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Riemannian Obata theorems

Theorem 1. a) (Uniqueness in Einstein class) Let (M, g) be a
connected compact Riemannian manifold. If g is Einstein and
g=¢?gwithS =S =n(n— 1), then ¢ = 1 unless (M, g) is the
round unit sphere (S", g).

b) (Yamabe problem on the round sphere) If g is conformal to gs on
S, g = ¢?gy, with S = n(n — 1), then g = ®*gy; for ® € Diff (S").
Theorem 2.Let (M, g) be an n-dimensional compact Riemannian

manifold with
Ric(X,X) > (n— 1)g(X, X).

If A # 0 is an eigenvalue, Nf = —\f, then \ > n (Lichnerowicz) and
A =niff (M, g) is isometric with S" (Obata), in which case f is a
spherical harmonic of order one.



The PDE on R” - extremals of the L? Sobolev embedding
inequality
Stereographic proj., € : " \ N — R, (€~!)*gy; = 4u*/ ("2 dx?. The
Yamabe problem on the round sphere is equivalent to:
Theorem 3. (Aubin, Talenti) If u > 0 satisfies the Yamabe equation
onR"

Au=—nn—-2)u*"', ue DR

then up to a translation and rescaling u = (1 + |x[>)~(*=2)/2,
Rescaling:  uy(x) = X/?" 8\u U v/ u(Ax), A>0.

Key: reduce to radial functions via symmetrization arguments. These
are not (fully) available in sub-Riemannian settings (ex. groups of
Iwasawa type) except for solutions with “partial” symmetry w/
Garofalo or the lowest energy solutions (extremals for Folland-Stein
L? Sobolev type inequality): Branson & Fontana & Morpurgo and
Frank & Lieb in the CR case, w/ Ivanov - Minchev in the quaternion
case, Christ & Liu & Zhang in the octonian case.



Uniqueness. Recall, g = ¢?*gand S =S =n(n — 1)
Suppose g is Einstein, 0 = Ric, = Ric, + %(Vng)o. The contracted
Bianchi identity and S=const give V*Ricy = %VS = 0, hence

n—2
2n

V* (Ric, V) = (V*Ric,) (V) +g(Ricy, V26) = "2 a(VS, V¢)—%|Rico\2.

This divergence formula shows that g is also an Einstein metric and
X = V¢ is a gradient conformal vector field,

Ric, = (V?¢)o = 0.

If X is a conformal vector field then we have the infinitesimal Yamabe
equation

(divX)S — —"

A(divX) = — =)

X(S).

Now, for § = n(n — 1) it follows f = A¢ satisfies Af = —nf. Thus
either f =const or f is an eigenfunction with the lowest possible
eigenvalue hence g is isometric to gy, by Obata’s eigenvalue theorem.



The case of the sphere

Taking into account the divergence formula, using the stereographic
projection we can reduce to a conformal map of the Euclidean space,
which sends the Euclidean metric to a conformal to it Einstein metric.
By a purely local argument the resulting system can be integrated, in
effect proving also Liuoville’s theorem, which gives the form of u as
in Aubin and Talenti’s theorem in R” and then ¢ on S" after
transferring the equations back to the unit sphere.

Remark: Such argument was used in the quaternionic contact setting
to classify all qc-Einstein structures on the unit 4n 4+ 3 dimensional
sphere (quaternionic Heisenberg group) conformal to the standard
gc-structure.



OBATA TYPE RESULTS ON CR AND QC MANIFOLDS



Sub-Riemannian conformal infinities

On the open unit ball B in C"*! consider the Bergman metric
4 1
h = ;geuc + ; ((dp)z + (Idp)z) ) p=1- ‘x‘z'

As p — 0, p- his finite only on H = Ker (I dp), which is the kernel of
the contact form # = Idp. The conformal infinity of p - A is the
conformal class of a pseudohermitian CR structure on $>"+1,

In the quaternion case, consider the open unit ball B in H"*! and the
hyperbolic metric

4 1
h= et 5 ((dp)* + (Iidp)* + (Ldp)* + (Ixdp)?) .

The conformal infinity is the conformal class of a (QC) quaternionic
contact structure on $**3. Here, p - h defines a conformal class of
degenerate metrics with kernel

H = m]3211(8’» (I]dp)a

which carries a quaternionic structure.



CR SETTING



The solution in the Sasaki-Einstein case

Theorem 4.

a)

b)

(Jerison & Lee ’88) If 0 is the contact form of a pseudo-Hermitian
structure proportional to the standard contact form 6 on the unit
sphere in C"t and the pseudohermitian scalar curvature

Sy =const, then up to a multiplicative constant 8 = ®* 0 with ® a
CR automorphism of the sphere.

(X. Wang ’13, Ivanov & Vassilev ’14) The pseudoconformal class
of a Sasaki-Einstein pseudo-Hermitian structure different from the
standard Sasaki-FEinstein structure on the round sphere contains a
unique (up to homothety) pseudo-Hermitian form of constant CR
scalar curvature.



CR manifolds

(M, 0,J) is strictly pseudoconvex pseudo-Hermitian manifold if
i) 6 is a contact form, H = ker # has a compatible Hermitian
structure: J : H — H, J? = —idy, 2g(X, Y) % d0(X,JY),
X,YeH, gX,Y)=g(JX,JY);
ii) g is positive definite on H;
iii) integrability: [JX, Y] + [X,JY] € H and
UX,JY] — [X,Y] — J[JX, Y] — J[X,JY] = 0.
Reeb field &: 0(€) = 1 and £.d6 = 0.
Tanaka-Webster connection. Unique linear connection V such that

(1) &, J, 6 and g are parallel; (ii) the torsion satisfies:

> T(X,Y) = 2w(X, Y)&, where w(X, ¥) ¥ g(UX,Y), X, Y € H;

. d . .
» the Webster torsion A, A 4 T(&,.): H— H,is symmetric and
anti-commutes with J, AJ = —JA.

Note: A = 0 < Sasakian structure < L¢g = 0.



Curvature of the Tanaka-Webster connection

Define the Riemannian metric "z = g + %", Let {¢, 3’; 1-ONB of the

horizontal space H.

» Tanaka-Webster curvature: R(A, B)C o [Va, VB|]C — V|4 5C

and R(A, B, C, D) L h(R(A, B)C, D).
» Ricci tensor: Ric(A, B) = R(e,, A, B, €,) « S R(ea, A, B, €y);
scalar curvature S = Ric(eg, €,);

» Ricci form: p(A,B) = 3 R(A, B, €q,Jeq).

Proposition 5.We have the following type decomposition of the Ricci
tensor with B = po, p(JX,Y) = BUX,Y) + 5-g(X,Y),

Ric(X,Y) = 2(n — 1)A(JX,Y) + B(JX,Y) + %g(X, Y).

A torsion-free pseudo-Einstein CR manifold is Sasaki- Einstein if
S=dn(n+1).



CR divergence formula
Theorem 6 (Jerison, D. & Lee, J. ’88). Let (M, 0) be a compact
Sasaki-Einstein manifold. If 0 = 2h0 is also of constant positive
pseudo-Hermitian scalar curvature S = 4n(n + 1), then (M, 0) is
again a Sasaki-Einstein space.
”Proof”: Divergence formula: for a certain horizontal vector field X
we have

1 /1 h h
VX =) (2 +h> (IDP -+ |EP) + Z1D" + E' + 2 0(d, e u),

where D(X,Y) = —4A(X,Y) and E = ﬁB(X7 Y)areuptoa
constant multiple the Webster torsion and the traceless J-invariant
component of the Ricci tensor of the Tanaka-Webster connection.

With f =1+ h+ S 4= n='DJVh, e =h"'EIVh, and

n+2 V*(JD) we have

Xn =f[d+ e] —dh(&) (Jd — Je + 6Ju) .



Infinitesimal CR transformations: Lol = f 60 and LyJ = 0.
Ifo = o7l = u?/n 0, then ("H)Aut Su; = —(S o ;) utz*fl.
Differentiating at ¢ = 0, the function ¢ = iut|,:0 satisfies

4(”: DA — 56 =—ds(Q)—$@* —1)6.

Proposition 7. An infinitesimal CR automorphism Q satisfies

A(V'Qn) = — 3 pydS(0) — 3oV O

Proof: Use Log(X,Y) = 1(V*Qp) g(X,Y). Hence g = ut/ g gives
%¢ 1 V*QH Also 2* = ("+1)

Characterization:
» f=do(§)and Q = —fJVa — 0 &, where Qp (Ccontact
Hamiltonian field”) is determmed by 6(Qn) = 0 and
igy; df =0 (mod 0);
> [V20] (X, Y) = | [V2o(X,1)- Ve (X, JY)|= —20A(JX,Y).



Consequences of A(V*0n) = —5;25dS(0) — 3557V 0n

When A = 0, Ricci’s identity gives V3h(X, Y, &) = V3h(€,X,Y)
while § = 240 gives [V2h] 1] (X,Y) = —2hA(X,JY) = 0. Hence,

the vector field |
Q= —3JV (€h) — (€n)S

is an infinitesimal CR vector field unless it vanishes. Since

S =4n(n + 1) it follows ¢ = V*Qp either vanishes identically, i.e.,

h = const or ¢ is an eigenfuction of the sublaplacian realizing the
smallest possible eigenvalue on a (pseudo-Einstein) Sasakian
manifold and & # const.

The CR Lichnerowicz-Obata theorem shows that (M, 6) is homothetic
to the CR unit sphere

Remark: For f = —l— h+ |Vh\ it follows Q = ——Vf dh(€)¢ and

¢ = If.



CR Lichnerowicz theorem

Theorem 8 (Greenleaf, A. ’85 for n > 3; Li, S.-Y., & Luk, H.-S. 04
for n=2). Let M be a compact spcph manifold of dimension 2n + 1,
s.t., for some kg = const > 0 we have the Lichnerowicz-type bound

Ric(X,X) +4A(X,JX) > kog(X,X), X €H.

Ifn > 1, then any eigenvalue ) of the sub-Laplacian satisfies

n

The standard Sasakian unit sphere has first eigenvalue equal to 2n
with eigenspace spanned by the restrictions of all linear functions to
the sphere.



Theorem 9 (Chiu, H.-L. ’06). If n = 1 the estimate A > #ko holds
assuming in addition that the CR-Paneitz operator is non-negative
fo - Cf Volg > 0, where Cf is the CR-Paneitz operator,

Cf = V4f(€d, €a, €p, eb) + V4f(€a,.]€a, eba-leb)
— 4nV*A(JVS) — 4ng(Vf, JA).

Note: Li, S.-Y., & Luk, H.-S. 04 for n = 1 with condition.
Given a function f we define the one form,

Pf(X) = v3f(Xaebaeb) + V%f(JX, eba-]eb) + 4I’lA(X,JVf)

so we have Cf = —V*P.



CR Obata type theorem

Theorem 10 (n > 2, Li, S.-Y., Wang, X. ’13; n=1 w/ Ivanov ’14).
Suppose (M, J,0), dimM = 2n + 1, is a compact spcph manifold
which satisfies the Lichnerowicz-type bound. If n > 2, then

A = ko is an eigenvalue iff up-to a scaling (M, J,0) is the
standard pseudo-Hermitian CR structure on the unit sphere in C"+1,
If n = 1 the same conclusion holds assuming in addition C > 0.

Earlier results

» Sasakian case (enough for the CR Yamabe problem on the
sphere!), Chang, S.-C., & Chiu, H.-L., for n > 2 in J. Geom.
Anal. ’09; for n = 1 in Math. Ann. *09.

» Non-Sasakian case, Chang, S.-C., & Wu, C.-T., ’12, assuming:
(i) forn > 2, Aaﬁ,B =0andA.3,5 =0, (i) forn =1,
All,] — Oal’ldP]f: O

» w/ Ivanov *12 - assuming V*A =0 and C > 0 whenn = 1.



QUATERNIONIC CONTACT CASE



Solution of the Yamabe problem in the 3-Sasakain case

Theorem 11 (w/ Ivanov & Minchev arXiv:1504.03142). a) Let (M, 1)
be a compact locally 3-Sasakian qc manifold of qc-scalar curvature
16n(n + 2). If n = 2h7 is gc-conformal to 1) structure which is also of
constant gc-scalar curvature, then up to a homothety (M, n) is locally
3-Sasakian manifold. Furthermore, the function h is constant unless
(M, ) is the unit 3-Sasakian sphere.

b) Let n = 2hn with 1) the standard qc-structure on a 3-Sasakian
sphere of dimension 4n + 3. If n has constant gc-scalar curvature
16n(n + 2), then n is obtained from 7 by a conformal quaternionic
contact automorphism.

Remark: The 7-D case of b) was completed earlier *10.



The gc-Yamabe equation on the quaternionic Heisenberg group of
homogeneous dimension Q = 4n + 6
Corrolary 12. If0 < ® € D2 (G (H)), Se =const,

40+2)
0-2

then for some fixed (q,,w,) € G (H), constants co > 0and o > 0
such that Se = 128n(n + 2)coo we have ® = (2h)~(C=2)/4 with

Aé@ =—So (I)Z*_],

2 _
ha.w) = <o [(0 + la+aolP)’ + w + wo + 2Imq,qf].

The sub-Laplacian is Agu = Yn_, (Tau + X2u + Y2u+Z2u) .



Quaternionic Heisenberg Group
G (H) =H' x ImH.  (q,w) € G (H),

(go,wo) 0 (q;w) = (g0 + q,w + wo + 2Im g, g),

) © = (61,6,,60;) = !(dw — q-dg + dg - g) or

6, = %dx — XA+ A — Pdy® + yrd”

1
dy — y“dt® + z%dx® + t%dy® — x“dz

6, = 3
6, = %dz — 2% — Y™ + xdy* + “de”.
ii) Left-invariant horizontal vector fields
B, ) d B, o 9 9 G,
To = o 2 427 K= — 2 =270 2
o T e TR T E g, e x TV
d d d o0 G, o0 d 9
Vo= +27% = — 2% — — 2" =, Za = — — % — + 20— — 2.
e T e M Xy, 0. ety

i) Left-invariant Reeb fields &1, &, & are & =22, & =28, &=22.

iv) On G (H), the left-invariant connection is the Biquard connection. It is flat!



> Let ¥ € End(H). The Sp(n)-invariant parts are follows
U=utt ot ot
» The two Sp(n)Sp(1)-invariant components are given by

U =0 Oy =0t e

Using End(H) £ AN the Sp(n)Sp(1)-invariant components are the projections
on the eigenspacesof ¥ = 1 QL + L QL + L QL.



Quaternionic Contact Structure (M43 n)

i) co-dim three distribution H, locally, H = ﬂle Kerng, ns € T*M.
ii) H carries a quaternion structure: a 2-sphere bundle of “almost
complex structures” (locally) generated by I, : H — H,
If = —1,satisfying 11, = —LI) = I;
iii) a "horizontal metric” g on H, such that forall X, Y € H

g(LX,LY)=g(X,Y) 2wy(X,Y) Y 28(L,X,Y) =dny(X,Y).
Reeb vector fields: TM = H @ V, for V = span{&, &, {3} where
N5(&) = 0ok, (&adns) iy =0, (&smdmi) iy = — (&) -

If n = 1, assume that the Reeb vector fields exist [Duchemin, D.].
The Biquard connection: There exists a unique linear connection V
on M with the properties: (i) V and H are parallel;  (ii) g and

Q= Zle wj A wj are parallel; (i) the torsion satisfies
» VX, Y €H, T(X,Y)=—[X,Y]|ly =2w(X,Y)& €V
» VEeV, XcH T(X)=T({,X) € Hand
Tg S (sp(n) + Sp(l))L, ng = Tg + IjU, U e \I’B]

Tg_ -symmetric, /;U-skew-symmetric..



We extend the horizontal metric g to a Riemannian metric 7 on M by

reqUiring Span{&,fz, ‘53} =V 1 Hand h(ﬁsa {t) = Jg1.
N.B. & as well as the Biquard connection do not depend on the action
of SO(3) on V.

> (c-curvature: R(A,B)C = [Va, Vs]C — Vi, 5C
» qc-Ricci tensor: Ric(A, B) = R(eq, A, B, e.) < S h(R(eay A)B, ea);

» (c-scalar curvature: Scal = try Ric = Ric(eq, e.);

Theorem 13 (w/ Ivanov & Minchey ’14). If T° = “ T0 I,, then

T% € Uy and Ric = (2n+ 2)T° + (4n + 10)U + SZZ” g.
» M is called gc-Einstein if T° = U = 0. For a qc-Einstein =

Scal = const [w/ Ivanov & Minchev 10 & ’1?] (non-trivial in
7-D, use We!). M is called gc-pseudo-Einstein if U = 0.

Theorem 14 (w/ Ivanov& Minchev, ’14). Suppose Scal > 0. The next
conditions are equivalent:

i) (M*3 1) is qc-Einstein manifold.

ii) M is locally 3-Sasakian



Embedded qc manifolds [w/ Ivanov & Minchev
arXiv:1406.4256]

Theorem 15. If M is a qc-manifold embedded as a hypersurface in a
hyper-Kdhler manifold, then M is gc-conformal to a gc-Einstein
structure. In particular, the gc Yamabe problem has a solution.

Theorem 16. If M is a connected qc-hypersurface of R¥+4 = H+!

then, up to a quaternionic affine transformation of "', M is
contained in one of the following three hyperquadrics:

@) lqr)> + -+ laal* + PP =1, Gi) lqa* + -+ |gul* = p|* = -1,
(iii) |q1 [ + - - + |gal* + Re(p) = 0.

Here (41,42, - - - qu, p) denote the standard quaternionic coordinates
of 'Y, In particular, if M is a compact gc-hypersurface of

R4 +4 == T then, up to a quaternionic affine transformation of
H"+!, M is the standard 3-Sasakian sphere.



Standard gc-structure on 3-Sasakain sphere
» Contact 3-form on the sphere S = {|q|* + |p|* = 1} C H" x H,
N =dq-q+dp-p — q-dg— p-dp.

» Identify G (H) with the boundary > of a Siegel domain in
H" x H,

Y ={(¢d.p)eH" xH : Rep’ = |¢|*},
by using the map (¢/,") — (¢, ¢ — ).

Proposition 17. The Cayley transform, C : S\ {pt.} — %,

(@) = €((@p) = ((1+p) " q.(1+p)7 (1= p)).
is a gc-conformal transformation

~ 1 _
C"O = ————— AN\, A - unit quaternion.
2|1 +p? 1 1



QC divergence formula

Theorem 18 (w/ Ivanov & Minchey arXiv:1504.03142). Suppose
(M*"+3 ) is a qc structure which is gc-conformal to a qc-Einstein
structure (M*"3, 1)), 7j = 5 1. If Scal,, = Scaly = 16n(n + 2), then
(M*"+3 ) is also qc-Einstein. In fact, with f = % +h+ ih_l |Vh|?%,
we have

3
v* <f(D +E) -+ dn(&) (ISE + F, +4LA, — ? LA))

s=1

-~ (% + h) (|1‘)|2 +4\U|2) + 21D+ E]’ + h(QV, V).
where Q is a positive definite matrix, V. = (E,Dy,D,,D3,A1,A3,A3),
and

_ 1 1
E=—2n"'UVh, Di=—>h NT° — LT°L)Vh, Fi=—2h 'LV,

3
Ai=1[§,&4], A=Y A, D=-h"'TVh



Infinitesimal QC transformations w/ Ivanov & Minchev ’ 14
A vector field Q on a qc manifold (M, n) is a gc vector field if its flow
preserves the horizontal distribution H = ker 7,

Lon=(vI+0)-n,
where v is a smooth function and O € so(3) with smooth entries.
Thus, we also have
,CQg:Vg, LQIZO-I, [:(11,12,I3>t.

The function v = ﬁV*QH since

8(VxQu,Y) + 8(VyQu.X) + 21(Q)g(Te X, Y) = vg(X.Y).
The infinitesimal version of the qc Yamabe equation for a qc vector
field is
Proposition 19. Let (M*'3 1) be a gc manifold. For any qc vector

field Q on M we have
n Scal

A(V*Qu) = — mQ(SC@l) - WV*QH



Lemma 20. Let (M, n) and (M, 1) be gc-Einsten manifolds with equal
qc-scalar curvatures 16n(n + 2). If j = 217,77 for some smooth h > 0,
then

1 3
0=3Vf+ ;dh@s)&s

is a qc vector field on M, where f = % + h + %hil |Vh|? is the
function in the divergence formula.

It follows, ¢ = %Af is an eigenfunction of the sub-Laplacian with
eigenvalue —4n unless Af = 0. In the first case, the qc version of the
Lichnerowicz-Obata eigenfunction sphere theorem shows that (M, n)
is the 3-Sasakain sphere. If Af = 0, then

f=4%+h+ 3h7!|Vh|? = const since M is compact. It follows that
h = 1/2 by considering the points where / achieves its minimum and
maximum and using the qc Yamabe equation.



QC Lichnerowicz

Theorem 21 (w/ Ivanov, S., & Petkov, A. ’13 & ’14). Let (M, n) be a
compact QC manifold of dimension 4n + 3. Suppose, for

o =250 = S andor X <

£(X,X) 4 28g(X, X) + 0, T (X, X) + B,U(X, X) > 4g(X, X).

If n = 1, assume in addition the positivity of the P-function of any
eigenfunction. Then, any eigenvalue )\ of the sub-Laplacian /\
satisfies the inequality

A>4dn

The 3-Sasakian sphere achieves equality in the Theorem. The
eigenspace of the first non-zero eigenvalue of the sub-Laplacian on
the unit 3-Sasakian sphere in Euclidean space is given by the
restrictions to the sphere of all linear functions.



Definition of the QC P-function

a) The P—form of a function f is the 1-form

3
Pr(X) = Vf (X, ep,e0) + > VF (X, e, Liep)

=1

— 4nSdf (X) + 4nT°(X, Vf) — Snln=2),,

— U, V)).

b) The P—function of f is the function P¢(Vf).
¢) The C—operator is the 4-th order differential operator on M
(independent of f!)

f — Cf = V*Pf = (Veﬂpf) (ea).
d) The P—function of f is non-negative if
/f' Cf Vol,, = —/ P¢(Vf) Vol,, > 0.
M M

If the above holds for any f € C>° (M) we say that the C—operator
is non-negative, C > 0.



Properties of the C-operator

Theorem 22 (w/ Ivanov & Petkov, ’13). a) C > 0 forn > 1.
Furthermore Cf = 0 iff (V*f)310(X, Y) = 0. In this case the
P—form of f vanishes as well.

b) If n = 1 and M is qc-FEinstein with Scal > 0, the P—function of an
eigenfunction of the sub-Laplacian is non-negative,

A =X = - /M P(Vf) Vol,, > 0.

> (Ve (V)10) (€0, X) = % Py(X), hence

n—1

n—1
" /M [ Cf Voly = == /M Py(Vf) Vol,, = /M [(V2F) o | Voly,

after using the Ricci identities, the divergence formula and the orthogonality of
the components of the horizontal Hessian.

» qc-Einstein = Scal = const, V’f(£,,X,Y) = V*f(X,Y,&,), and the vertical
space is integrable; V3£ (&, &) — V£ (&, &) = —Sdf (&)
> [, [P Volg = —(X +4S) [, Pr(Vf) Volg



The QC Obata type theorem in the compact case

Theorem 23 (w/ Ivanov & Petkov, arxiv1303.0409).Let (M, n) be a
compact QC manifold of dimension 4n + 3 which satisfies a
Lichnerowicz’ type bound L(X,X) > 4g(X,X). Then, there is a
Sfunction f with Nf = 4nf if and only if M is gc-homothetic to the
3-Sasakian sphere, assuming in addition M is qc-Einstein when
n=1.
Remarks:

» The 7-D case is still open in the general case.

» The results follow from another theorem where only
completeness and knowledge of the horizontal Hessian are
assumed.



Proof of QC eigenvalue Obata for a qc-Einstein

1. Show that (V")*f(X,Y) = —fh(X, Y), (h- Riemannian metric!).
2. Obata’s result shows (M, h) is homothetic to the unit sphere in quaternion
space.

3. Show qgc-conformal flatness.

4. Use the qc-Liouville theorem to see (M, g,n, Q) is gc-conformal to S+ e,
we have n = kU F*7 for some diffeomorphism F : M — §* 3,
0<k€EC®M),and ¥ € C>(M : SO(3))

Theorem 24 ( C'ap, A., & Slovdk, J., °09; w/ Ivanov & Petkov
arXiv:1303.0409). Every gc-conformal transformation between open subsets
of the 3-Sasakian unit sphere is the restriction of a global qc-conformal
transformation.

Rmrk: Cowling, M., & Ottazzi, A., Conformal maps of Carnot groups,
arXiv:1312.6423. ~

Theorem 25 (w/ Ivanov & Minchev). Let © = zih@ be a conformal
deformation of the standard qc-structure © on the quaternionic Heisenberg
group G (H). If © is also qc-Einstein, then

hg.w) = e [(0 + lg+al)’ + o + w, + 20m g,

with co > 0 and o € R. Furthermore, So = 128n(n + 2)coo.
5. compare the metrics on H to see homothety.



QC Conformal Curvature tensor

> “Schouten” tensor L(X, Y) = 1T°(X,Y) + U(X,Y) + 32ns(;‘i2) g(X,Y).

» Conformal curvature

We(X,Y,Z,V) =R(X,Y,Z,V) + (g © L)(X, Y, Z,V)
3
+ ) (W OLL)(X,Y,Z, V)
s=1
3 wilx, ) [L(z, LV) — LULZ, V) + LUZ, V) — L(LZ, IjV)}
(i)

1

0|

_ ; ws(Z,V) [L(X, LY) — L(I,X, Y)] + zfln (trL) ; wi(X, Y)ws(Z, V),

where (i,j,yy denotes the cyclic sum.

W4 is qc-conformal invariant, i.e., if 7 = xW7 then Wi = ¢ W], 0 < k € € (M),
and ¥ € C*(M : SO(3))

Theorem 26 (w/ Ivanov ’10). A gc manifold is locally gc-conformal to the
quaternionic sphere S*"** or quaternion Heisenberg group iff the qc conformal
curvature vanishes, Wi = (.
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