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1. Introduction and statement of the results
We say that a given partial differential operator L in RN has the

strong unique continuation property (SUCP) if every weak solution u of
the equation Lu = 0, which vanishes to infinite order at some zo ∈ RN ,
i.e.,

lim
r→0

1
rk

∫

Br(zo)
|u(z)|2 dV = 0, for all k > 0,

must vanish identically in some neighborhood of zo. In other words
non-trivial solutions can have at most finite order of vanishing.

In this paper we study the strong unique continuation property for
a class of “variable coefficient” operators whose “constant coefficient”
model at one point is the so called Baouendi-Grushin operator [B], [Gr1],
[Gr2]. We recall that the latter is the following operator on RN =
Rn × Rm, N = n + m,

Lo =
N∑

i=1

XiXiu, (1.1)
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where the vector fields are given by

Xk =
∂

∂xk
, k = 1, . . . , n, Xn+j = |x|α ∂

∂yj
, j = 1, . . . , m. (1.2)

Here α > 0 is a fixed parameter, x = (x1, . . . , xn) ∈ Rn and y =
(y1, . . . , ym) ∈ Rm. When α = 0, Lo is just the standard Laplacian
in RN . For α > 0 the ellipticity of the operator Lo becomes degenerate
on the characteristic submanifold M = Rn × {0} of RN .

The SUCP for the operator Lo was proved in [G2]. In the same paper

this is also proved for the operator Lu+ <
→
V1, Du > +Vou = 0 with

suitable assumptions on
→
V1 and Vo. To give an idea, for example

|Vo| ≤ C

ρ
ψ and | <

→
V1, Du > | ≤ C|Xu|ψ1/2

is enough (note the use of an apriori estimate on the gradient Du in the
above conditions). Here Du is the gradient of u, Xu is the horizontal
gradient (1.7) of u, and ρ and ψ are defined correspondingly in (1.5)
and (1.6). With a completely different method, based on a subtle two-
weighted Carleman estimate, the sucp was established in [GS1] for zero
order perturbations Lo − Vo when α = 1 and y ∈ R (i.e. m = 1), where
the potential Vo is allowed to belong to some appropriate Lp spaces,

Vo ∈ Lp
loc

p > Q− 2 if n−even, p > 2n2

n+1 if n−odd.
The operator for which we prove the SUCP is the following

Lu =
N∑

i,j=1

Xj(aij(x, y)Xiu) = 0. (1.3)

We assume that A =
(
aij(x, y)

)
, i, j = 1, ..., N, is a N × N matrix-

valued function on RN which, for simplicity, we take such that A(0) =Id.
Furthermore, we assume A is symmetric and uniformly elliptic matrix.
Thus aij = aji and there exists λ > 0 such that for any η ∈ RN

λ|η|2 ≤ < A(x, y)η, η > ≤ λ−1|η|2. (1.4)

Our main concern is whether, under suitable assumptions on the matrix
A, the sucp continues to hold for the operator L. To put our result
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in perspective we mention that when α = 0 in (1.2), so that Lo is the
standard Laplacian, we have the following well-known SUCP due to
Aronszaijn, Krzywicki and Szarski [AKS]

Theorem 1.1 Suppose Ω is a connected open set in Rn. Let u ∈
W 1,2

loc (Ω) be a weak solution of Lu =
∑

∂i(aij(z)∂ju) = 0, where A(z) =(
aij(z)

)
is a symmetric, positive definite matrix with Lipschitz contin-

uous entries. If there is point zo ∈ Ω at which u has a zero of infinite
order in, then u = 0 a.e..

Furthermore, it was shown in [M] that such assumption is optimal. The
case n = 2 is exceptional since, according to a result of Bers and Niren-
berg, the SUCP holds for bounded measurable coefficients. Our results,
Theorems 1.3 and 1.4 can be seen as a generalization of Theorem 1.1, in
the sense that, in the limit as α → 0 we recapture both the assumptions
and the conclusion of the elliptic case, see Remark 1.3. The approach,
however, is different from that in [AKS], which is based on Carleman
inequalities along with results from Riemannian geometry that do not
seem to be adaptable to our context due to the lack of ellipticity. Instead,
we have used the ideas developed in [GL1], [GL2], [G2], and simplified in
[K]. Our main result is Theorem 1.3, which gives a quantitative control
of the order of zero of a weak solution to (1.3). Such result is proved
under some hypothesis on the matrix A which are listed as assumptions
(H) below. The latter should be interpreted as a sort of Lipschitz conti-
nuity with respect to a suitable pseudo-distance associated to the system
of vector fields (1.2).

In what follows we let ξ = (x, y). To state our main result, we recall
the following gauge from [G2] associated to the operator Lo

ρ = ρ(ξ)
def
= (|x|2(α+1) + (α + 1)2|y|2) 1

2(α+1) . (1.5)

Let Br = {ρ < r} be the pseudo-balls with respect to ρ centered at the
origin in RN with radius r. It is worth stressing that if α is an even
positive integer, then the Carnot-Carathéodory distance associated to
the system of vector fields in (1.2) is comparable to ρ(ξ). We will also
need the angle function ψ defined as follows [G2]

ψ = ψ(ξ)
def
= |Xρ|2(ξ) =

|x|2α

ρ2α
, ξ 6= 0. (1.6)
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Hereafter, given a function f , we denote the gradient along the system
of vector fields in (1.2) ( called also horizontal gradient)

Xf = (X1f, ..., XNf) (1.7)

and let |Xf |2 =
∑N

j=1(Xjf)2. The function ψ vanishes at every point
of the characteristic manifold M , and clearly satisfies 0 ≤ ψ ≤ 1.

Definition 1.2 A weak solution to Lu = 0 in an open set Ω is a
function u ∈ C(Ω) such that the (distributional) horizontal gradient
Xu ∈ L2

loc(Ω), and the equation Lu = 0 is satisfied in the variational
sense in Ω, i.e.,

∫

Ω
< AXu, Xφ > dV = 0

for every φ ∈ C∞
o (Ω).

For convenience, we have required that a weak solution be a continuous
function since we will take traces on hypersurfaces. We note however
that such assumption could be considerably relaxed if one assumes the
existence of sub-unit curve joining any two points. Under this additional
hypothesis, the assumption u,Xu ∈ L2

loc(Ω) would suffice to apply the
results in [FL], [FS], and conclude that a weak solution u is (after mod-
ification on a set of measure zero) Hölder continuous with respect to
the Carnot-Carathéodory distance, and therefore (with a different ex-
ponent) also with respect to the Euclidean distance. Of course, when
α is an even positive integer the system of vector fields is smooth and
satisfies the Hörmander finite rank condition. In this case, the existence
of a sub-unit curve joining any two points follows from the theorem of
Chow-Rashevsky.

Theorem 1.3 Let A be a symmetric matrix satisfying (1.4) and the
hypothesis (H) below with relative constant Λ. Suppose u is a weak
solution of (1.3) in a neighborhood of the origin Ω. Under these as-
sumptions, there exist positive constants C = C(u, α, λ,Λ, N) and ro =
ro(u, α, λ,Λ, N), such that, for any 2r ≤ ro, we have

∫

B2r

u2ψ dV ≤ C

∫

Br

u2ψ dV.

The dependence of the constant C on u is quite explicit. As it is well
known [GL1], Theorem 1.3 implies the following sucp.
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Theorem 1.4 With the assumptions of Theorem 1.3, the operator L
has the SUCP.

We have stated the above theorem when the point of vanishing is
the origin. Obviously the result is true for any other point with the
appropriate modification of the hypothesis (H). In order to state our
main assumptions (H) on the matrix A it will be useful to think of the
latter in the following block form,

A =
(

A11 A12

A21 A22

)
.

Here the entries are respectively n×n, n×m, m×n and m×m matrices,
and we assume that At

12 = A21.
The proof of Theorem 1.3 relies crucially on the following assumptions

on the matrix A. These will be our main hypothesis and will be assumed
to hold throughout the paper.

HYPOTHESIS 1.5 There exists a positive constant Λ such that one
has in Bε for some ε > 0 the following estimates

|aij − δij | ≤





Λρ, for 1 ≤ i, j ≤ n

Λψ
1
2
+ 1

2α ρ = Λ |x|α+1

ρα , otherwise

(H)

|Xkaij | ≤





Λ, for 1 ≤ k ≤ n, and 1 ≤ i, j ≤ n

Λψ
1
2 = Λ |x|α

ρα , otherwise .

A simple, yet interesting example of a matrix satisfying the conditions
(H) is

A =
(

1 + ρf(x, y) |x|α+1g(x, y)
|x|α+1g(x, y) 1 + |x|α+1h(x, y)

)
,

where f, g and h are functions which are Lipschitz continuous at the
origin of R2 with respect to the Euclidean metric. Here, n = m = 1.
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2. Monotonicity of the generalized frequency
We begin by introducing the relevant quantities. Since our results are

local in nature, from now on, we focus our attention on a pseudo-ball
BR0 centered at the origin and such that u is a weak solution of Lu = 0
in BR0 in which (1.4) and the hypothesis (H) hold. For 0 < r < Ro we
define correspondingly the height H(r) and the Dirichlet integral D(r)
of u on the pseudo-ball Br

H(r) =
∫

∂Br

u2 < AXρ, Xρ >
dσ

|Dρ|

D(r) =
∫

Br

< AXu,Xu > dV.

Consider further the frequency function

N(r)
def
=

{
rD(r)
H(r) , if H 6= 0

0, if H = 0

The following two lemmas are the key to proving the monotonicity of
the modified frequency

Ñ(r) = N(r) e2Mr,

where M > 0 will be suitably chosen. In the sequel we shall briefly
sketch the main steps in their proofs, referring to [GV] for full details.

Lemma 2.1 a) There exists a positive constant C1 = C1(α, λ,Λ, N)
such that for a.e. r ∈ (0, Ro) one has

∣∣∣H ′
(r)− Q− 1

r
H(r)− 2D(r)

∣∣∣ ≤ C1H(r).

b) There exists a positive number ro = ro(α, λ,Λ, N) ≤ Ro such that
either H(r) = 0 on (0, ro) or H(r) > 0 on (0, ro).

The proof involves a lengthy computation with the use of integration
by parts, the co-area formula and the fact that, up to a constant, ρ2−Q

is the fundamental solution of Lo with singularity at (0, 0). Here, Q =
n + (α + 1)m is the homogeneous dimension corresponding to dilations
with infinitesimal generator (radial vector field)

Z =
∑

1≤i≤n

xi
∂

∂xi
+ (α + 1)

∑

1≤j≤m

yi
∂

∂yi
.
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Lemma 2.2 There exists a constant C2 = C2(α, λ, Λ, N) > 0 such that
for a.e. r ∈ (0, Ro) one has

D
′
(r) ≥ 2

∫

∂Br

< AXu,Xρ >2

µ

dσ

|Dρ| +
Q− 2

r
D(r) − C2D(r),

where µ
def
= < AXρ, Xρ >.

To prove this lemma we use the co-area formula and Rellich’s identity,
which imply

D
′
(r) = 2

∫

∂Br

< AXu, Xρ >2

µ

dσ

|Dρ| +
1
r

∫

Br

(div F ) < AXu, Xu >

− 2
r

∫

Br

< AXu, [X, F ]u > +
1
r

∫

Br

< (FA)Xu, Xu >,

with

F = ρ

N∑

i,j=1

aijXjρ

µ
Xi, x 6= 0.

We show that F can be extended continuously to a vector field near the
origin. In fact, such extension is sufficiently smooth. The vector field F
should be thought of as a small perturbation of the radial vector field.
A computation shows that we can estimate the terms in the right-hand
side of the above identity as required.

The above two lemmas imply the following monotonicity theorem

Theorem 2.3 Suppose u is a solution of Lu = 0 in a neighborhood
of the origin in which (1.4) and the hypothesis (H) hold true. Under
these conditions there exist positive constants ro = ro(u, α, λ,Λ, N) and
M = M(α, λ, Λ, N) such that

Ñ(r) = N(r) exp(2Mr)

is a continuous monotone nondecreasing function for r ∈ (0, ro).

Proof The proof of Theorem 2.3 follows from lemmas 2.1 and 2.2.
Let M = max{C1, C2}, where C1 and C2 are the constants from Lemmas
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2.1 and 2.2. With ro as defined in Lemma 2.1 we have that either u ≡ 0
in Bro or H(r) > 0 for 0 < r < ro. In the first case the frequency is
identically zero on (0, ro) so let us consider the second case for which
H(r) > 0. The continuity of Ñ(r) follows from the continuity of each of
the functions involved in its definition. Furthermore, for a.e. r ∈ (0, ro)
we have

(
ln

rD(r)
H(r)

e2Mr
)′ =

1
r

+
D′

D
− H ′

H
+ 2M

≥ 1
r

+
Q− 2

r
+

2
D

∫

∂Br

< AXu, Xρ >2

< AXρ,Xρ >

dσ

|Dρ|
− Q− 1

r
− 2

D

H
≥ 0 ,

where we have applied first lemmas 2.1 and 2.2, and then the Cauchy-
Schwarz inequality. The reader should keep in mind the following for-
mula

D(r) =
∫

∂Br

u< AXu,Xρ >
dσ

|Dρ| .

3. Proof of the doubling property
In this section we shall prove Theorem 1.3. If the solution vanishes

in some neighborhood of the origin then the doubling for all sufficiently
small balls is trivially satisfied. Let us consider next the case of a non-
trivial solution. Let ro be the number defined in Lemma 2.1 and 2r ≤ ro.
By the co-area formula

∫ R

0

∫

∂Br

u2ψ
dσ

|Dρ|dr =
∫

BR

u2ψ dV.

From the ellipticity of A we have
∫ R

0
H(r) dr ≈

∫

BR

u2ψ dV,

which shows it is enough to prove the doubling property for the height
function H. Now we compute

ln
H(2r)

2Q−1H(r)
= ln

H(2r)
2Q−1rQ−1

− H(2r)
rQ−1

=
∫ 2r

r

{
H ′

H
− Q− 1

t

}
dt

≤
∫ 2r

r

{
2
D(t)
H(t)

+ M

}
dt =

∫ 2r

r
2Ñ(t)

e−2Mt

t
dt + Mr

≤ 2Ñ(ro)
∫ 2r

r

1
t

dt + M = 2Ñ(ro) ln 2 + M.
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In the above inequalities we have used the monotonicity of the modified
frequency. Hence

H(2r) ≤ 2Q−1e2Ñ(ro) ln 2 + MH(r),

i.e., the doubling property holds.

Remark 3.1 We observe that for non-trivial solution we have the dou-
bling property for all balls B2r ⊂ Ω and 2r ≤ R, where R > 0 is a fixed
number, since for ”big” balls, i.e., 2r ≥ ro we have

∫
B2r

u2ψ dV∫
Br

u2ψ dV
≤

∫
BR

u2ψ dV∫
Bro/2

u2ψ dV
.

Of course, in this case the constant C in the doubling property depends
on Ñ(R).

4. Proof of the SUCP
In this section we shall prove Theorem 1.4. Suppose u is a solution

which vanishes to infinite order at the origin. Let |Br| = ωor
Q. Fix a

number κ > 0 such that Co2−Qκ = 1. For any r sufficiently small and
p ∈ N the doubling property applied p times gives

∫

Br

u2ψ dV ≤ Cp
o

∫

Br/2p

u2ψ dV

≤ ωκ
o Cp

o

rQκ

2Qpκ

1
|Br/2p |κ

∫

Br/2p

u2ψ dV

≤ ωκ
o rQκ 1

|Br/2p |κ
∫

Br/2p

u2ψ dV → 0

when p →∞. This ends the proof.
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