
COMPLEX ANALYSIS PROBLEMS

D. VASSILEV

Part 1. Homework Problems, MATH562, W2011

1.1. Homework

Problem 1.1.1. a) Let fn be a sequence of functions that are holomorphic on the punctured unit disc
D× and suppose that each fn has a pole at z = 0. If the sequence { fn} converges uniformly on compact
subsets of D×, then does the limit function f necessarily have a pole at z = 0?

b) Answer the same question with ”pole” replaced by ”removable singularity” or ”essential singu-
larity.”

Problem 1.1.2. Compute the following residues Res f (z0) for the given function and point.

z0 = 2i, f (z) =
z2

(z − 2i)(z + 3)
.

Problem 1.1.3. a) Find the Laurent series of the function f (z) = 9z−z2

(z2−9)(z+1) on the annulus A = {z ∈ C :
3 < |z| < ∞}.

b) Compute the integral
´
|z|=4 f (z) dz.

Problem 1.1.4. Determine the number of zeros of p(z) = z5 + 1
3 z3 + 1

4 z2 + 1
3 inside the annulus A = {z ∈

C : 1
2 < |z| < 1}.

Problem 1.1.5. Let f be a function holomorphic on the punctured unit disk D× and f ′ has a pole of
order k at z = 0. Show that k ≥ 2 and f has a pole of order k − 1 at z = 0.

Problem 1.1.6. Let f be holomorphic function on the closed unit disk and f (k)(0) = 0 for k = 0, 1, . . . , n
and max|z|=1 | f (z)| = M. Show that | f (z)| ≤ M|z|n+1 for |z| < 1.

Problem 1.1.7. Let f (z) denote a function which is holomorphic in C\{0} and has the Laurent expansion
f (z) =

∑∞
j=−∞ a jz j. Assuimg that f (z) is real for all real z, does it follow that all coefficients a j are real?

Give a proof or counterexample.
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1.2. Homework

Problem 1.2.1. Let z1 and z2 be two distinct points in the complex plane and l the line determined by
them. Find the formula for the orthogonal reflection with respect to l, i.e., find the function S (z), called
the Schwarz function of l, such that given any point z ∈ C the reflected image is z∗ = S (z). Notice that
S (z) = z̄ for z ∈ l. (Have a look at Problems (2.3.2) and (2.3.3) from last semester.)

Problem 1.2.2. Find the Schwarz function S of the circle of radius R centered at the point z0 ∈ C. This
will be a holomorphic function S defined in a neighborhood of the circle and satisfying S (z) = z̄ for
points on the circle. First consider the case R = 1 and z0 = 0.

Problem 1.2.3. a) Let f ∈ A(D) ∩ C(D̄) and | f (z)| = 1, when |z| = 1. Show that f can be extended by
reflection to a meromorphic function on C̄ by the rule

F(z) =


f (z), |z| ≤ 1;

1
/

f (z∗), |z| > 1, z∗ = 1/z̄.

b) Use the Schwarz function of the unit circle T = ∂D to formulate (and/ or prove) the above version
of the Schwarz reflection principle for reflection in the unit circle.

Problem 1.2.4. Show that if f is an entire function which is real valued on some open interval on the
real axis and purely imaginary on some open interval on the imaginary axis, then f is an odd function,
f (−z) = − f (z) for all z ∈ C.

Problem 1.2.5. Let h ∈ A(D) ∩ C(D̄) and |h(z)| = 1, when |z| = 1. Prove that h is a rational function.
Show that up to a constant multiple of unit modulus h is a finite product of Blaschke factors Ba(z) = z−a

1−āz
for some (finitely many - some could be the same) a’s of modulus |a| < 1.

Problem 1.2.6. Let |a| < 1 and L(z) = z−a
1−āz . Let Ln = L ◦ · · · ◦ L n-times. Prove that the sequence of

holomorphic functions {Ln} converges locally uniformly on D and find its limit.

Problem 1.2.7. Let F be a normal family of holomorphic functions on U. Show that the family F′ of all
complex derivatives of the functions in F is also a normal family. Hint: Review Problem (2.7.2).

Problem 1.2.8. Suppose that { fn} is a uniformly bounded family of holomorphic functions on a domain
Ω. Let {zk} be a sequence of points in Ω converging to a point z0 ∈ Ω. Show that if for every fixed k the
sequence { fn(zk)} is convergent, then the { fn} converges locally uniformly on compact subsets of Ω.

Problem 1.2.9. Let Ω be a bounded domain of the complex plane C and { fn} a sequence of holomorphic
function on Ω. Assume that there is a constant C < ∞ such thatˆ

Ω

| fn(z)|2 dxdy < C

for all n. Prove that { fn} is a normal family. Hint: Use that | f (z)|2 can be bounded by the mean value of
| f |2 on a small disc centered at z. This inequality was also used in Problem (2.10.6) b). See also Problem
(1.2.10)

Problem 1.2.10. Let Ω be an open set and K b L b Ω. Show that there exists a constant M (depending
on K and L) such that for any holomorphic function f on Ω we have

sup
K
| f | ≤ M

(ˆ
L
| f |2dxdy

)1/2

.

Hint: First show the inequality for K = D(z0, r) and L = D(z0,R) using the Cauchy formula applied to
the holomorphic function f 2. See Problem (2.6.7) and (2.7.10).
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1.3. Homework

Note: Here conformal means injective and surjective holomorphic map, hence a biholomorphism.

Problem 1.3.1. Determine Aut(C).

Problem 1.3.2. a) Describe all holomorphic maps from C to D?
b) Can there be a holomorphic map of D onto C?

Problem 1.3.3. a) Prove that if f : D→ D is holomorphic and has two distinct fixed points then f (z) = z.
b) Is it true that if f : D→ D is holomorphic then it must have a fixed point?

Problem 1.3.4. Let Ω be a holomorphically simply connected domain in C and let P and Q be distinct
points of Ω. Let F1 and F2 be conformal self-maps of Ω, i.e., F1, F2 ∈ Aut(Ω). If F1(P) = F2(P) and
F1(Q) = F2(Q) then prove that F1 ≡ F2. Note: Be careful to distinguish the case of C from that of Ω a
proper subset of C.

Problem 1.3.5. Let Ω be a bounded domain and let φ be a conformal mapping of Ω to itself. Let P ∈ Ω

and suppose that φ(P) = P. a) Show that if φ′(P) = 1, then φ must be the identity.
b) Show that in the general case (i.e. without the assumption a)) φ(z) = λz for some constant λ ∈ C,

|λ| = 1.

Problem 1.3.6. Show that f (z) = − 1
2

(
z + 1

z

)
is a conformal map of the ”upper” half discD∩{z : =z > 0}

to the upper half-plane.

Problem 1.3.7. Let Ω be a holomorphically simply connected domain in C and let φ be a conformal
mapping of Ω to D. Set P = φ−1(0). Let f : Ω → D be any holomorphic function such that f (P) = 0.
Prove that | f ′(P)| ≤ |φ′(P)|.

Problem 1.3.8. Let U be an open subset of C. If there is a continuous function f : U → C such that
e f (z) = z for z ∈ U, show that then f is necessarily holomorphic and hence a branch of log z on U.

Problem 1.3.9. Let n ∈ N. Find a conformal map of the sector 0 < arg z < π
n onto D.
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1.4. Homework

Note: Harmonic function means real-valued unless explicitly stated otherwise.

Problem 1.4.1. Let u : U → R be a continuous function. Show the equivalence of the next two properties.
(a) u(z0) = 1

2πr

´
∂D u(z) ds(z) for any D = D(z0, r) ⊂ U, where ds is arc length measure on ∂D.

(b) u(z0) = 1
πr2

´
D u(z) dA(z) for any D = D(z0, r) ⊂ U, where dA = dxdy.

Problem 1.4.2. Prove that there is no nonconstant harmonic function u : U → R such that u(z) ≤ 0 for
all z ∈ C.

Problem 1.4.3. Let the function v(z) = = exp[(1 + z)/(1 − z)].
(a) Calculate v(z) explicitly.
(b) What limiting value does v have as z→ 1, z ∈ D?

Problem 1.4.4. Give two distinct harmonic functions on C that vanish on the entire real axis. Why is
this not possible for holomorphic functions?

Problem 1.4.5. Use the open mapping principle for holomorphic functions to prove an open mapping
principle for harmonic functions.

Problem 1.4.6. (a) Let u be a harmonic on a connected open set U ⊂ C. Show that the following are
equivalent:

i) u ≡ 0 on U;
ii) u vanishes identically on some disc D(z0, r) ⊂ U;

iii) there is a point z0 ∈ U where all partial derivatives of u vanish, ∂n∂m u
∂xn∂ym (z0) = 0.

(b) State and prove a unique continuation property for harmonic functions defined on a connected
domain U ⊂ C.

Problem 1.4.7. Prove that a nonconstant harmonic function on a connected domain U ⊂ C cannot reach
a local maximum (minimum).

Problem 1.4.8. Using Poisson’s formula find a harmonic function on D which takes continuously the
value +1 on the semi-circle ∂D ∩ {=z > 0} and the value 0 on the semi-circle ∂D ∩ {=z < 0}.
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1.5. Homework

Problem 1.5.1. Find a formula for the upper half-plane Ω = {z | =z > 0} analogous to the Poisson
integral formula by mapping Ω conformally to the unit disc.

Problem 1.5.2. Let u ∈ C(Ω), Ω-open subset of C, and u harmonic in Ω \ {z0}. Prove that u is harmonic
on Ω.

Problem 1.5.3. Let Ω be an open subset of C, u a harmonic function on Ω with harmonic conjugate v.
Show that for any D(z0,R) ⊂ Ω we have the expansions

u(z) = u(z0 + reiθ) = u0 +

∞∑
n=1

(un cos nθ − vn sin nθ) rn

v(z) = v(z0 + reiθ) = v0 +

∞∑
n=1

(vn cos nθ + un sin nθ) rn

for z = z0 + reiθ ∈ D(z0,R) and some numbers un, vn.

Problem 1.5.4. Let z = reit ∈ D(0, ρ). Show that

ρ2 − r2

ρ2 − 2ρr cos t + r2 = 1 + 2
∞∑

n=1

(
r
ρ

)n

cos nt

2ρr sin t
ρ2 − 2ρr cos t + r2 = 2

∞∑
n=1

(
r
ρ

)n

sin nt

converge uniformly on every compact subset of D(0, ρ). Hint: use the holomorphic function

f (z) =
ρ + z
ρ − z

.

Do also the computation for f (z) =
ρeiθ+reiφ

ρeiθ−reiφ

Problem 1.5.5. Is there a version of Harnack’s principle for a decreasing sequence of harmonic func-
tions? If so, formulate and prove it. If not, give a counterexample.
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1.6. Homework

Problem 1.6.1. Recall the Poisson formula for the unit disc D,

u(z) =
1

2π

ˆ 2π

0

1 − |z|2

|z − eiθ|2
f (eiθ) dθ, |z| < 1,

where f is a piece-wise continuous function on ∂D. Show that

v(z) =
1

2π

ˆ 2π

0

|z|2 − 1
|z − eiθ|2

f (eiθ) dθ, |z| > 1

defines a bounded harmonic function on the exterior of the unit disc, which is continuous at every point
of ∂D where f is continuous.

Problem 1.6.2. Show that both u(z) = 1 and v(z) = ln |z| are solution of the Dirichlet problem on C \ D
with boundary data on ∂D given by f ≡ 1. What solution does the Poisson formula of Problem 1.6.1
give?

Problem 1.6.3. Show that the Dirichlet problem on C \ D with continuous boundary data on ∂D given
by a function f has a unique bounded solution. Hint: Problem 1.5.2 and the map w = 1

z can be helpful.

Problem 1.6.4. Let φ : Ω → D be a conformal map, φ(z0) = 0 and φ′(z0) > 0 for some given point
z0 ∈ Ω and u a harmonic function on Ω. Let Ωr = φ−1(D(0, r)), 0 < r < 1, be the pre-image of the disc
D(0, r).

a) Show that

u(z) =
1

2π

ˆ
∂Ωr

u(ζ)
|φ(ζ)|2 − |φ(z)|2

|φ(ζ) − φ(z)|2
|φ′(ζ)|
|φ(ζ)|

|dζ |, z ∈ Ωr.

b) Show that at z0 the above formula can be written in the form

u(z0) =
1

2π

ˆ
∂Ωr

u(ζ)
|φ′(ζ)|
|φ(ζ)|

|dζ | = −
1

2π

ˆ
∂Ωr

u(ζ)
∂

∂ν
ln |φ(ζ)| |dζ |,

where ν is the inner unit normal to Ωr.

Problem 1.6.5. Let Ω be a simply connected domain, Ω , C. For any w ∈ Ω let φw : Ω → D be the
conformal map such that φw(z) = 0 and φ′w(z) > 0. Define the function

G(z,w) = − ln |φw(z)|, w, z ∈ Ω, z , w.

Show that for any w ∈ Ω the function z → G(z,w) is positive and harmonic in Ω \ {w}. Furthermore, it
has the properties limz→w G(z,w) = +∞ and limz→ζ G(z,w) = 0 for any ζ ∈ ∂Ω.

Problem 1.6.6. Show that a sub-harmonic function on a connected open set cannot reach a local maxi-
mum unless it is identically constant. Show that unlike harmonic functions, sub-harmonic functions can
reach a local minimum without being constant. Hint: Think of a sub-harmonic function on the real line
that is constant on (−∞, 0).

Problem 1.6.7. Show that if h : Ω → R is harmonic and φ : R → R is a convex function , then φ ◦ h
is subharmonic. Hint: Use Jensen’s inequality: if φ is a convex function on R, then φ

(
1

b−a

´ b
a f (t)dt

)
≤

1
b−a

´ b
a (φ ◦ f )(t)dt valid for any a < b and f a continuous function on [a, b].

Problem 1.6.8. a) Show that if f is holomorphic on an open set Ω and p > 0, then | f |p is subharmonic.
b) Now suppose that f is merely harmonic. Prove that | f |p is subharmonic when p ≥ 1, but that in

general it fails to be subharmonic for p < 1.
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1.7. Homework

Problem 1.7.1. Prove that in the definition of a sub-harmonic function it is enough to consider harmonic
functions that are continuous on the closed disc and harmonic inside.

Problem 1.7.2. Let u : U → R be a continuous function. Show the equivalence of the next properties.
(a) u(z0) ≤ 1

πr2

´
D u(z) dA(z) for any disc D = D(z0, r) ⊂ U and r < r0 = r0(z0), where dA = dxdy.

(b) u is sub-harmonic.

Problem 1.7.3. Prove that if is f ∈ C2(U) on an open set U ⊂ C and f is subharmonic, then 4 f ≥ 0 on
U. Hint: To check the inequality at 0 ∈ U (this is enough!) use Taylor’s formula to obtain

1
πr2

ˆ
D(0,r)

u(z) − u(0) dxdy =
r2

8
4u(0) + o(r2).

For the converse see the next problem.

Problem 1.7.4. Let f : U → R be a C2 function on an open set in U ⊂ C.
(a) Recall that if ∆ f > 0 at a point P, then f cannot have a local maximum at P. Use this observation

to deduce that if ∆ f > 0 everywhere on U, then f is subharmonic.
(b) If ∆ f ≥ 0 everywhere, then, for each ε > 0, ∆( f + ε|z|2) > 0 everywhere. Use a limiting argument

and part (a) to deduce that if ∆ f ≥ 0 everywhere, then f is subharmonic.

Problem 1.7.5. Show that if the bounded open set U has the outer segment property at the boundary
point z0 ∈ ∂U, i.e, there is a point z1 ∈ C so that the closed segment I connecting z0 to z1 has the property
I ∩ U = {z0} then z0 is a regular point.
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1.8. Homework

Problem 1.8.1. Determine the convergence of the product
∞∏

k=1

(
1 +

(−1)k

√
k

)
.

Problem 1.8.2. Let an ∈ C, n ∈ N, and set Πn =
∏n

k=1(1 + ak) and Pn =
∏n

k=1(1 + |ak|). Show that

Pn ≤ exp(|a1| + · · · + |an|) and |Πn − 1| ≤ Pn − 1.

Problem 1.8.3. Show that if 0 ≤ an < 1 and
∑∞

n=1 an is a divergent series, then

lim
n→∞

n∏
k=1

(1 − ak) = 0.

Problem 1.8.4. Let Π =
∏∞

k=1(1+ak) be an absolutely convergent product. Show that for any reordering
function Q : N→ N a bijection of N we have

Π =

∞∏
k=1

(1 + aQ(k)).

Problem 1.8.5. Determine the regions of convergence and absolute convergence of the product
∞∏

k=1

(1 + zk).

Problem 1.8.6. Determine the regions of convergence and absolute convergence of the product
∞∏

k=1

(1 −
zk

k
).

Problem 1.8.7. Determine the region of convergence of the product
∞∏

k=1

∣∣∣∣∣1 − z
k

∣∣∣∣∣ .
Problem 1.8.8. Determine the region of convergence of the product

∞∏
k=1

(
1 + z3k)

.

Problem 1.8.9. Suppose
∑
|an − bn| < ∞. Determine the largest open set Ω for which the product

∞∏
k=1

z − an

z − bn

converges normally on Ω.
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1.9. Homework

Problem 1.9.1. Find an entire function with zeros of multiplicity one at the points an = n2.

Problem 1.9.2. Show that
∏∞

n=2

(
1 − 1

n2

)
= 1

2 .

Problem 1.9.3. Show that f (z) =
∏∞

n=1

[(
1 − z

n

)
ez/n

]
and g(z) =

∏∞
n=1

[(
1 + z

n

)
e−z/n

]
define entire

functions.

Problem 1.9.4. Show that for some entire function h(z) we have

sin πz = z f (z) g(z) eh(z),

where f and g are the functions from the Problem 1.9.3. (Actually eh ≡ π.)

Problem 1.9.5. Show that

π cot πz = h′(z) +
1
z

+

∞∑
n=−∞

(
1

z − n
+

1
n

)
,

where h is the function from Problem 1.9.4. Here the
∑

is over n , 0.

Problem 1.9.6. Let an be a sequence of non-zero complex numbers without an accumulation point in the
complex plane. Let k be the largest non-negative integer for which the series

∞∑
n=1

1
|an|

k

diverges. The the function

f (z) =

∞∏
n=1

{(
1 −

z
an

)
exp

(
z

an
+ · · · +

1
k

zk

ak
n

)}
is an entire function with zeros given by the sequence {an}. In particular, when k = 0 we obtain

f (z) =

∞∏
n=1

(
1 −

z
an

)
is an entire function with zeros precisely given by the sequence an. Note: Equivalently, k is the smallest
integer for which the series

∞∑
n=1

1
|an|

k+1

converges.

Problem 1.9.7. Suppose thatan is a sequence of distinct complex numbers, lim |an| = in f t and that the
An are arbitrary complex numbers. Show that there exists an entire function f such that f (an) = An.
Hint: Let g be an entire function with simple zeros at an. Show that∑ g(z)

z − an
·

An

g′(an)
eγn(z−an)

converges for some choice of the numbers γn.

Problem 1.9.8. Show that the field generated by all entire functions is the field of all meromorphic
functions on C. In other words, if q(z) is a meromorphic function on C, then q(z) = f (z)/g(z) for some
entire functions f and g.



10 D. VASSILEV

1.10. Homework

Problem 1.10.1. a) Suppose that f , g ∈ A(Ω) have no common zeros in the open set Ω. Show that there
are u, v ∈ A(Ω) such that

f u + gv = 1.
b) Prove the result of part a) for finitely many functions f1, . . . , fn ∈ A(Ω) without a common zero.

Problem 1.10.2. Show that every finitely generated maximal ideal m of the ring A(Ω) is of the form
mλ = { f ∈ A(Ω) | f (λ) = 0} for some λ ∈ Ω.

Problem 1.10.3. Let Z be an infinite discrete subset of Ω.
a) Show that the set I of all functions vanishing at all but finitely many points of Z is an ideal of A(Ω).
b) Show that there is no point of Z at which all functions in I have a zero.

Problem 1.10.4. Show that the ring A(Ω) has maximal ideals which are not of the form mλ. Hint:
Consider the maximal ideal m containing I from Problem 1.10.3.

Problem 1.10.5. Find a meromorphic function with simple poles at every integer number and residue
one.

Problem 1.10.6. Show that

f (z) = π cot πz −
1
z
−

∞∑
n=1

(
1

z − n
+

1
n

)
−

∞∑
n=1

(
1

z + n
−

1
n

)
is an entire function which is periodic f (z) = f (z + 1). Hint: Show that f (z + 1) − f (z) ≡ 0 by grouping
terms (carefully).

Problem 1.10.7. Show that the function f defined in Problem 1.10.6 vanishes identically. For this you
can proceed by following either of the following steps(do both but turn-in one solution).
a) Let Γn be the square with vertices

(
n + 1

2

)
+ i

(
n + 1

2 )
)

and its reflections across the coordinate axes
and the origin. Show that

1
2πi

˛
Γn

cot πζ
ζ(ζ − z)

dζ =
cot(πz)

z
−

1
πz2 +

1
π

n∑
j=1

1
j( j − z)

+
1
π

n∑
j=1

1
j( j + z)

.

Hint: See Example 4.6.6. or your notes from last semester.
b.1) Show that

f ′(z) = −
π2

sin2 πz
+

+∞∑
n=−∞

1
(z − n)2 .

b.2) Show that f ′ is bounded on
{
z | |<(z)| ≤ 1

2

}
.

b.3) Show that
π2

sin2 πz
=

+∞∑
n=−∞

1
(z − n)2 .

b.4) Show that f ≡ 0 using that f is an odd function.

Problem 1.10.8. Show that

sin πz = πz f (z) g(z) = πz
∞∏

n=1

(
1 −

z2

n2

)
,

where f and g are the functions from the Problem 1.9.3.
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1.11. Homework

Problem 1.11.1. Let f be holomorphic in a neighborhood of the closure of the disk D(0,R), f (0) , 0,
and n(r) be the number of zeros (counted with their multiplicities) inside the circle |z| = r, r < R. Show
that ˆ R

0

n(r)
r

dr =
∑
|ak |<R

ln
∣∣∣∣∣ R
ak

∣∣∣∣∣ ,
where ak are the zeros repeated with their multiplicities.

Problem 1.11.2. Let f be holomorphic in a neighborhood of the closure of the disk D(0,R), f (0) , 0,
and n(r) be the number of zeros (counted with their multiplicities) inside the circle |z| = r, r < R. Show
that ˆ R

0

n(r)
r

dr =
1

2π

ˆ 2π

0
ln | f (Reiθ)| dθ − ln| f (0)|.

Problem 1.11.3. Let f be holomorphic in a neighborhood of the closure of the disk D(0,R), f (0) , 0,
and n(r) be the number of zeros (counted with their multiplicities) inside the circle |z| = r, r < R. If

M(R) =
1

2π

ˆ 2π

0
| f (Reiθ)| dθ

on |z| = R show that

n(R/2) ≤
1

ln 2
ln

M(R)
| f (0)|

.

Problem 1.11.4. Let f be holomorphic in a neighborhood of the closure of the unit disk D, | f (0)| = 1
and | f (z)| ≤ 17 on |z| = 1. Give an estimate of the number of roots inside D(0, 1/2).

Problem 1.11.5. Suppose an ∈ D and
∑

(1 − |an|) = ∞. Show that if f , g ∈ H∞(D) and f (an) = g(an)
then f ≡ g on D.

Problem 1.11.6. Prove the Jensen-Poisson formula: if f is holomorphic in a neighborhood of the closure
of the disk D(0, r), zo ∈ D(0, r) and f (zo) , 0 then

ln | f (zo)| +
n∑

k=1

ln

∣∣∣∣∣∣ r2 − ākzo

r(zo − ak)

∣∣∣∣∣∣ =
1

2π

ˆ 2π

0
<

{
reiθ + zo

reiθ − zo

}
ln | f (reiθ)| dθ

where ak are the zeros of f each repeated as many times as its multiplicity.

Problem 1.11.7. Let f is holomorphic in a neighborhood of the closure of the unit disk D and f (zo) , 0.
Show:

a)

| f (0)| ≤ |a1 . . . ak| ·
1

2π

ˆ 2π

0
| f (eiθ)| dθ.

b) if | f (z)| ≤ M on |z| = 1 then
| f (0)| ≤ |a1 . . . ak| · M.
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1.12. Homework

Problem 1.12.1. Show that f (z) = 1/z cannot be approximated uniformly on the unit circle by holomor-
phic polynomials.

Problem 1.12.2. Show that if the Taylor series of an entire function f converges uniformly on C to f ,
then f is a polynomial.

Problem 1.12.3. Let K = D(4, 1) ∪ D(−4, 1) and L = D(4i, 1) ∪ D(−4i, 1). Construct a sequence { f j} of
entire functions which converges uniformly to 1 on K and uniformly to −1 on L.

Problem 1.12.4. Show that if Ω ⊂ C is an open set and f ∈ A(Ω), then there exists a sequence {rn} of
rational functions with poles in Ĉ \Ω such that rn converges normally to f .

Problem 1.12.5. Let u ∈ C ([0, 1] × K) where K is a compact subset of C. Show that

S n(z) =
1
n

n∑
j=1

u( j/n, z)

converges uniformly and find its limit.

Problem 1.12.6. Let K be a compact for which C \ K is not connected. Show that there is a function
f holomorphic in a neighborhood of K which cannot be approximated uniformly on K by polynomials.
Hint: Take a zo which belongs to a bounded connected component of Kc. Take a polynomial p so that

|(z − zo)p(z) − 1| < 1.

Use the maximum principle to see that this inequality holds true at zo as well (in fact in the component
containing zo).

Problem 1.12.7. Using Runge’s theorem construct a function f ∈ A(D) which has no radial limit at any
boundary point, i.e.,

lim
r→1−

f (reiθ)

does not exist for all θ.

Problem 1.12.8. ∗ Construct an entire function with the following property: given any bounded open set
U with a connected complement Ĉ \U and g ∈ A(U) there is a sequence of positive integers nk such that
Fk(z) = F(z + nk) converges uniformly to g on U.
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1.13. Homework

Problem 1.13.1. Show that for two lattices we have Λ(ω1, ω2) = Λ(ω′1, ω
′
2) iff there is a matrix A ∈

GL(2,Z) with det A = ±1 such that (
ω′1
ω′2

)
= A

(
ω1
ω2

)
.

Problem 1.13.2. a) Consider S L(2,R) =

{
A =

(
a b
c d

)
: a, b, c, d ∈ R, det A = 1

}
. Using your knowl-

edge of Aut(D) show that the group of automorphisms of the upper half-plane H = {z ∈ C : =z > 0} is
the group

Aut(H) = S L(2,R)/{±I}
de f
= PS L(2,R).

Write explicitly the isomorphism.
b) Show that

Aut(Ĉ) = S L(2,C)/{±I}
de f
= PS L(2,C).

Write explicitly the isomorphism.

Problem 1.13.3. Show that Γ, the congruence group mod 2 (⊂ Aut(H)), is generated by

µ(z) =
z

2z + 1
and ω(z) = z + 2.

Definition. Let z2, z3, z4 be three distinct points of Ĉ. Consider the function

z 7→ S z2, z3, z4(z) =
z − z3

z − z4
·

z2 − z4

z2 − z3

which is called the cross ratio of z, z2, z3, z4. If z2, z3 or z4 is∞ the formula is defined by taking the limit
of the above formula when the corresponding point approaches ∞. It is customary to use the notation
(z, z2, z3, z4) for S z2, z3, z4(z).

Problem 1.13.4. a) Show that the cross ratio (z, z1, z2, z3) is the unique linear fractional transformation
which sends z1, z2, z3 to 1, 0,∞ respectively.

b) Show that the cross ratio is invariant under linear fractional transformations, i.e., if T ∈ Aut(Ĉ)
then (z, z1, z2, z3) = (Tz,Tz1,Tz2,Tz3).

c) The cross ratio (z, z1, z2, z3) ∈ R iff the four points z, z1, z2, z3 lie on a circle or on a straight line.

Problem 1.13.5. Show that the right half W′ of the fundamental domain W of Γ can be mapped homeo-
morphically onto H so that 0, 1,∞ stay fixed. Hint: Use Carathéodory’s theorem.

Problem 1.13.6. Suppose f is a doubly periodic meromorphic function on C with periods 1 and i so that
f is holomorphic on C \ {m + ni | m, n ∈ Z}. Prove that the residue of f at each of the poles is zero.

Problem 1.13.7. Let Λ = Λ(ω1, ω2) with ω2/ω1 < R be a lattice. For a ∈ C let

Φ = Φa = {a + t1ω1 + t2ω2 | 0 ≤ t1, t2 < 1}

be the so called fundamental parallelogram at a.
a) Show that if δ ≥ diam(Φ) then

n − 1 − δ ≤ |z| ≤ n + δ, z ∈ An.

b) Show that there exists a constant M depending on the area and diameter of Φ such that for n ∈ N
the annulus An = {z ∈ C | n − 1 ≤ |z| < n} contains at most Mn lattice points. Hint: Consider the
fundamental parallelograms Φa, a ∈ Λ that intersect An.

c) Show that if k > 2 then
∑
ω∈Λ′

1
|ω|k

, where Λ′ = Λ \ {0}, converges. Hint: Either use part b) or show
that inf |mω1 + nω2|/(|m| + |n|) > 0 and then write the sum as a suitable iterated sum.

Problem 1.13.8. Let Λ = Λ(ω1, ω2) with ω2/ω1 < R be a lattice. Construct a function which has simple
zeros at all points of Λ (the Weirstrass sigma function). Hint: Use Problem 1.13.7 and Problem 1.9.6



14 D. VASSILEV

Problem 1.13.9. Let φ ∈ A(D) be one-to-one on D. Show that φ is a proper map, i.e., for every compact
K ⊂ G = f (D) the pre-image φ−1(K) is a compact of D. In particular for every sequence of points zn ∈ D
which converges to a boundary point zo ∈ ∂D the sequence wn = φ(zn) converges to ∂G in the sense that
wn leaves every compact contained in G.

Problem 1.13.10. Let φ ∈ A(D) ∩ C(D̄) be one-to-one on D. Show that if φ is injective on D then φ

is injective on D. Hint: Show that we only need to check injectivity on ∂D. For the latter argue by
contradiction: if φ(ζ) = φ(ζ′) then φ has to be constant on one of the arcs between ζ and ζ′ which can
be seen by considering the image of the sector defined by 0, ζ and ζ′.
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Part 2. Homework Problems, MATH561, F2010
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2.1. Homework

Problem 2.1.1. Prove the following identity for any z̄ · w , 1,

1 −
∣∣∣∣∣ z − w
1 − zw̄

∣∣∣∣∣2 =
(1 − |z|2)(1 − |w|2)
|1 − z̄w|2

.

Problem 2.1.2. Prove that the function φ(z) = i 1−z
1+z maps the open unit disc one-to-one onto the open

upper half-plane.

Problem 2.1.3. Let |z0| < 1. Prove that the function ψ(z) =
z0−z
1−z̄0z has the following properties:

(1) ψ is holomorphic.
(2) ψ(0) = z0 and ψ(z0) = 0;
(3) the unit circle is mapped onto the unit circle;
(4) maps the open unit disc D one-to-one and onto itself.

Problem 2.1.4. Show that a real-valued holomorphic polynomial must be identically constant.

Problem 2.1.5. Prove that 4(| f |2) = 4
∣∣∣∣∂ f
∂z

∣∣∣∣2 if f is a holomorphic function.

Problem 2.1.6. Prove that if f ∈ C2 is holomorphic and non-vanishing, then ln | f | is harmonic.

Problem 2.1.7. Show that the function f (z) = 1/z is holomorphic on the annulus A = {z ∈ C : 1 < |z| <
2}, but does not have a holomorphic antiderivative on A.

Problem 2.1.8. Write the Cauchy-Riemann equations in polar coordinates.

Problem 2.1.9. Define at every point z ∈ R2 a linear map Jz : Tz R
2 → Tz R

2 given by

Jz

(
∂

∂x

∣∣∣∣
z

)
=

∂

∂y

∣∣∣∣
z
, Jz

(
∂

∂y

∣∣∣∣
z

)
= −

∂

∂x

∣∣∣∣
z
,

i.e., Jz is a c.c.w. rotation by 90o. Suppose f : R2 → R2, f (z) = (u(z), v(z)), is a smooth map.
We showed that f∗ ◦ Jz = J f (z) ◦ f∗ at every z ∈ R2 iff f is a holomorphic function in the sense that it

satisfies the Cauchy-Riemann equations.
(a) Derive the system satisfied by the derivatives of f∗ ◦ Jz = −J f (z) ◦ f∗.
(b) What can you say if Jz was defined to be a c.c.w rotation by angle φ instead of π/2 and should we

have a continuum of complex analysis qualifying exams?
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2.2. Homework

Problem 2.2.1. Let U1 ⊂ U2 ⊂ . . . be a sequence of connected open subsets of C and U be their union.
Show that if f ∈ A(U) and for every j, the restriction of f to U j has a holomorphic antiderivative, then
f has a holomorphic antiderivative on U.

Problem 2.2.2. Find all solutions of z1+i = 9.

Problem 2.2.3. (a) Show that the function cos z = eiz+e−iz

2 is holomorphic.
(b) Describe the holomorphic map z 7→ cos z by showing images of some suitable curves in the

complex plane, for example, lines parallel to the coordinate axes. In particular, show that the vertical
strip 0 < x < π is mapped one-to-one and onto the region C \ ((−∞,−1] ∪ [1,+∞)).

(c) Is cos z, z ∈ C, a bounded function? Show that | cos(x + iy)| ≤ ey for y ≥ 0.

Problem 2.2.4. (a) Let sin z = eiz−e−iz

2i . Find ∂sin z
∂z and ∂sin z

∂z̄ .
(b) Show that (sin z)′ = cos z.

Problem 2.2.5. (a) Show that the function cosh z = ez+e−z

2 and sinh z = ez−e−z

2 are holomorphic. Find
their complex derivatives.

(b) Describe the holomorphic map z 7→ cosh z by showing images of some suitable curves in the
complex plane, for example, lines parallel to the coordinate axes.

Problem 2.2.6. (a) Write the complex polynomial P(z, z̄) = z3 − z̄2z in real notation, i.e., in terms of x
and y, z = x + iy.

(b) Write the polynomial F(x, y) = (x − y2) + i(x + y2) as a polynomial in z and z̄.

Problem 2.2.7. If possible, find a holomorphic function f = u + iv with the given real part.
(a) u = x2 − y2.
(b) u = cosh x cos y.
(c) u = x3.

Problem 2.2.8. Find all holomorphic functions w = f (z) defined on C whose image is contained in the
coordinate axes uv = 0, w = u + iv.
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2.3. Homework

Problem 2.3.1. Show that if h is a complex valued harmonic polynomial, then h can be written in the
form h(z) = p(z) − q(z), where p and q are holomorphic polynomials

Problem 2.3.2. a) Let C be the unit circle in C. Find a holomorphic function S (z) defined in a neighbor-
hood of C (all point in an annulus around C) so that S (z) = z̄ for every z ∈ C.

b) Show that |S ′(z)| = 1 for z ∈ C.

Problem 2.3.3. Suppose γ is a smooth arc in C for which there is a holomorphic function S (z) defined
near γ and such that S (z) = z̄ for every z ∈ γ. Let zo ∈ γ and k = S ′(zo) ∈ C.

a) Show that |S ′(z)| = 1 for z ∈ γ.
b) Show that the equation of the tangent line to γ at zo can be written as

z̄ = S ′(zo) · (z − zo) + z̄o.

c) Show that 1
2 arg S ′(zo) is the angle the tangent to γ at zo makes with the real axis (so the slope of

the tangent is determined).

Problem 2.3.4. Suppose f and g are C1 complex valued functions (not necessarily holomorphic!) and
∂ f
∂z =

∂g
∂z for all z ∈ C. How are f and g related?

Problem 2.3.5. Compute the following line integrals.
a)
´
γ

z2

z−1 dz, where γ is the circle of radius 3 centered at the origin and c.c.w. orientation.
b)
´
γ

z
(z+4)(z−1+i) dz, where γ is the circle of radius 1 centered at the origin and c.c.w. orientation.

c)
´
γ z̄ + z2z̄ dz where γ is the unit square of side of length two, centered at (0,0) with clockwise

orientation.

Problem 2.3.6. Show that if F is holomorphic and F ∈ C2, then f (z) = F′(z) is also holomorphic.

Problem 2.3.7. Let f : C→ C be a C1(C) function (so f is not given to be holomorphic!). Suppose that
for any piecewise linear curve γ : [a, b]→ C satisfying γ(a) = γ(b) it holds that

´
γ f (z)dz = 0.

(a) Prove that f has a C2 holomorphic antiderivative F, i.e., there is F ∈ C2(C), ∂F
∂z̄ = 0 and F′ = f .

You might want to fix a point zo ∈ C and consider F(z) =
´
γ f (ζ) dζ where γ is a suitable curve connecting

zo to z.
(b) Show that f is holomorphic.

Problem 2.3.8. Let ϕ be a real valued C1 function, ϕ : C → R, for which the integral
´ ´
R2 |∇ϕ|2dA

exists, where dA is the area element in the plane. Let z = f (w) be any holomorphic function on C and
ψ(w) = ϕ( f (w)). Show that ˆ ˆ

R2
|∇ϕ|2dA =

ˆ ˆ
R2
|∇ψ|2dA.

You might want to recall that |∇ϕ|2 = 4|∂ϕ∂z |
2 and dz ∧ dz̄ = −2idx ∧ dy in order to do the verification in

one or two lines.
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2.4. Homework

Problem 2.4.1. Prove that the Cauchy integral formula

f (z) =
1

2πi

ˆ
∂D

f (z)
ζ − z

dζ, z ∈ D

holds for any function f ∈ C(D) ∩ A(D), where D is the unit disc. The point is that f is not a C1(D̄)
function. Notice that you can use the proven formula on every disc D(0, r), 0 < r < 1, and its boundary.

Problem 2.4.2. Let D(zo, r) denote the open disc centered at zo and radius r. Compute the integrals:
a) ˆ

∂D(8i,2)
z3 dz;

b) ˆ
∂D(6+i,2)

(z̄ − i)2 dz;

c)
1

2πi

ˆ
∂D(0,1)

1
z + 2

dz;

d)
1

2πi

ˆ
∂D(0,2)

1
z + 1

dz.

Problem 2.4.3. Let f be a continuous function on ∂D– the boundary of the unit circle oriented c.c.w. Let

F(z) =

{
f (z), |z| = 1;
1

2πi

´
∂D

f (ζ)
ζ−z dζ, |z| < 1.

Is it true that F ∈ C(D̄)? You might want to consider f (z) = z̄.

Problem 2.4.4. Let D ⊂ C be an open disc with center 0. Suppose that both f and g are holomorphic
functions on D \ 0. Show that if ∂ f

∂z =
∂g
∂z on D \ 0, then f and g differ by a constant.

Problem 2.4.5. Calculate
´
γ

dζ
(ζ−1)(ζ−2i) , where γ is the circle with center 0, radius 4, and counterclock-

wise orientation.

Problem 2.4.6. Let f : C→ C be C1 function. Suppose that for any piecewise linear curve γ : [a, b]→ C
satisfying γ(a) = γ(b) it holds that

´
γ f (z) dz = 0.

(a) Prove that there is a holomorphic function F on C such that ∂F
∂z = f .

(b) Show that f is holomorphic.



20 D. VASSILEV

2.5. Homework

Problem 2.5.1. (a) Prove that if U ⊂ C is open and connected and if p, q ∈ U, then there is a piecewise
C1 curve from p to q consisting of horizontal and vertical line segments. [Hint: Show that, with p ∈ U
fixed, the set of points q ∈ U that are reachable from p by curves of the required type is both open and
closed in U.]

(b) Let f ∈ C(C) and holomorphic on the complement of the coordinate axes. Prove that f is actually
holomorphic on C.

Problem 2.5.2. Show that the conclusion of Morera’s theorem still holds if it is only assumed that the
integral of f around the boundary of every rectangle in U or around every triangle in U is 0.

Problem 2.5.3. Let γ : [0, 1]→ C be any C1 curve. Define

f (z) =

ˆ
γ

1
ζ − z

dζ.

(a) Prove that f is holomorphic on C \ Tγ, where Tγ is the trace (image) of γ.
(b) In case γ(t) = t, show that there is no way to extend f to a continuous function on all of C.

Problem 2.5.4. Let γ be the unit circle |z| = 1 oriented c.c.w. and

f (z) =

ˆ
γ

1
ζ − z

dζ.

Find f ′′(0).

Problem 2.5.5. Explain why the following string of equalities is incorrect:

d2

dx2

ˆ 1

−1
ln |x − t| dt =

ˆ 1

−1

d2

dx2 ln |x − t| dt =

ˆ 1

−1

−1
(x − t)2 dt.

Problem 2.5.6. Show that if f is an entire function such that for some real number M > 0 and positive
integer k we have

| f (z) ≤ M|z|k

for all |z| ≥ 1, then f is a polynomial of degree at most k.

Problem 2.5.7. Evaluate the following integrals:
(a)
´
|z|=2

2z
(z−3)2 dz;

(b)
´
|z|=1

z
z(z−3) dz;

(c)
´
|z+2|=1

z
4z−z2 dz;

(d)
´
|z|=2

2z
z(z−3) dz;
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2.6. Homework

Problem 2.6.1. Show that if the sequence fn ∈ C(U : C), U ⊂ C converges locally uniformly, then the
limit function f (z) = limn→∞ fn(z), z ∈ U is a continuous function on U, i.e., f ∈ C(U : C).

Problem 2.6.2. Show the mean value property for a holomorphic function, i.e., if f is holomorphic in
some open set U then for any disc D = D(z0,R) ⊂ U we have

f (0) =
1

2πR

ˆ
∂D

f (ζ) |dζ |.

Note: |dζ | is the arc-length parameter on the circle.

Problem 2.6.3. Let f (z) =
∑∞

n=0 an(z − z0)n be the holomorphic function defined on the disc of conver-
gence around z0 of the power series (suppose the disc is of non-zero radius). Show that

an =
f (n)(z0)

n!
.

Problem 2.6.4. Determine the disc of convergence of each of the following series.
(a)

∑∞
k=3 kzk;

(b)
∑∞

k=2 kln k(z + 1)k;

(c)
∑∞

k=2(ln k)ln k(z − 3)k;
(d)

∑∞
k=0 p(k)zk where p is some fixed polynomial;

(e)
∑∞

k=1 3k(z + 2i)k;

(f)
∑∞

k=2
k

k2+4 zk

(g)
∑∞

k=0 ke−kzk;

(h)
∑∞

k=1
1
k! (z − 5)k;

(i)
∑∞

k=1 k−kzk.

Problem 2.6.5. The functions fk(x) = sin(kx) are C∞ and bounded by 1 on the interval [−1, 1] yet their
derivatives at 0 are unbounded. Contrast this situation with the functions fk(z) = sin(kz) on the unit disc.
The Cauchy estimates provide bounds for |∂ fk

∂z (0)| . Why are these two examples not contradictory?

Problem 2.6.6. Suppose that f : D(0, 1) → C is holomorphic and that | f (z)| ≤ 2, z ∈ D(O, 1). Derive
an estimate for

∣∣∣∣d3 f
dz3 ( i

3 )
∣∣∣∣.

Problem 2.6.7. Show that if f : D(0,R)→ C is holomorphic, then

| f (0)|2 ≤
1
πR2

ˆ
D(0,R)

| f (z)|2 dxdy.

Hint: The function f 2 is holomorphic too. Use the Cauchy integral formula to obtain on any circle
|ζ | = r < R to obtain a bound from above of | f (0)|2 by a constant multiple of

´
|ζ |=r | f (ζ)|2 |dζ |. Then

use that in polar coordinates dxdy = rdφ dr with rdφ = |dζ | – the arc-length parameter on the circle of
radius r.
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2.7. Homework

Problem 2.7.1. Show that a uniformly convergent sequence of continuous functions defined on some
subset A ⊂ C have a limit which is a continuous function.

Problem 2.7.2. Let K1 b K2 b Ω, where Ω is an open subset of C. Show that there exists a constant
C = C(K1,K2,Ω) such that for any f ∈ A(Ω) we have

max
z∈K1
| f ′(z)| ≤ C max

z∈K2
| f (z)|.

Problem 2.7.3. Show that if f ∈ A(C) and the Taylor series of f centered at 0 converges uniformly to f
on C, then f is a polynomial.

Find the power series expansion for each of the following holomorphic functions about the given
point. Determine the radius of convergence of each series.

Problem 2.7.4. f (z) = 1/(1 + 2z), P = 0.

Problem 2.7.5. f (z) = z2/(4 − z), P = i.

Problem 2.7.6. f (z) = 1/z, P = 2 − i.

Problem 2.7.7. f (z) = (z − 1
2 )/(1 − z

2 ), P = 0.

Problem 2.7.8. f (z) = sin z
1+z2 , P = 0.

Problem 2.7.9. Suppose f ∈ A(D), D = D(0, 1). Is it possible to have | f (n)(0)| ≥ enn!?

Problem 2.7.10. (a) For n, m ∈ N compute
´
|z|=r znz̄m |dz|.

(b) Let f ∈ A(D), D = D(0, 1), and f (z) =
∑∞

n=0 anzn. Prove Parseval’s equality

1
2π

ˆ
|z|=r
| f (z)|2 |dz| =

∞∑
n=0

|an|
2r2n

valid for any 0 < r < 1.
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2.8. Homework

Problem 2.8.1. For a natural number q let z1/q be the q-th root function, which is real and positive for
z-real and positive, i.e., if z = reiφ, −π ≤ φ < π, then z1/q = q√r e−i φq .

(a) Let α = p/q–rational number. Show that
dn

dzn (zα) = α(α − 1) . . . (α − n + 1)zα−n, z ∈ C \ {(−∞, 0]}.

In particular z 7→ zp/q is a holomorphic function on C \ {(−∞, 0]}.
(b) Let α = 1/2. Show that

zα =

∞∑
n=0

α(α − 1) . . . (α − n + 1)
n!

(z − 1)n, |z − 1| < 1.

This is the Taylor series of z1/2 centered at z = 1.
(c) Let α = 1/2. Show that

(1 + z)α =

∞∑
n=0

α(α − 1) . . . (α − n + 1)
n!

zn, |z| < 1.

This is the Taylor series of (1 + z)1/2 centered at z = 0.

Problem 2.8.2. Let f ∈ A(Ω̄), Ω–open bounded subset of C. Show that f has at most finitely many zeros
in Ω̄.

Problem 2.8.3. Using the open mapping theorem, show that if f ∈ A(Ω), Ω–open subset of C, then we
have the following Maximum Principle.

If | f (z)| has a local maximum M at z0 ∈ Ω, then f ≡ M. As usual, z0 is a point of local maximum of
the modulus of f if | f (z)| ≤ | f (z0)| for all z in some neighborhood D of z0. Hint: Note that w ∈ f (D) must
satisfy |w| ≤ | f (z0)|.

Problem 2.8.4. Show that if f ∈ A(Ω), Ω–open subset of C, then we have the following Minimum
Principle. If | f (z)| has a local minimum m at zo ∈ Ω, then f ≡ m or m = 0. Thus, the modulus of a non-
constant holomorphic function cannot achieve a strictly positive local minimum. (Minimum principle)

Problem 2.8.5. Let f ∈ A(Ω) ∩ C(Ω̄), Ω–open bounded subset of C. Show the following versions of the
maximum/ minimum principles.

(a) The maxz∈Ω̄ | f (z)| is achieved on ∂Ω, thus

| f (z)| ≤ max
ζ∈∂Ω
| f (ζ)|, z ∈ Ω̄.

(b) The minz∈Ω̄ | f (z)| is achieved on ∂Ω if f has no zeros in Ω.

Problem 2.8.6. Show that the claim of Problem 2.8.5(b) is not true if we drop the condition f (z) , 0,
z ∈ Ω.

Problem 2.8.7. Show that if f ∈ A(D), D = D(0, 1) with | f (z)| = 1, z when |z| = 1, then D ⊂ f (D).

Problem 2.8.8. (a) Show that there is no universal r > 0 such that for all f ∈ A(D), D = D(0, 1)
satisfying f (0) = 0 we have that D(0, r) ⊂ f (D). Hint: fn(z) = z

2n might be helpful.
(b) Show that fn(z) = n(ez/n − 1) is a better example since f ′n(0) = 1.
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2.9. Homework

Problem 2.9.1. Find the maximum of | f (z)| on D̄ for f (z) = z3

z−5 .

Problem 2.9.2. Show that if we have a sequence of functions fn ∈ C(Ω̄)∩A(Ω) which converges uniformly
on ∂Ω then fn converges uniformly to a function f on Ω̄ and f ∈ C(Ω̄) ∩ A(Ω). Hint: Use the maximum
principle.

Problem 2.9.3. Show that if f ∈ A(Ω), then either f is constant or< f cannot have a local maximum in
Ω.

Problem 2.9.4. Show that if fn ∈ A(Ω) is a sequence of nowhere vanishing functions, fn(z) , 0 for z ∈ Ω,
which converges locally uniformly to a function f , then either f ≡ 0 or f (z) , 0 for z ∈ Ω.

Problem 2.9.5. Show that if fn ∈ A(Ω) is a sequence of one-to-one functions, which converge locally
uniformly to a function f , then either f ≡ const or f is also one-to-one.

Problem 2.9.6. Show that the linear fractional transformations of the form

f (z) = λ
z − c
1 − c̄z

where |λ| = 1 and c ∈ D form a group of biholomorphisms of the unit disc D.

Problem 2.9.7. Show that the group defined in the last problem is Aut(D). Hint: Recall the proof for the
group S U(1, 1)/{±I} or see directly that the group in this problem is S U(1, 1)/{±I}.

Problem 2.9.8. Show that if f ∈Aut(D), then we have equalities in the Schwarz-Pick inequalities.

Problem 2.9.9. For z1, z2 ∈ D let

ρ(z1, z2) = tanh−1
(∣∣∣∣∣ z1 − z2

1 − z1z̄2

∣∣∣∣∣) .
a) Show that if f ∈Aut(D), then ρ ( f (z1), f (z2)) = ρ(z1, z2) for z1, z2 ∈ D. Hint: Use Problem 2.9.8.
b) Show that ρ defines a distance function on D. This is the Poincare distance of D. Hint: For the

triangle inequality,reduce to the case ρ(z1, z2) ≤ ρ(z1, 0)+ρ(0, z2) = ρ(|z1|, 0)+ρ(0, |z2|) using that Aut(D)
is transitive and (a). Use also that tanh−1

(
r1+r2
1+r1r2

)
= tanh−1(r1) + tanh−1(r2) for r1, r2 ∈ [0, 1].

Problem 2.9.10. a) Show that if f : D→ D is holomorphic then f is a contraction on D considered with
the Poincare distance. Hint: Use Schwarz-Pick.

b) Show that if f : D → D is holomorphic then f ∈Aut(D) iff f is an isometry of D considered with
the Poincare distance.
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2.10. Homework

Problem 2.10.1. Determine the type of singularity of each of the following function at z = 0.
a) f (z) = 1

z ; b) f (z) = sin 1
z ; c) f (z) = 1

z3 .

Problem 2.10.2. Determine the type of singularity of each of the following function at z = 0.
a) f (z) = sin z

z ; b) f (z) = cos z
z ;

Problem 2.10.3. Determine the type of singularity of each of the following function at z = 0. a) f (z) =

z · e
1
z · e−

1
z2 ; b)

∑
k=2∞2kzk

z3 .

Problem 2.10.4. Let f be holomorphic on U \ {z0}, z0 ∈ U, U- open subset of C. If f has an essential
singularity at z0, then what type of singularity does 1/ f have at z0? What about when f has a removable
singularity or a pole at z0?

Problem 2.10.5. Let z0 ∈ U-open subset of C. Let

A j = { f - holomorphic on U \ {z0} : f has a singularity of type (j) at z0},

where (j) refers to singularities of types (i) removable, (ii) pole, or (iii) essential singularity. Is A j closed
under addition? Multiplication? Division?

Problem 2.10.6. Let D× = D \ {0}. Prove the following two refined versions of Riemann’s theorem.
a) If f is holomorphic on D× and lim z f (z) = 0 when z→ 0 then 0 is a removable singularity.
b) If f is holomorphic on D× and if

´
D | f (z)|2 dxdy < ∞, then 0 is a removable singularity.

Problem 2.10.7. Suppose that z = 0 for some integer N ≥ 0 we have that zN f (z) is bounded near z = 0.
Show that f (z) =

g(z)
zn for some function g holomorphic on the unit disc D. If we take N to be the smallest

such integer, then the corresponding g will satisfy the condition g(0) , 0.

Problem 2.10.8. Suppose z = 0 is not a removable singularity of the holomorphic function f on D× =

D(0, 1) \ {0}. Show that z = 0 is a pole singularity iff for some integer N ≥ 1 we have that zN f (z) is
bounded near z = 0.

Problem 2.10.9. In this problem you are asked to do what we did for S U(1, 1)/{±I} starting with another

subgroup of GL(2,C). Consider S L(2,R) =

{
A =

(
a b
c d

)
: a, b, c, d ∈ R, det A = 1

}
.

a) Show that S L(2,R) is a subgroup of GL(2,C) (even GL(2 : R)).
b) Using Problem 2.1.2 and your knowledge of Aut(D) show that the group of automorphisms of the

upper half-plane H = {z ∈ C : =z > 0} is the the group S L(2,R)/{±I}.
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2.11. Homework

Problem 2.11.1. Find the Laurent series on the annulus 1 < |z| < 5 for the function

f (z) =
z + 1

(z − 1)(z − 5)
.

Problem 2.11.2. Calculate the annulus of convergence for each of the following Laurent series: a)
∑∞

n=−∞ 2−nzn;
b)

∑∞
n=0 4−nzn +

∑−1
n=−∞ 3nzn.

Problem 2.11.3. Calculate the annulus of convergence (including possible boundary points) for each of
the following Laurent series: a)

∑∞
n=−∞ zn/n2; b)

∑∞
n=−∞ zn/nn.

Problem 2.11.4. Calculate the annulus of convergence (including possible boundary points) for each of
the following Laurent series: a)

∑10
n=−∞ zn/|n|!; b)

∑∞
n=−20 n2zn.

Problem 2.11.5. Give an example of a (formal) doubly infinite series such that

lim
n→∞

n∑
k=−n

akzk

exists for some z , 0 but such that
∞∑

k=−∞

akzk

fails to converge for that same z.

Problem 2.11.6. a) Let fn be a sequence of functions that are holomorphic on the punctured unit disc
D× and suppose that each fn has a pole at z = 0. If the sequence { fn} converges uniformly on compact
subsets of D×, then does the limit function f necessarily have a pole at z = 0?

b) Answer the same question with ”pole” replaced by ”removable singularity” or ”essential singu-
larity.”

Problem 2.11.7. Prove that f has an essential singularity on the punctured unit disc D× = D(0, 1) \ {0}
iff for each positive integer N there is a sequence zn ∈ D

× with limzn→0 = 0 and |zN
n f (zn)| ≥ N. Thus, f

”blows up” faster than any positive power of 1/z along some sequence converging to 0.

Problem 2.11.8. Let f be holomorphic on the punctured disc Dx = D(P, r) \ {z0} and suppose that f
has a pole of order k at z0. Then the Laurent series coefficients an of f expanded about the point z0, for
n = −k,−k + 1,−k + 2, . . . , are given by the formula

an =
1

(k + n)!

(
∂

∂z

)k+n

((z − z0) · f (z))|z=z0
.

Problem 2.11.9. Prove that if f has a non-removable singularity at z0, then e f has an essential singu-
larity at z0.

Problem 2.11.10. Calculate the first four terms of the Laurent expansion of the given function f about
the given point z0. In each case, specify the annulus of convergence of the expansion and the residue of
f at z0.
a) f (z) = sin(1/z) at z0 = 0;
b) f (z) = z

(z+1)3 at z0 = −1;
c) f (z) = ez/z3 at z0 = 0;
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2.12. Homework

Problem 2.12.1. Suppose f , g ∈ A(D), D = D(z0,R0), are two holomorphic functions such that f has a
simple zero at z0 while g(z0) , 0. Show that Res ( g

f , z0) =
g(z0)
f ′(z0) .

Problem 2.12.2. Compute each of the following residues Res f (z0) for the given function and point.

a) z0 = 2i, f (z) = z2

(z−2i)(z+3) ;

b) z0 = −3, f (z) = z2+1
z(z+3)2 ;

c) z0 = 2, f (z) = z
(z+1)(z−2) .

Problem 2.12.3. Compute each of the following residues Res f (z0) for the given function and point.

a) z0 = i + 1, f (z) = ez

(z−i−1)3 ;
b) z0 = π, f (z) = cot z

z2(z+i)2 ;

c) z0 = 0, f (z) = sin z
z3(z−2)(z+1) .

Problem 2.12.4. Use the calculus of residues to compute the integral 1
2πi

¸
f (z) dz, where f (z) = eiz/ [sin z cos z]

and γ is the quadrilateral with vertices ±5i, ±10.

Problem 2.12.5. Use the calculus of residues to compute the following integrals, where the boundary is
positively oriented unless said explicitly otherwise.
a) 1

2πi

¸
∂D(0,5) f (z) dz, where f (z) = z/ [(z + 1)(z + 2i)];

b) 1
2πi

¸
∂D(0,5) f (z) dz, where f (z) = ez/ [(z + 1) sin z].

Problem 2.12.6. Use the calculus of residues to compute the following integrals, where the boundary is
positively oriented unless said explicitly otherwise.
a) 1

2πi

¸
∂D(0,8) f (z) dz, where f (z) = cot z/

[
(z − 6i)2 + 64

]
;

b) 1
2πi

¸
γ f (z) dz, where f (z) = f (z) = ez/ [z(z + 1)(z + 2)] and γ is the negatively oriented triangle with

vertices 1 ± i and −3.

Problem 2.12.7. Compute the integral
´ ∞
−∞

x2

x4−4x2+5 dx.

Problem 2.12.8. Compute the integral
´ ∞
−∞

x sin x
x4+1 dx.

Problem 2.12.9. Compute the integral
´ 2π

0
dθ

(2−sin θ)2 by using z = eiθ.

Problem 2.12.10. Compute the integral
´ ∞
−∞

cos x
ex+e−x dx by using f (z) = eiz/(ez + e−z).
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2.13. Homework

Problem 2.13.1. Suppose f is a holomorphic function on a set of the form C \ D(0,R) for some R > 0
and F(z) = f (1/z), |z| < 1/R.
a) If f has a pole of order k at∞, what property does 1/ f have at∞?
b) What property does 1/F(z) have at 0?

Problem 2.13.2. Suppose f : Ĉ→ C is holomorphic. Show that f = const.

Problem 2.13.3. Calculate the residue of the given function at∞.
a) f (z) = z3 − 7z2 + 8; b) f (z) = z2ez.

Problem 2.13.4. Calculate the residue of the given function at∞.
a) f (z) = ez/p(z), p(z) a polynomial; b) f (z) = p(z)ez, p(z) a polynomial.

Problem 2.13.5. Calculate the residue of the given function at ∞. a) f (z) = sin z; b) f (z) = cot z. Note:
Be careful what you answer here!

Problem 2.13.6. Determine all poles of the function f (z) = 1/ sin (1/(1 − z)) in the unit disc D.

Problem 2.13.7. Let f be a non-constant holomorphic function on a neighborhood of the closed disc
D̄ = D(zo, ro). Show that f has at most finitely many zeros on D̄.

Problem 2.13.8. Classify the singularities of the following functions on Ĉ = C ∪ {∞} and find the
principal (singular) part at each of them. a) f (z) = 1−z3

1−z2 ; b) f (z) = sin z
z3 .

Problem 2.13.9. Show that if Ω is an open subset of C and S is a discrete subset of Ω then S is relatively
closed in Ω.

Problem 2.13.10. Let Ω be an open connected subset of C and S a discrete subset of Ω. Show that S
is at most countable. Hint: If K is a compact, K ⊂ Ω, what can you say about S ∩ K? Sets of the form
Kn = B̄(0, n) ∩ {z ∈ Ω : dist(z, ∂Ω) ≥ 1/n}, n ∈ N might be useful.
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2.14. Homework

Problem 2.14.1. Let f be holomorphic on the punctured unit disc D×. What kind of singularity is z = 0
if we know that f is an injective map, i.e, z , z′ implies f (z) , f (z′)?

Problem 2.14.2. Show that if f : C → C is a one to one holomorphic map which is conformal, then
f (z) = az + b, i.e., f is a linear function.

Hint: What kind of singularity is∞? You can use without a proof that a polynomial of degree n has n
complex roots.

Problem 2.14.3. Let f (z) = −2/(z2 − z − 2).
a) Find the Laurent expansion of f in the region |z + 1| > 3.
b) Classify the singularities of f including the∞ point and find the residues at the singular points.

Problem 2.14.4. Evaluate the integral ˛
γ

ez

(z + 1)(z − 2i + 1)
dz,

where γ is the ellipse x2

4 + y2 = 1 with positive orientation (c.c.w.).

Problem 2.14.5. Let f : C→ C be holomorphic and M(r) = max|z|=r | f (z)|.
a) Show that M(r) is a continuous and non-decreasing function.
b) Show that M(r) is increasing if f , const, i.e., if M(r) ≥ M(R) for some r < R, then f = const.

Problem 2.14.6. Let f be a function holomorphic on the unit disc D and f (0) = 0. Show that

F(z) =

∞∑
k=1

fk(z)

defines a holomorphic function on D, where fk(z) = f (zk), k = 0, 1, 2, . . . .
Hint: Show that Fn =

∑n
k=1 fk(z) converges locally uniformly on D by using Schwarz’s lemma.
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2.15. Homework

Problem 2.15.1. Estimate the number of zeros of the given function in the given region U. a) f (z) =

z8 + 5z7 − 20, U = D(0, 6); b) f (z) = z3 − 3z2 + 2, U = D(0, 1); c) f (z) = z2ez − z, U = D(0, 2).

Problem 2.15.2. Show that the polynomial p(z) = z4 + 2z3 + 3z2 + z + 2 has exactly two zeros in the right
half-plane.

Problem 2.15.3. Let p be a polynomial on C.
a) Show that if the zeros are contained in a given half-plane V ⊂ C, then the same is true for the zeros

of p′.
b) Show that the zeros of p′ are contained in the closed convex hull of the zeros of p. The closed convex

hull of a set S is the intersection of all closed convex sets that contain S .

Problem 2.15.4. Let Pt(z) =
∑n

k=0 ak(t)zk, where ak ∈ C([0, 1]). In other words Pt is a one-parameter
family of polynomials of the same degree depending continuously on a parameter.

a) Let Z = {(z, t) : Pt(z) = 0}. If (z0, t0) ∈ Z and
∂Pt0
∂z

∣∣∣∣
z=z0
, 0, then show, using the argument principle,

that there is an ε > 0 such that for all t sufficiently close to t0 there is a unique z ∈ D(z0, ε) with
Pt(z) = 0.

b) Prove that if the roots of Pt0 are distinct (no multiple roots) then the same is true for Pt for all t
sufficiently close to t0.

Problem 2.15.5. Let g ∈ A(Ω), Ω–open subset of C \ {(−∞, 0]}. Show that if g does not have a zero in Ω

then we can find h ∈ A(Ω) such that hn = g, i.e., we can define a holomorphic n-th root of g.

Problem 2.15.6. Give a proof of Hurwitz’ preservation of zeros theorem using the Argument Principle.

Problem 2.15.7. Let an be a strictly decreasing sequence of positive real numbers.
a) Show that f (z) =

∑∞
n=0 anzn defines a holomorphic function on D.

b) Show that every partial sum of the above series has no zeros in D.
c) Show that f has no zeros in D.

Problem 2.15.8. Show that
´ 2π

0
dθ

a+sin θ = 2π√
a2−1

for a > 1.

Problem 2.15.9. Show that
´ ∞

o
xλ−1

x+eiθ dx = π
sin πλei(λ−1)θ, where 0 < λ < 1 and −π < θ < π.

Problem 2.15.10. Use the calculus of residues to sum the series
∑∞

k=0
1

k4+1 . Hint: Use either the tangent
or cotangent function to introduce infinitely many poles that are located at the integer values that you
want to study.

Problem 2.15.11. (Integral formula for the inverse function). Suppose f is holomorphic on D(0,R),
f (0) = 0, f ′(z) , 0 on D×(0,R). Let 0 < r < R. Show that

g(w) =
1

2πi

ˆ
|ζ |=r

ζ f ′(ζ)
f (ζ) − w

dζ

is the inverse function of f . More precisely, if m = min|ζ |=r | f (ζ)|, then g is holomorphic on |w| < m and
f (g(w)) = w there, while g ( f (z)) = z for z ∈ f −1(|w| < m) ∩ D(0, r). Hint: Use Rouche and the residue
theorem by noting that g is the residue of a certain function.
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