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1. Introduction

The goal of this note is to determine the best (optimal) constant in the L2 Folland-Stein inequality
on the quaternionic Heisenberg group and the non-negative extremal functions, i.e., the functions
for which equality holds. Alternatively, this is equivalent to finding the Yamabe constant of the
standard quaternionic contact structure of the sphere.

The proof is inspired by the case λ = Q−2 of the recent remarkable paper of Frank and Lieb [11]
who obtained the sharp form of the Hardy-Littlewood-Sobolev (HLS) inequalities [10] with exponent
λ, 0 < λ < Q, on the Heisenberg group Hn of homogeneous dimension Q = 2n+ 2 and the standard
CR unit sphere S2n+1 ⊂ Cn+1, together with their limiting cases λ = 0 and λ = Q (see [22] for the
Euclidean version and [11] for other results in the CR setting). Previously, Branson, Fontana and
Morpurgo [6] settled the limiting case λ = 0 and pointed that the old idea of Szegö [26] and Hersch
[20] can be used to find the sharp form of the logarithmic HLS inequality and its dual Onofri’s
inequality on the Heisenberg group. This center of mass technique and the conformal invariance
was used earlier by Onofri [25] on the round two dimensional sphere (see also [2] and [12]) and
Chang and Yang [8] who extended it to higher dimension thereby giving an alternative proof of the
Beckner-Onofri’s inequality, see [4]. As well known, the case λ = Q − 2 is dual to the L2 Sobolev
embedding inequality, whose sharp constant on the Heisenberg group and the CR sphere was found
by Jerison and Lee [19]. In fact, [19] found all non-negative solutions to the CR Yamabe equation
that is the Euler-Lagrange functional of the CR Yamabe functional. In comparison, [11] determines
the best constant and all functions for which the minimum is achieved, by simplifying parts of [19]
while answering a less general question. However, thanks to [11] we have the sharp form of the
general Hardy-Littlewood-Sobolev type inequalities.
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The conformal nature of the problem we consider is key to its solution. The analysis is purely an-
alytical. In this respect, even though the quaternionic contact (qc) Yamabe functional is involved,
the qc scalar curvature is used in the proof without much geometric meaning. Rather, it is the
conformal sub-laplacian that plays a central role and the qc scalar curvature appears as a constant
determined by the Cayley transform and the left-invariant sub-laplacian on the quaternionic Heisen-
berg group. In this respect, this method does not give all solutions of the qc Yamabe equation on
the quaternionic contact sphere. The complete solution of the latter problem requires some addi-
tional very non-trivial argument and it is at this place where the geometric nature of the problem
becomes even more important. In the CR setting, the solution of the CR Yamabe problem was
achieved with the help of an ingenious divergence formula of Jerison and Lee [19]. The other known
sub-Riemannian case is that of the qc Yamabe equation on the seven dimensional standard quater-
nionic contact sphere [17]. Another relevant result appeared earlier [13], where the sub-Riemannian
Yamabe equation was solved in the unifying setting of groups of Iwasawa type under an additional
assumption of partial symmetry of the solution. This result can be used at the final stage of all
known proofs after such symmetry has been shown to exist. We recall that the groups of Iwasawa
type comprise of the complex (=”usual”), quaternion and octonian Heisenberg groups, which are
defined by (1.4) replacing, correspondingly, the quaternions H with the complex numbers C, the
quaternions H, and the octonians O.

Given a compact quaternionic contact manifold M of real dimension 4n + 3 with an R3-valued
contact form η = {η1, η2, η3}, i.e. a codimension three horizontal distribution H determined as the
kernel of η such that dη|H are the fundamental two forms of a quaternionic hermitian structure
(g, I1, I2, I3) on H, (dηs)|H = 2g(Is., .) = 2ωs, s = 1, 2, 3, a natural question is to determine the qc
Yamabe constant of the conformal class [η] of η defined as the infimum

(1.1) λ(M, [η]) = inf{Υ(u) :

∫
M

u2∗
V olη = 1, u > 0},

where V olη = η1 ∧ η2 ∧ η3 ∧ (ω1)2n denotes the volume form determined by η. The qc Yamabe
functional of the conformal class of η is defined by

Υ(u) =

∫
M

(
4
Q+ 2

Q− 2
|∇u|2 + S u2

)
V olη,

∫
M

u2∗
V olη = 1, u > 0,

denoting by ∇ the Biquard connection [5] of η, and S standing for the qc scalar curvature of (M, η).
This is the so called qc Yamabe constant problem. In this paper we shall find λ(S4n+3, [η̃]), where η̃
is the standard qc form on the unit sphere S4n+3, see (2.1). The question is of course related to the
solvability of the qc Yamabe equation

(1.2) Lu ≡ 4
Q+ 2

Q− 2
4u− S u = − S u2∗−1,

where 4 is the horizontal sub-Laplacian, 4u = trg(∇du), S and S are the qc scalar curvatures

correspondingly of (M, η) and (M, η̄), η̄ = u4/(Q−2)η, and 2∗ = 2Q
Q−2 . Here, and throughout the

paper Q = 4n+ 6 is the homogeneous dimension. The natural question is to find all solutions of the
qc Yamabe equation. This is the so called qc Yamabe problem, which is equivalent to finding all qc
structures conformal to a given structure η (of constant qc scalar curvature) which also have constant
qc scalar curvature. As usual the two problems are related by noting that on a compact quaternionic
contact manifold M with a fixed conformal class [η] the qc Yamabe equation characterizes the non-
negative extremals of the qc Yamabe functional.

The 4n+3 dimensional sphere is an important example of a locally quternionic contact conformally
flat qc structure characterized locally in [18] with the vanishing of a curvature-type tensor invariant.
From the point of view of the qc Yamabe problem the sphere plays a role similar to its Riemannian



THE OPTIMAL CONSTANT IN THE L2 FOLLAND-STEIN INEQUALITY 3

and CR counterparts. A solution of the qc Yamabe problem on the seven dimensional sphere
equipped with its natural quaternionic contact structure was given in [17] where more details on the
qc Yamabe problem can be found. The main result of [17] is the following

Theorem ([17]). Let η̃ = 1
2hη be a conformal deformation of the standard qc-structure η̃ on the

quaternionic unit sphere S7. If η has constant qc scalar curvature, then up to a multiplicative
constant η is obtained from η̃ by a conformal quaternionic contact automorphism. In particular,
λ(S7) = 48 (4π)1/5 and this minimum value is achieved only by η̃ and its images under conformal
quaternionic contact automorphisms.

Another motivation for studying the qc Yamabe equation and the qc Yamabe constant of the qc
sphere comes from its connection with the determination of the norm and extremals in a relevant
Sobolev-type embedding on the quaternionic Heisenberg group [13] and [27] and [28]. As well known,
the sub-Riemannian Yamabe equation is also the Euler-Lagrange equation of the extremals for the
L2 case of such embedding results. Recall the following Theorem due to Folland and Stein [10].

Theorem (Folland and Stein). Let Ω ⊂ G be an open set in a Carnot group G of homogeneous
dimension Q and Haar measure dH. For any 1 < p < Q there exists Sp = Sp(G) > 0 such that for
u ∈ C∞o (Ω)

(1.3)

(∫
Ω

|u|p
∗
dH(g)

)1/p∗

≤ Sp

(∫
Ω

|Xu|p dH(g)

)1/p

,

where |Xu| =
∑m
j=1 |Xju|2 with X1, . . . , Xm denoting a basis of the first layer of G and p∗ = pQ

Q−p .

Let Sp be the best constant in the Folland-Stein inequality, i.e., the smallest constant for which (1.3)
holds.

In [17] we determined all extremals, i.e., solutions of the qc Yamabe equation, and the best
constant in Folland and Stein’s theorem when p = 2 in the case of the seven dimensional quaternionic
Heisenberg group. In the case of the complex (i.e. ”usual”) Heisenberg group this was done earlier
by Jerison and Lee [19] who determined all solutions to the CR Yamabe equation on the CR sphere.
In that setting, Frank and Lieb [11] determined the best constant and found all functions for which
the minimum is achieved, thus simplifying parts of [19] while answering a less general question.
However, in [11] the authors also gave sharp forms of the general Hardy-Littlewood-Sobolev type
inequalities on the Heisenberg group.

Following the idea of [11], the main result of this paper determines the best constant in the
Folland and Stein’s theorem when p = 2 and the functions for which it is achieved in the case of the
quaternionic Heisenberg group G of any dimension.

As a manifold G = Hn × ImH with the group law given by

(1.4) (q′, ω′) = (qo, ωo) ◦ (q, ω) = (qo + q, ω + ωo + 2 Im qo q̄),

where q, qo ∈ Hn and ω, ωo ∈ ImH. The standard quaternionic contact(qc) structure is defined by
the left-invariant quaternionic contact form

Θ̃ = (Θ̃1, Θ̃2, Θ̃3) =
1

2
(dω − q′ · dq̄′ + dq′ · q̄′),

where · denotes the quaternion multiplication. The purpose of the present note is to prove the next

Theorem 1.1. a) Let G = Hn × ImH be the quaternionic Heisenberg group. The best constant
in the L2 Folland-Stein embedding inequality (1.3) is

S2 =

[
23 ω4n+3

]−1/(4n+6)

2
√
n(n+ 1)

,
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where ω4n+3 = 2π2n+2/(2n+ 1)! is the volume of the unit sphere S4n+3 ⊂ R4n+4. The non-negative
functions for which (1.3) becomes an equality are given by the functions of the form

(1.5) F = γ
[
(1 + |q|2)2 + |ω|2

]−(n+1)
, γ = const,

and all functions obtained from F by translations (3.2) and dilations (3.3).
b) The qc Yamabe constant of the standard qc structure of the sphere is

(1.6) λ(S4n+3, [η̃]) = 16n(n+ 2) [((2n)!)ω4n+3]
1/(2n+3)

.

These constants are in complete agreement with the ones obtained in [17] and [13] taking into
account the next Remark and the well known formulas involving the gamma function

Γ(n+ 1) = n!, Γ(z + n) = z(z + 1) . . . (z + n− 1)Γ(z), n ∈ N,

Γ(2z) = 22z−1 π−1/2 Γ(z) Γ

(
z +

1

2

)
– the Legendre formula,

ωm = 2π(m+1)/2/Γ ((m+ 1)/2) =


2(m+2)/2πm/2

(m−1)!! , m- even ,
2π(m+1)/2

(m−1
2 )!

, m- odd ,

where ωm is the volume of the unit m–dimensional sphere in Rm+1. Our result partially confirms
the Conjecture made after [13, Theorem 1.1]. In addition, the fact that any function of the described
form is a solution of Yamabe problem was first noted in [14] in the setting of groups of Heisenberg
type. Of course, this class of groups is much wider than the class of groups of Iwasawa type.

Remark 1.2. With the left invariant basis of Theorem 1.1 the quaternionic Heisenberg group is
not a group of Heisenberg type. If we consider it as a group of Heisenberg type then the best constant
in the L2 Folland-Stein embedding theorem is, cf. [13, Theorem 1.6],

S2 =
1√

4n(4n+ 4)
43/(4n+6) π−(4n+3)/2(4n+6)

(
Γ(4n+ 3)

Γ((4n+ 3)/2)

)1/(4n+6)

.

and extremals are given by dilations and translations of the function

F (q, ω) = γ
[
(1 + |q|2)2 + 16|ω|2)

]−(n+1)
, (q, ω) ∈ G.

It is worth pointing that studying the Yamabe extremals in the sub-Riemannian setting has
applications to sharp inequalities in the Euclidean setting. For example, in the paper [29] are
determined the extremals of some Euclidean Hardy-Sobolev inequalities involving the distance to
a n − k dimensional coordinate subspace of Rn. This is achieved by relating extremals on the
Heisenberg groups to extremals in the Euclidean setting. In the particular case when k = n one
obtains the Caffarelli-Kohn-Nirenberg inequality, see [7], for which the optimal constant was found
in [15].

Convention 1.3. We use the following conventions:

• the abbreviation qc will stand for quaternionic contact;
• G will denote the qc Heisenberg group;
• η̃ will denote the standard qc form on the unit sphere S4n+3, see (2.1). Note that this form

is actually twice the 3-Sasakain qc form on S4n+3;
• V olη will denote the volume form determined by the qc form η, thus V olη = η1 ∧ η2 ∧ η3 ∧

(ω1)2n, see [16, Chapter 8].
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2. The model quaternionic contact structures

In this section we review the standard quaternionic contact structure on the quaternionic Heisen-
berg group and the 4n+3-dimensional unit sphere. We will rely heavily on [16], but prefer to repeat
some key points in order to make the current paper somewhat self-contained. Besides serving as a
background, this section will supply some key numerical constants - the qc scalar curvature and the
first eigenvalue of the sub-laplacian of the standard qc form of the sphere. This will be achieved
using the conformal sub-laplacian and the properties of the Cayley transform.

First let us recall the quaternionic Heisenberg group [16, Section 5.2]. We remind the following
model of the quaternionic Heisenberg group G. Define G = Hn × ImH with the group law given
by (q′, ω′) = (qo, ωo)◦ (q, ω) = (qo + q, ω + ωo + 2 Im qo q̄), where q, qo ∈ Hn and ω, ωo ∈ ImH.
In coordinates, with ω = ix + jy + kz and qα = tα + ixα + jyα + kzα, α = 1, . . . n, a basis of left
invariant horizontal vector fields Tα, Xα = I1Tα, Yα = I2Tα, Zα = I3Tα, α = 1 . . . , n is given by

Tα = ∂tα + 2xα∂x + 2yα∂y + 2zα∂z Xα = ∂xα − 2tα∂x − 2zα∂y + 2yα∂z

Yα = ∂yα + 2zα∂x − 2tα∂y − 2xα∂z Zα = ∂zα − 2yα∂x + 2xα∂y − 2tα∂z .

The above vectors generate the horizontal space, denoted as usual by H. In addition, by declaring
them to be an orthonormal basis we obtain a metric on the horizontal space, which is the so called
horizontal metric. The central (vertical) vector fields ξ1, ξ2, ξ3 are described as follows

ξ1 = 2∂x ξ2 = 2∂y ξ3 = 2∂z .

The standard quaterninic contact form, written as a purely imaginary quaternion valued form Θ̃ =
iΘ̃1 + jΘ̃2 + kΘ̃3), is

2Θ̃ = dω − q′ · dq̄′ + dq′ · q̄′,
where · denotes the quaternion multiplication. The Biquard connection coincides with the flat left
invariant connection on G, in particular the qc scalar curvature vanishes.

Following [16], we give another model of the Heiseneberggroup, which is the one we will use in
this paper. Let us identify G with the boundary Σ of a Siegel domain in Hn ×H,

Σ = {(q′, p′) ∈ Hn ×H : < p′ = |q′|2},

by using the map (q′, ω′) 7→ (q′, |q′|2 − ω′). Since dp′ = q′ · dq̄′ + dq′ · q̄′ − dω′, under the

identification of G with Σ we have also 2Θ̃ = −dp′ + 2dq′ · q̄′. Taking into account that Θ̃
is purely imaginary, the last equation can be written also in the following form

4 Θ̃ = (dp̄′ − dp′) + 2dq′ · q̄′ − 2q′ · dq̄′.

Now, consider the Cayley transform, see [21] and [9], as the map C : S 7→ Σ from the sphere
S = {|q|2 + |p|2 = 1} ⊂ Hn ×H minus a point to the Heisenberg group Σ, with C defined by

(q′, p′) = C
(

(q, p)
)
, q′ = (1 + p)−1 q, p′ = (1 + p)−1 (1− p)

and with an inverse map (q, p) = C−1
(

(q′, p′)
)

given by

q = 2(1 + p′)−1 q′, p = (1 + p′)−1 (1− p′).
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The Cayley transform maps S4n+3 \ {(−1, 0)}, (−1, 0) ∈ Hn ×H, to Σ since

< p′ = < (1 + p̄)(1− p)
|1 + p |2

= < 1− |p|
|1 + p |2

=
|q|2

|1 + p |2
= |q′|2.

Writing the Cayley transform in the form (1 + p)q′ = q, (1 + p)p′ = 1− p, gives

dp · q′ + (1 + p) · dq′ = dq, dp · p′ + (1 + p) · dp′ = −dp,
from where we find

dp′ = −2(1 + p)−1 · dp · (1 + p)−1

dq′ = (1 + p)−1 · [dq − dp · (1 + p)−1 · q].
The Cayley transform is a conformal quaternionic contact diffeomorphism between the quaternionic
Heisenberg group with its standard quaternionic contact structure Θ̃ and the sphere minus a point
with its standard structure η̃. In fact, by [16, Section 8.3] we have

Θ
def
= λ · (C−1)∗ η̃ · λ̄ =

8

|1 + p′ |2
Θ̃.

where λ = |1 + p | (1 + p)−1 is a unit quaternion and η̃ is the standard contact form on the sphere,

(2.1) η̃ = dq · q̄ + dp · p̄ − q · dq̄ − p · dp̄.

Lemma 2.1. The qc scalar curvature S̃ of the standard qc structure (2.1) on S4n+3 is

(2.2) S̃ =
1

2
(Q+ 2)(Q− 6) = 8n(n+ 2).

Remark 2.2. Notice that the standard qc contact form we consider here is twice the 3-Sasakian
form on S4n+3, which has qc scalar curvature equal to 16n(n+2) [16].

Proof. Let us introduce the functions

(2.3)

h =
1

16
|1 + p′|2 =

1

16

[
(1 + |q′|2)2 + |ω′|2

]
, (q′, p′) ∈ Σ ⊂ Hn ×H, p′ = |q′|2 + ω′,

and

Φ = (2h)
−(Q−2)/4

= 8(Q−2)/4
[
(1 + |q′|2)2 + |ω′|2

]−(Q−2)/4
,

so that now we have

Θ =
1

2h
Θ̃ = Φ4/(Q−2)Θ̃.

With the help of [16, Section 5.2] a small calculation shows that the sub-laplacian of h w.r.t. Θ̃ is

given by4h = Q−6
4 + Q+2

4 |q
′|2 and thus Φ is a solution of the qc Yamabe equation on the Heisenberg

group Σ

(2.4) 4Φ = −K Φ2∗−1, K = (Q− 2)(Q− 6)/8,

where 4 is the sub-laplacian on the quaternionic Heisenberg group. Denoting with L and L̃ the
conformal sub-laplacians of Θ and Θ̃, respectively, we have

Φ−1L(Φ−1u) = Φ−2∗
L̃u.

We remind, cf. [5] and [17], that for a qc contact form Θ the conformal sublaplacian is,

L = a4Θ − SΘ, a = 4
Q+ 2

Q− 2
,

where 4Θ is the sub-laplacian associated to Θ, i.e., 4Θu = tr(∇Θdu)–the horizontal trace of the
Hessian of u, using the Biquard connection ∇Θ of Θ, and SΘ is the qc scalar curvature of Θ. Thus,
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letting u = Φ we come to L(1) = Φ1−2∗
L̃Φ, which shows −SΘ = −4Q+2

Q−2K. The latter is the

same as that of η̃ since the two structures are isomorphic via the diffemorphism C, or rather its
extension, since we can consider C as a quaternionic contact conformal transformation between the
whole sphere S4n+3 and the compactification Σ̂∪∞ of the quaternionic Heisenberg group by adding
the point at infinity, cf. [17, Section 5.2]. �

We turn to the task of determining the first eigenvalue of the sub-laplacian on S4n+3. In fact, we
shall need only the fact that the restriction of every coordinate function is an eigenvalue. The proof of
this fact can be seen directly without any reference to the Biquard connection. Alternatively, we can
invoke [1] where spherical harmonics are studied on the homogeneous space (sphere) S = K/M which
is 1-quasiconformal [3] to the group of Iwasawa type N via the Cayley transform, where G = NAK
is the Iwasawa decomposition of the rank one simple Lie group G and M is the centralizer of A in
K. Since this will require setting a lot of notation unnecessary for the current goals, we prefer to
use a result from [16].

Lemma 2.3. If ζ is any of the (real) coordinate functions in R4n+4 = Hn ×H, then

(2.5) 4̃ζ = −λ1ζ, λ1 =
S̃

Q+ 2
= 2n

for the horizontal trace of the Hessian, where 4̃ is the sub-laplacian of the standard qc form η̃ of
S4n+3.

Proof. It is enough to furnish a proof for the sub-laplacian on the 3-Sasakain sphere since the two
qc forms defer by a constant. We can see that every ζ of the considered type is an eigenfunction
by using [16, Corollary 6.24]. It will be enough to see it for one coordinate function provided
the sub-laplacian on the sphere is rotation invariant. Thus, let us take ζ = t1. Notice that ζ is
quaternionic pluri-harmonic [16, Definition 6.7] since it is the real part of the anti-regular function
t1 + ix1 − jy1 − kz1. So, its restriction to the 3-Sasakain sphere is the real part of an anti-CRF
function. Therefore we apply [16, Corollary 6.24] which gives tr(∇dζ) = 4λn for the sub-laplacian of
the 3-sasakain qc structure on the sphere. Next, we compute λ, which can be found in [16, Theorem
6.20]. Using that the sphere is 3-Sasakian it follows the Reeb vector fields are obtained from the
outward pointing unit normal vector N as follows, ξ1 = iN , ξ2 = jN and ξ3 = kN , where for a point
on the sphere we have N(q) = q ∈ Hn+1. Therefore λ = −t1 = −ζ. To make this more apparent
notice that only the first four coordinates of N matter. So, if we assume n = 0 (i.e. N(q) = q ∈ H1)
we have iN = −x+ it+ ky − jz, jN = −y + iz + jt− kx and kN = −z − iy + jx+ kt, so we need
to sum the real dot product of these vectors with i, j and k, respectively, which gives −t. Thus, for
the sub-laplacian on the 3-Sasakian sphere we have

tr(∇dζ) = −4nζ,

where ζ is the restriction any of the coordinate functions of R4n+4 = Hn ×H. Since the qc contact
form Θ̃ is twice the 3-Sasakain qc contact form on the sphere it follows 4̃ is 1/2 of the 3-Sasakain
sub-laplacian. Thus

4̃ = −2nζ,

which shows λ1 = 2n = 1
2 (Q− 6) = S̃/(Q+ 2). �

We finish this section with a simple Lemma which will be used to relate the various explicit
constants. Its claim also follows from the conformal invariance of the Yamabe equation, but we
prefer to give a proof, which is independent of the notion of qc scalar curvature. We recall, see
[16, Chapter 8], that V olη will denote the volume form determined by the qc form η, thus V olη =

η1 ∧ η2 ∧ η3 ∧ (ω1)2n. Also, for a qc form η we let |∇ηF |2 =
∑4n
α=1 |dF (eα)|2 be the square of the
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length of the horizontal gradient of a function F taken with respect to an orthonormal basis of the
horizontal space H = Ker η and the metric determined by η.

Lemma 2.4. Let F ∈
o

D 1,2(G), cf. (3.1), be a positive function with
∫
G
F 2∗

V olΘ̃ = 1. Then we
have

(2.6)

∫
G

a|∇Θ̃F |2 V olΘ̃ =

∫
S4n+3

(
a|∇η̃g|2 + S̃g2

)
V olη̃, a = 4(2∗ − 1),

and ∫
G

g2∗
V olη̃ = 1,

where

(2.7) g = C∗(FΦ−1),

and, as before, C : S4n+3 → Σ is the Cayley transform, Θ = Φ4/(Q−2)Θ̃, cf. (2.3).

Remark 2.5. Notice that V olΘ̃ = 2−3 (2n)! dH, where dH is the Lebesgue measure in R4n+3, which
is a Haar measure on the group.

Proof. It will be convenient for the remaining of this proof to denote by small letters the pull-
back by the Cayley transform of a function denoted with the corresponding capital letter. Thus,
f = C∗F = F ◦ C, φ = C∗(Φ) and g = fφ−1. By the conformality of the qc structures on the group
and the sphere we have

(2.8) V olΘ = Φ2∗
V olΘ̃

By (2.8) we have F 2∗
V olΘ̃ = f2∗

φ−2∗
V olη̃, which motivates the definition (2.7) of the function g

which is defined on the sphere and should be regarded as corresponding to the function F . Thus,
we have for example F = GΦ. By definition we have∫

G

g2∗
V olη̃ = 1,

so our next task is to see that the Yamabe integral is preserved

(2.9)

∫
G

|∇Θ̃F |2 V olΘ̃ =

∫
S4n+3

(
|∇η̃g|2 +Kg2

)
V olη̃.

Here is where we shall exploit that a power of the conformal factor of the Cayley transform is a
solution of the Yamabe equation. Let

〈
∇ΘΦ,∇ΘG

〉
=
∑4n
a=1(eaΦ) (eaG) where {e1, . . . , e4n} is an

orthonormal basis of the horizontal space H. Using the divergence formula from [16, Section 8.1]
we find∫

G

|∇̃ΘF |2 V olΘ̃ =

∫
G

|∇Θ̃(GΦ)|2 V olΘ̃ =

∫
G

(
G2|∇Θ̃Φ|2+Φ2|∇Θ̃G|2+

〈
Φ∇Θ̃Φ,∇Θ̃G2

〉)
V olΘ̃

=

∫
G

(
Φ2|∇Θ̃G|2 −G2Φ4Θ̃Φ

)
V olΘ̃.

Now, the Yamabe equation (2.4) gives∫
G

|∇Θ̃F |2 V olΘ̃ =

∫
G

(
Φ2|∇Θ̃G|2 +KG2Φ2∗

)
V olΘ̃

=

∫
S4n+3

(
φ2−2∗

(|∇Θ̃G| ◦ C)2 +Kg2
)
V olη̃ =

∫
S4n+3

(
|∇η̃g|2 +Kg2

)
V olη̃,

taking into account that C is a qc conformal map. Finally, a glance at (2.4) and (2.2) shows

S̃/K = 4(2∗ − 1) = (4(Q+ 2)/(Q− 2) which allows to put (2.9) in the form (2.6). �
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3. The best constant in the Folland-Stein inequality

In this section, following [11], we prove the main Theorem. It is important to observe that a
suitable adaptation of the method of concentration of compactness due to P. L. Lions [23], [24]
allows to prove that in any Carnot group the Yamabe constant and optimal constant in the Folland-

Stein inequality is achieved in the space
o

D 1,2(G), see [27] and [28]. Here

o

D 1,2(G) = C∞o (G)
||·|| o

D 1,2(G) .

The space
o

D 1,2(G) is endowed with the norm

(3.1) ||u|| o
D 1,2(G)

= || |∇u| ||L2∗ (G).

where ∇u is the horizontal gradient of u and |∇u|2 =
∑4n
a=1(eau)2 for an orthonormal basis

{e1, . . . , e4n} of horizontal left invariant vector fields.
In this regard an elementary, yet crucial observation, is that if u is an entire solution to the

Yamabe equation, then such are also the two functions

(3.2) τhu
def
= u ◦ τh, h ∈ G,

where τh : G→ G is the operator of left-translation τh(g) = hg, and

(3.3) uλ
def
= λ(Q−2)/2 u ◦ δλ, λ > 0.

The Heisenberg dilations are defined by

δλ ((q′, ω′)) =
(
(λq′, λ2ω′)

)
, (q′, ω′) ∈ G

It is also well known, [27] and [28], that there are smooth positive minimizer of the Folland-Stein
inequality on the quaternionic Heisenberg group G. These facts will be used without further notice
on regularity and existence.

We start with the ”new” key, see [6], [11] and also [25] and [8], allowing the ultimate solution of
the considered problem.

Lemma 3.1. For every v ∈ L1(S4n+3) with
∫
S4n+3 v V olη̃ = 1 there is a quaternionic contact

conformal transformation ψ such that ∫
S4n+3

ψ v V olη̃ = 0.

Proof. Let P ∈ S4n+3 be any point of the quaternionic sphere and N be its antipodal point. Let us
consider the local coordinate system near P defined by the Cayley transform CN from N . It is known
that CN is a quaternionic contact conformal transformation between S4n+3 \N and the quaternionic
Heisenberg group. Notice that in this coordinate system P is mapped to the identity of the group.
For every r, 0 < r < 1, let ψr,P be the qc conformal transformation of the sphere, which in the fixed
coordinate chart is given on the group by a dilation with center the identity by a factor δr. If we
select a coordinate system in R4n+4 = Hn × H so that P = (1, 0) and N = (−1, 0) and then apply
the formulas for the Cayley transform from [16, Section 8.2] the formula for (q∗, p∗) = ψr,P (q, p)
becomes

q∗ = 2r
(
1 + r2(1 + p)−1(1− p)

)−1
(1 + p) q

p∗ =
(
1 + r2(1 + p)−1(1− p)

)−1 (
1− r2(1 + p)−1(1− p)

)
, i.e,
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We can define then the map Ψ : B → B̄, where B ( B̄ ) is the open (closed) unit ball in R4n+4,
by the formula

Ψ(rP ) =

∫
S4n+3

ψ1−r,P v V olη̃.

Notice that Ψ can be continuously extended to B̄ since for any point P on the sphere, where r = 1,
we have ψ1−r,P (Q) → P when r → 1. In particular, Ψ = id on S4n+3. Since the sphere is not a
homotopy retract of the closed ball it follows that there are r and P ∈ S4n+3 such that Ψ(rP ) = 0,
i.e.,

∫
S4n+3 ψ1−r,P v V olη̃ = 0. Thus, ψ = ψ1−r,P has the required property. �

In the next step we prove that we can assume that the minimizer of the Folland-Stein inequality
satisfies the zero center of mass condition. A number of well known invariance properties of the
Yamabe functional will be exploited.

Lemma 3.2. Let v be a smooth positive function on the sphere with
∫
S4n+3 v

2∗
V olη̃ = 1. There is

a smooth positive function u such that
∫
S4n+3

(
4Q+2
Q−2 |∇u|

2 + S̃ u2
)
V olη̃ =

∫
S4n+3

(
4Q+2
Q−2 |∇v|

2 +

S̃ v2
)
V olη̃ and

∫
S4n+3 u

2∗
V olη̃ = 1. In addition,

(3.4)

∫
S4n+3

P u2∗
(P )V olη̃ = 0, P ∈ R4n+4 = Hn ×H.

In particular, the Yamabe constant

(3.5) λ(S4n+3, [η̃]) = inf{
∫
S4n+3

(
4
Q+ 2

Q− 2
|∇v|2 + S̃ v2

)
V olη̃ :

∫
S4n+3

v2∗
V olη̃ = 1, v > 0}

is achieved for a positive function u with a zero center of mass, i.e., for a function u satisfying (3.4).

Proof. By [16, Section 8.1], V olη = η1 ∧ η2 ∧ η3 ∧ (ω1)2n is a volume form on a qc manifold with
contact form η. Thus if η is a qc structure on the sphere which is qc conformal to the standard qc
structure η̃, η = φ4/(Q−2)η̃, then V olη = φ2∗

V olη̃. This allows to cast equation (1.2) in the form

φ−1vL(φ−1v) V olη = vL̃(v) V olη̃.

Therefore, if we take a positive function v on the sphere
∫
S4n+3 v

2∗
V olη̃ = 1 and then consider the

function

(3.6) u = φ−1(v ◦ ψ−1),

where ψ is the qc conformal map of Lemma 3.1, η ≡ (ψ−1)∗η̃, and φ is the corresponding conformal
factor of ψ, we can see that u achieves the claim of the Lemma. �

We shall call a function u on the sphere a well centered function when (3.4) holds true. In the next
step, following [11], we show that a well centered minimizer has to be constant using the products
of the coordinate functions with the optimizer.

Lemma 3.3. If u is a well centered local minimum of the problem (3.5), then u ≡ const.

Proof. Let ζ be a smooth function on the sphere S4n+3. After applying the divergence formula [16,
Section 8] we obtain the formula

(3.7) Υ(ζu) =

∫
S4n+3

ζ2
(

4
Q+ 2

Q− 2
|∇̃u|2 + S̃ u2

)
V olη̃ − 4

Q+ 2

Q− 2

∫
S4n+3

u2ζ4̃ζ V olη̃.

This suggests to take as a test function ζ an eigenfunction of the sub-laplacian 4̃ of the standard
qc structure. In particular, we can let ζ be any of the coordinate functions in Hn ×H in which case
4̃ζ = −λ1ζ.
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It will be useful to introduce the functional N(v) =
(∫
S4n+3 v

2∗
V olη̃

)2/2∗

so that

(3.8) λ(S4n+3, [η̃]) = inf{E(v) : v ∈ D (S4n+3)}, E(v)
def
= Υ(v)/N(v).

Computing the second variation δ2E(u)v = d2

dt2E(u+ tv)|t=0
of E(u) we see that the local minimum

condition δ2E(u)v ≥ 0 implies

Υ(v)− (2∗ − 1)Υ(u)

∫
S4n+3

u2∗−2v2 V olη̃ ≥ 0

for any function v such that
∫
S4n+3 u

2∗−1v V olη̃ = 0. Therefore, for ζ being any of the coordinate
functions in Hn ×H we have

Υ(ζu)− (2∗ − 1)Υ(u)

∫
S4n+3

u2∗
ζ2 V olη̃ ≥ 0,

which after summation over all coordinate functions taking also into account (3.7) gives

Υ(u)− (2∗ − 1)Υ(u) + 4λ1(2∗ − 1)

∫
S4n+3

u2 V olη̃ ≥ 0,

which implies, recall 2∗ − 1 = (Q+ 2)/(Q− 2),

0 ≤ 4(2∗ − 1) (2∗ − 2)

∫
S4n+3

|∇̃u|2 V olη̃

≤
(

4λ1(2∗ − 1)− (2∗ − 2) S̃
)∫

S4n+3

u2∗
V olη̃.

Thus, our task of showing that u is constant will be achieved once we see that

(3.9) 4λ1(2∗ − 1)− (2∗ − 2) S̃ ≤ 0, i.e, λ1 ≤ S̃/(Q+ 2).

By Lemma 2.5 we have actually equality λ1 = S̃/(Q+ 2), which completes the proof. It is worth
observing that inequality (3.9) can be written in the form

λ1 a ≤ (2∗ − 2) S̃,

where a is the constant in front of the (sub-)laplacian in the conformal (sub-)laplacian, i.e., a = 4Q+2
Q−2

in our case. �

At this point the proof of our main Theorem 1.1 follows easily as follows.

Proof of Theorem 1.1. Let F be a minimizer (local minimum) of the Yamabe functional E on G
and g the corresponding function on the sphere defined in Lemma 2.4. By Lemma 3.2 and (3.6) the
function g0 = φ−1(g ◦ ψ−1) will be well centered and a minimizer (local minimum) of the Yamabe
functional E on S4n+3. The latter claim uses also the fact that the map v 7→ u of equation (3.6) is
one-to-one and onto on the space of smooth positive functions on the sphere. Now, from Lemma 3.3
we conclude that go = const. Looking back at the corresponding functions on the group we see that

F0 = γ
[
(1 + |q′|2)2 + |ω′|2

]−(Q−2)/4

for some γ = const. > 0. Furthermore, the proof of Lemma 3.1 shows that F0 is obtained from F
by a translation (3.2) and dilation (3.3). Correspondingly, any positive minimizer (local maximum)
of problem (3.11) is given up to dilation or translation by the function

(3.10) F = γ
[
(1 + |q′|2)2 + |ω′|2

]−(Q−2)/4
, γ = const. > 0.
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Of course, translations (3.2) and dilations (3.3) do not change the value of E. Incidentally, this shows
that any local minimum of the Yamabe functional E on the sphere or the group has to be a global
one.

We turn to the determination of the best constant. Let us define the constants

(3.11)

ΛΘ̃

def
= inf


∫
G

|∇v|2 V olΘ̃ : v ∈
o

D 1,2(G), v ≥ 0,

∫
G

|v|2
∗
V olΘ̃ = 1


and

Λ
def
= inf


∫
G

|∇v|2 dH : v ∈
o

D 1,2(G), v ≥ 0,

∫
G

|v|2
∗
dH = 1

 .

Clearly, ΛΘ̃ = S−2

Θ̃
, where SΘ̃ is the best constant in the L2 Folland-Stein inequality

(3.12)

(∫
G

|u|2
∗
V olΘ̃

)1/2∗

≤ SΘ̃

(∫
G

|∇Θ̃u|2 V olΘ̃

)1/2

,

while Λ = S−2
2 is the best constant in the L2 Folland-Stein inequality (1.3) (taken with respect to

the Lebesgue measure !). By Remark 2.5 we have

ΛΘ̃ =
[
2−3(2n)!

]1/(2n+3)
Λ.

Furthermore, by Lemma 3.3 and equations (2.6) and (2.7) with g = const, we have

ΛΘ̃ =
1

S2
2

=

∫
G
|∇Θ̃F |2 V olΘ̃[∫

G
|F |2∗ V olΘ̃

]2/2∗

=

∫
S4n+3

(
|∇η̃g|2 + S̃

a g
2
)
V olη̃[∫

S4n+3 |g|2∗ V olη̃
]2/2∗ = 4n(n+ 1) [((2n)!)ω4n+3]

1/(2n+3)
.

Here,

ω4n+3 = 2π2n+2/Γ(2n+ 2) = 2π2n+2/(2n+ 1)!

is the volume of the unit sphere S4n+3 ⊂ R4n+4 and we also took into account Remark 2.2 which
shows that V olη̃ gives 22n+3 ((2n)!)ω4n+3 for the volume of S4n+3. Thus,

SΘ̃ =
(

4n(n+ 1) [((2n)!)ω4n+3]
1/(2n+3)

)−1/2

=
[((2n)!)ω4n+3]

−1/(4n+6)

2
√
n(n+ 1)

,

which completes the proof of part a).
b) The Yamabe constant of the sphere is calculated immediately by taking a constant function

in (3.8)

(3.13) λ(S4n+3, [η̃]) = aΛΘ̃, a = 4
Q+ 2

Q− 2
= 4

n+ 2

n+ 1
.

This completes the proof of Theorem 1.1. �

Remark 3.4. In view of the above Lemmas it follows that in the conformal class of the standard qc
structure on the sphere (or the quaternionic Heisenberg group) there is an extremal qc contact form
for problem (1.1) which is also qc-Einstein, see [16, Definition 4.1], and has partial symmetry, see
[13, Definition 1.2], if viewed as a qc structure on the group. Thus, the above precise constants and
extremals can also be taken directly from [16, Theorem 1.1 and 1.2] or the result of [13]. However,
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the functions (3.10) depend on one more arbitrary multiplicative parameter γ since in the current
paper we are dealing with the functions realizing the infimum of (3.8) rather than with the qc Yamabe
equation with a fixed qc scalar curvature.
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[26] Szegö, G., Inequalities for certain eigenvalues of a membrane of given area J. Rational Mech. Anal. 3, (1954).

343–356. 1

[27] Vassilev, D., Regularity near the characteristic boundary for sub-laplacian operators, Pacific J Math, 227 (2006),
no. 2, 361–397. 3, 9

[28] Vassilev, D., Yamabe type equations on Carnot groups, Ph. D. thesis Purdue University, 2000. 3, 9

[29] Vassilev, D., Lp estimates and asymptotic behavior for finite energy solutions of extremals to Hardy-Sobolev
inequalities, Trans. of AMS., 363 (2011), 37–62. 4

(Stefan Ivanov) University of Sofia, Faculty of Mathematics and Informatics, blvd. James Bourchier 5,

1164, Sofia, Bulgaria
E-mail address: ivanovsp@fmi.uni-sofia.bg

(Ivan Minchev) University of Sofia, Sofia, Bulgaria, and Mathematik und Informatik, Philipps-Universität

Marburg, Hans-Meerwein-Str. / Campus Lahnberge 35032 Marburg, Germany
E-mail address: minchevim@yahoo.com

E-mail address: minchev@fmi.uni-sofia.bg

(Dimiter Vassilev) Department of Mathematics and Statistics, University of New Mexico, Albuquerque,

New Mexico, 87131-0001

E-mail address: vassilev@math.unm.edu


	1. Introduction
	2. The model quaternionic contact structures
	3. The best constant in the Folland-Stein inequality
	References

