ Φt) u2∗−1

t .
Differentiating at t = 0, the function φ = d

dt ut|t=0 satisfies

4(n + 1)

n
∆φ− Sφ = −dS(Q)− S(2∗ − 1)φ.

Proposition 7. An infinitesimal CR automorphism Q satisfies

∆(∇∗QH) = − n
2(n + 1)

dS(Q) − S
2(n + 1)

∇∗QH.

Proof: Use LQg(X,Y) = 1
n(∇∗QH) g(X,Y). Hence ḡ = u2/n

t g gives
2
nφ = 1

n ∇
∗QH . Also 2∗ = 2(n+1)

n .

Characterization:
I f = dσ(ξ) and Q = −1

2 J∇σ − σ ξ, where QH (”contact
Hamiltonian field”) is determined by θ(QH) = 0 and
iQH dθ ≡ 0 (mod θ);

I [∇2σ][−1](X,Y) ≡ 1
2

[
∇2σ(X, Y)−∇2σ(JX, JY)

]
= −2σA(JX,Y).



Consequences of ∆(∇∗QH) = − n
2(n+1) dS(Q)− S

2(n+1)∇
∗QH

When A = 0, Ricci’s identity gives∇3h(X,Y, ξ) = ∇3h(ξ,X,Y)

while θ = 2hθ̄ gives
[
∇2h

]
[−1]

(X,Y) = −2hA(X, JY) = 0. Hence,
the vector field

Q = −1
2

J∇ (ξh)− (ξh)ξ

is an infinitesimal CR vector field unless it vanishes. Since
S = 4n(n + 1) it follows φ = ∇∗QH either vanishes identically, i.e.,
h = const or φ is an eigenfuction of the sublaplacian realizing the
smallest possible eigenvalue on a (pseudo-Einstein) Sasakian
manifold and h 6= const.
The CR Lichnerowicz-Obata theorem shows that (M, θ) is homothetic
to the CR unit sphere.
Remark: For f = 1

2 + h + |∇h|2
4h it follows Q = − 1

2∇f − dh(ξ)ξ and
φ = 4f .



CR Lichnerowicz theorem

Theorem 8 (Greenleaf, A. ’85 for n ≥ 3; Li, S.-Y., & Luk, H.-S. ’04
for n=2). Let M be a compact spcph manifold of dimension 2n + 1,
s.t., for some k0 = const > 0 we have the Lichnerowicz-type bound

Ric(X,X) + 4A(X, JX) ≥ k0g(X,X), X ∈ H.

If n > 1, then any eigenvalue λ of the sub-Laplacian satisfies
λ ≥ n

n+1 k0.

The standard Sasakian unit sphere has first eigenvalue equal to 2n
with eigenspace spanned by the restrictions of all linear functions to
the sphere.



Theorem 9 (Chiu, H.-L. ’06). If n = 1 the estimate λ ≥ n
n+1 k0 holds

assuming in addition that the CR-Paneitz operator is non-negative∫
M f · Cf Volθ ≥ 0, where Cf is the CR-Paneitz operator,

Cf = ∇4f (ea, ea, eb, eb) +∇4f (ea, Jea, eb, Jeb)

− 4n∇∗A(J∇f )− 4n g(∇2f , JA).

Note: Li, S.-Y., & Luk, H.-S. ’04 for n = 1 with condition.
Given a function f we define the one form,

Pf (X) = ∇3f (X, eb, eb) +∇3f (JX, eb, Jeb) + 4nA(X, J∇f )

so we have Cf = −∇∗P.



CR Obata type theorem

Theorem 10 (n ≥ 2, Li, S.-Y., Wang, X. ’13; n=1 w/ Ivanov ’14).
Suppose (M, J, θ), dim M = 2n + 1, is a compact spcph manifold
which satisfies the Lichnerowicz-type bound. If n ≥ 2, then
λ = n

n+1 k0 is an eigenvalue iff up-to a scaling (M, J, θ) is the
standard pseudo-Hermitian CR structure on the unit sphere in Cn+1.
If n = 1 the same conclusion holds assuming in addition C ≥ 0.
Earlier results

I Sasakian case (enough for the CR Yamabe problem on the
sphere!), Chang, S.-C., & Chiu, H.-L., for n ≥ 2 in J. Geom.
Anal. ’09; for n = 1 in Math. Ann. ’09.

I Non-Sasakian case, Chang, S.-C., & Wu, C.-T., ’12, assuming:
(i) for n ≥ 2, Aαβ, β̄ = 0 and Aαβ, γγ̄ = 0; (ii) for n = 1,
A11, 1̄ = 0 and P1f = 0.

I w/ Ivanov ’12 - assuming∇∗A = 0 and C ≥ 0 when n = 1.



QUATERNIONIC CONTACT CASE



Solution of the Yamabe problem in the 3-Sasakain case

Theorem 11 (w/ Ivanov & Minchev arXiv:1504.03142). a) Let (M, η̄)

be a compact locally 3-Sasakian qc manifold of qc-scalar curvature
16n(n + 2). If η = 2hη̄ is qc-conformal to η̄ structure which is also of
constant qc-scalar curvature, then up to a homothety (M, η) is locally
3-Sasakian manifold. Furthermore, the function h is constant unless
(M, η̄) is the unit 3-Sasakian sphere.
b) Let η = 2hη̃ with η̃ the standard qc-structure on a 3-Sasakian
sphere of dimension 4n + 3. If η has constant qc-scalar curvature
16n(n + 2), then η is obtained from η̃ by a conformal quaternionic
contact automorphism.

Remark: The 7-D case of b) was completed earlier ’10.



The qc-Yamabe equation on the quaternionic Heisenberg group of
homogeneous dimension Q = 4n + 6
Corrolary 12. If 0 ≤ Φ ∈ D1,2 (G (H)), SΘ =const,

4(Q + 2)

Q− 2
4Θ̃Φ = −SΘ Φ2∗−1,

then for some fixed (qo, ωo) ∈ G (H), constants c0 > 0 and σ > 0
such that SΘ = 128n(n + 2)c0σ we have Φ = (2h)−(Q−2)/4 with

h(q, ω) = c0

[(
σ + |q + q0|2

)2
+ |ω + ωo + 2 Im qo q̄|2

]
.

The sub-Laplacian is4Θ̃u =
∑n

a=1

(
T2
αu + X2

αu + Y2
αu + Z2

αu
)
.



Quaternionic Heisenberg Group
G (H) = Hn × ImH, (q, ω) ∈ G (H),

(qo, ωo) ◦ (q, ω) = (qo + q, ω + ωo + 2 Im qo q̄),

i) Θ̃ = (Θ̃1, Θ̃2, Θ̃3) = 1
2 (dω − q · dq̄ + dq · q̄) or

Θ̃1 =
1
2

dx − xαdtα + tαdxα − zαdyα + yαdzα

Θ̃2 =
1
2

dy − yαdtα + zαdxα + tαdyα − xαdzα

Θ̃2 =
1
2

dz − zαdtα − yαdxα + xαdyα + tαdzα.

ii) Left-invariant horizontal vector fields

Tα =
∂

∂tα
+ 2xα

∂

∂x
+ 2yα

∂

∂y
+ 2zα

∂

∂z
, Xα =

∂

∂xα
− 2tα

∂

∂x
− 2zα

∂

∂y
+ 2yα

∂

∂z
,

Yα =
∂

∂yα
+ 2zα

∂

∂x
− 2tα

∂

∂y
− 2xα

∂

∂z
, Zα =

∂

∂zα
− 2yα

∂

∂x
+ 2xα

∂

∂y
− 2tα

∂

∂z
.

iii) Left-invariant Reeb fields ξ1, ξ2, ξ3 are ξ1 = 2 ∂
∂x , ξ2 = 2 ∂

∂y , ξ3 = 2 ∂
∂z .

iv) On G (H), the left-invariant connection is the Biquard connection. It is flat!



I Let Ψ ∈End(H). The Sp(n)-invariant parts are follows

Ψ = Ψ+++ + Ψ+−− + Ψ−+− + Ψ−−+.

I The two Sp(n)Sp(1)-invariant components are given by

Ψ[3] = Ψ+++, Ψ[−1] = Ψ+−− + Ψ−+− + Ψ−−+.

Using End(H)
g∼= Λ1,1 the Sp(n)Sp(1)-invariant components are the projections

on the eigenspaces of Υ = I1 ⊗ I1 + I2 ⊗ I2 + I3 ⊗ I3.



Quaternionic Contact Structure (M4n+3, η)
i) co-dim three distribution H, locally, H =

⋂3
s=1 Ker ηs, ηs ∈ T∗M.

ii) H carries a quaternion structure: a 2-sphere bundle of ”almost
complex structures” (locally) generated by Is : H → H,
I2
s = −1, satisfying I1I2 = −I2I1 = I3;

iii) a ”horizontal metric” g on H, such that for all X,Y ∈ H

g(IsX, IsY) = g(X,Y) 2ωs(X,Y)
def
= 2g(IsX,Y) = dηs(X,Y).

Reeb vector fields: TM = H ⊕ V , for V = span{ξ1, ξ2, ξ3} where

ηs(ξk) = δsk, (ξsydηs)|H = 0, (ξsydηk)|H = −(ξkydηs)|H.

If n = 1, assume that the Reeb vector fields exist [Duchemin, D.].
The Biquard connection: There exists a unique linear connection ∇
on M with the properties: (i) V and H are parallel; (ii) g and
Ω =

∑3
j=1 ωj ∧ ωj are parallel; (iii) the torsion satisfies

I ∀X,Y ∈ H, T(X,Y) = −[X,Y]|V = 2ωi(X,Y)ξi ∈ V
I ∀ξ ∈ V, X ∈ H, Tξ(X) ≡ T(ξ,X) ∈ H and

Tξ ∈ (sp(n) + sp(1))⊥, Tξj = T0
ξj

+ IjU, U ∈ Ψ[3].
T0
ξj

-symmetric, IjU-skew-symmetric..



We extend the horizontal metric g to a Riemannian metric h on M by
requiring span{ξ1, ξ2, ξ3} = V ⊥ H and h(ξs, ξt) = δst.
N.B. h as well as the Biquard connection do not depend on the action
of SO(3) on V .

I qc-curvature: R(A,B)C = [∇A,∇B]C −∇[A,B]C

I qc-Ricci tensor: Ric(A,B) = R(ea,A,B, ea)
def
=
∑4n

a=1 h(R(ea,A)B, ea);

I qc-scalar curvature: Scal = trH Ric = Ric(ea, ea);

Theorem 13 (w/ Ivanov & Minchev ’14). If T0 def
= T0

ξi
Ii, then

T0 ∈ Ψ[−1] and Ric = (2n + 2)T0 + (4n + 10)U + Scal
4n g.

I M is called qc-Einstein if T0 = U = 0. For a qc-Einstein⇒
Scal = const [w/ Ivanov & Minchev ’10 & ’1?] (non-trivial in
7-D, use Wqc!). M is called qc-pseudo-Einstein if U = 0.

Theorem 14 (w/ Ivanov& Minchev, ’14). Suppose Scal > 0. The next
conditions are equivalent:

i) (M4n+3, η) is qc-Einstein manifold.
ii) M is locally 3-Sasakian



Embedded qc manifolds [w/ Ivanov & Minchev
arXiv:1406.4256]

Theorem 15. If M is a qc-manifold embedded as a hypersurface in a
hyper-Kähler manifold, then M is qc-conformal to a qc-Einstein
structure. In particular, the qc Yamabe problem has a solution.

Theorem 16. If M is a connected qc-hypersurface of R4n+4 ∼= Hn+1

then, up to a quaternionic affine transformation of Hn+1, M is
contained in one of the following three hyperquadrics:

(i) |q1|2 + · · ·+ |qn|2 + |p|2 = 1, (ii) |q1|2 + · · ·+ |qn|2 − |p|2 = −1,
(iii) |q1|2 + · · ·+ |qn|2 + Re(p) = 0.

Here (q1, q2, . . . qn, p) denote the standard quaternionic coordinates
of Hn+1. In particular, if M is a compact qc-hypersurface of
R4n+4 ∼= Hn+1 then, up to a quaternionic affine transformation of
Hn+1, M is the standard 3-Sasakian sphere.



Standard qc-structure on 3-Sasakain sphere
I Contact 3-form on the sphere S = {|q|2 + |p|2 = 1} ⊂ Hn ×H,

η̃ = dq · q̄ + dp · p̄ − q · dq̄− p · dp̄.

I Identify G (H) with the boundary Σ of a Siegel domain in
Hn ×H,

Σ = {(q′, p′) ∈ Hn ×H : Re p′ = |q′|2},

by using the map (q′, ω′) 7→ (q′, |q′|2 − ω′).

Proposition 17. The Cayley transform, C : S \ {pt.} → Σ,

(q′, p′) = C
(

(q, p)
)

= ((1 + p)−1 q, (1 + p)−1 (1− p)).

is a qc-conformal transformation

C∗ Θ̃ =
1

2 |1 + p |2
λ η̃ λ̄, λ - unit quaternion.



QC divergence formula
Theorem 18 (w/ Ivanov & Minchev arXiv:1504.03142). Suppose
(M4n+3, η) is a qc structure which is qc-conformal to a qc-Einstein
structure (M4n+3, η̄), η̃ = 1

2h η. If Scalη = Scalη̃ = 16n(n + 2), then
(M4n+3, η) is also qc-Einstein. In fact, with f = 1

2 + h + 1
4 h−1|∇h|2,

we have

∇∗
(

f (D + E) +

3∑
s=1

dh(ξs)

(
IsE + Fs + 4IsAs −

10
3

IsA
))

=
(1

2
+ h
)(
|T0|2 + 4|U|2

)
+ 2h|D + E|2 + h 〈QV, V〉.

where Q is a positive definite matrix, V = (E,D1,D2,D3,A1,A2,A3),
and

E = −2h−1U∇h, Di = −1
2

h−1(T0 − IiT0Ii)∇h, Fi = −1
2

h−1T0Ii∇h,

Ai = Ii[ξj, ξk], A =
3∑

i=1

Ai, D = −h−1T0∇h.



Infinitesimal QC transformations w/ Ivanov & Minchev ’14
A vector field Q on a qc manifold (M, η) is a qc vector field if its flow
preserves the horizontal distribution H = ker η,

LQ η = (νI + O) · η,

where ν is a smooth function and O ∈ so(3) with smooth entries.
Thus, we also have

LQ g = νg, LQ I = O · I, I = (I1, I2, I3)t.

The function ν = 1
2n∇

∗QH since

g(∇XQH,Y) + g(∇YQH,X) + 2ηs(Q)g(T0
ξs

X,Y) = ν g(X,Y).

The infinitesimal version of the qc Yamabe equation for a qc vector
field is
Proposition 19. Let (M4n+3, η) be a qc manifold. For any qc vector
field Q on M we have

∆(∇∗QH) = − n
2(n + 2)

Q(Scal) − Scal
4(n + 2)

∇∗QH.



Lemma 20. Let (M, η) and (M, η̄) be qc-Einsten manifolds with equal
qc-scalar curvatures 16n(n + 2). If η = 1

2hη for some smooth h > 0,
then

Q =
1
2
∇f +

3∑
s=1

dh(ξs)ξs

is a qc vector field on M, where f = 1
2 + h + 1

4 h−1|∇h|2 is the
function in the divergence formula.

It follows, φ = 1
24f is an eigenfunction of the sub-Laplacian with

eigenvalue −4n unless ∆f ≡ 0. In the first case, the qc version of the
Lichnerowicz-Obata eigenfunction sphere theorem shows that (M, η)

is the 3-Sasakain sphere. If ∆f = 0, then
f = 1

2 + h + 1
4 h−1|∇h|2 = const since M is compact. It follows that

h = 1/2 by considering the points where h achieves its minimum and
maximum and using the qc Yamabe equation.



QC Lichnerowicz

Theorem 21 (w/ Ivanov, S., & Petkov, A. ’13 & ’14). Let (M, η) be a
compact QC manifold of dimension 4n + 3. Suppose, for
αn = 2(2n+3)

2n+1 , βn = 4(2n−1)(n+2)
(2n+1)(n−1) and for any X ∈ H

L(X,X)
def
= 2Sg(X,X) + αnT0(X,X) + βnU(X,X) ≥ 4g(X,X).

If n = 1, assume in addition the positivity of the P-function of any
eigenfunction. Then, any eigenvalue λ of the sub-Laplacian4
satisfies the inequality

λ ≥ 4n

The 3-Sasakian sphere achieves equality in the Theorem. The
eigenspace of the first non-zero eigenvalue of the sub-Laplacian on
the unit 3-Sasakian sphere in Euclidean space is given by the
restrictions to the sphere of all linear functions.



Definition of the QC P-function
a) The P−form of a function f is the 1-form

Pf (X) = ∇3f (X, eb, eb) +

3∑
t=1

∇3f (ItX, eb, Iteb)

− 4nSdf (X) + 4nT0(X,∇f )− 8n(n− 2)

n− 1
U(X,∇f ).

b) The P−function of f is the function Pf (∇f ).
c) The C−operator is the 4-th order differential operator on M

(independent of f !)

f 7→ Cf = ∇∗Pf = (∇eaPf ) (ea).

d) The P−function of f is non-negative if∫
M

f · Cf Volη = −
∫

M
Pf (∇f ) Volη ≥ 0.

If the above holds for any f ∈ C∞o (M) we say that the C−operator
is non-negative, C ≥ 0.



Properties of the C-operator
Theorem 22 (w/ Ivanov & Petkov, ’13). a) C ≥ 0 for n > 1.
Furthermore Cf = 0 iff (∇2f )[3][0](X,Y) = 0. In this case the
P−form of f vanishes as well.
b) If n = 1 and M is qc-Einstein with Scal ≥ 0, the P−function of an
eigenfunction of the sub-Laplacian is non-negative,

4f = λf ⇒ −
∫

M
Pf (∇f ) Volη ≥ 0.

I (∇ea (∇2f )[3][0])(ea,X) = n−1
4n Pf (X), hence

n− 1
4n

∫
M

f · Cf Volη = −n− 1
4n

∫
M

Pf (∇f ) Volη =

∫
M
|(∇2f )[3][0]|2 Volη,

after using the Ricci identities, the divergence formula and the orthogonality of
the components of the horizontal Hessian.

I qc-Einstein⇒ Scal = const, ∇3f (ξs,X, Y) = ∇3f (X, Y, ξs), and the vertical
space is integrable;∇2f (ξk, ξj)−∇2f (ξj, ξk) = −Sdf (ξi)

I
∫

M |Pf |2 Volθ = −(λ+ 4S)
∫

M Pf (∇f ) Volθ



The QC Obata type theorem in the compact case

Theorem 23 (w/ Ivanov & Petkov, arxiv1303.0409).Let (M, η) be a
compact QC manifold of dimension 4n + 3 which satisfies a
Lichnerowicz’ type bound L(X,X) ≥ 4g(X,X). Then, there is a
function f with4f = 4nf if and only if M is qc-homothetic to the
3-Sasakian sphere, assuming in addition M is qc-Einstein when
n = 1.
Remarks:

I The 7-D case is still open in the general case.
I The results follow from another theorem where only

completeness and knowledge of the horizontal Hessian are
assumed.



Proof of QC eigenvalue Obata for a qc-Einstein
1. Show that (∇h)2f (X, Y) = −fh(X, Y), (h- Riemannian metric!).
2. Obata’s result shows (M, h) is homothetic to the unit sphere in quaternion

space.
3. Show qc-conformal flatness.

4. Use the qc-Liouville theorem to see (M, g, η,Q) is qc-conformal to S4n+3, i.e.,
we have η = κΨF∗η̃ for some diffeomorphism F : M → S4n+3,
0 < κ ∈ C∞(M), and Ψ ∈ C∞(M : SO(3))

Theorem 24 (Čap, A., & Slovák, J., ’09; w/ Ivanov & Petkov
arXiv:1303.0409). Every qc-conformal transformation between open subsets
of the 3-Sasakian unit sphere is the restriction of a global qc-conformal
transformation.
Rmrk: Cowling, M., & Ottazzi, A., Conformal maps of Carnot groups,
arXiv:1312.6423.
Theorem 25 (w/ Ivanov & Minchev). Let Θ = 1

2h Θ̃ be a conformal
deformation of the standard qc-structure Θ̃ on the quaternionic Heisenberg
group G (H). If Θ is also qc-Einstein, then

h(q, ω) = c0

[(
σ + |q + q0|2

)2
+ |ω + ωo + 2 Im qo q̄|2

]
.

with c0 > 0 and σ ∈ R. Furthermore, SΘ = 128n(n + 2)c0σ.

5. compare the metrics on H to see homothety.



QC Conformal Curvature tensor

I ”Schouten” tensor L(X, Y) = 1
2 T0(X, Y) + U(X, Y) + Scal

32n(n+2) g(X, Y).

I Conformal curvature

Wqc(X, Y, Z,V) = R(X, Y, Z,V) + (g ? L)(X, Y, Z,V)

+

3∑
s=1

(ωs ? IsL)(X, Y, Z,V)

− 1
2

∑
(i,j,k)

ωi(X, Y)
[
L(Z, IiV)− L(IiZ,V) + L(IjZ, IkV)− L(IkZ, IjV)

]

−
3∑

s=1

ωs(Z,V)
[
L(X, IsY)− L(IsX, Y)

]
+

1
2n

(trL)
3∑

s=1

ωs(X, Y)ωs(Z,V),

where
∑

(i,j,k) denotes the cyclic sum.

Wqc is qc-conformal invariant, i.e., if η̄ = κΨη then Wqc
η̄ = φWqc

η , 0 < κ ∈ C∞(M),
and Ψ ∈ C∞(M : SO(3))
Theorem 26 (w/ Ivanov ’10). A qc manifold is locally qc-conformal to the
quaternionic sphere S4n+3 or quaternion Heisenberg group iff the qc conformal
curvature vanishes, Wqc = 0.
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