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Abstract. The main technical result of the paper is a Bochner type formula for the sub-laplacian on

a quaternionic contact manifold. With the help of this formula we establish a version of Lichnerowicz’

theorem giving a lower bound of the eigenvalues of the sub-Laplacian under a lower bound on the Sp(n)Sp(1)

components of the qc-Ricci curvature. It is shown that in the case of a 3-Sasakian manifold the lower bound

is reached iff the quaternionic contact manifold is a round 3-Sasakian sphere. Another goal of the paper is

to establish a-priori estimates for square integrals of horizontal derivatives of smooth compactly supported

functions. As an application, we prove a sharp inequality bounding the horizontal Hessian of a function by

its sub-Laplacian on the quaternionic Heisenberg group.
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1. Introduction

The first circle of results of this paper are motivated by the classical theorems of Lichnerowicz [32] and

Obata [36] giving correspondingly a lower bound of the first eigenvalue of the Laplacian on a compact

manifold with a Ricci bound and characterizing the case of equality. In fact, in [32] it was shown that for

every compact Riemannian manifold of dimension n for which the Ricci curvature is greater than or equal

to that of the round unit n-dimensional sphere Sn(1), i.e.,

Ric(X,Y ) ≥ (n− 1)g(X,Y )

we have that the first positive eigenvalue λ1 of the (positive) Laplace operator is greater than or equal to

the first eigenvalue of the sphere,

λ1 ≥ n.
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Subsequently in [36] it was shown that the lower bound for the eigenvalue is achieved iff the Riemannian

manifold is isometric to Sn(1). Lichnerowicz proved his result using the classical Bochner-Weitzenböck

formula. In turn, Obata showed that under these assumptions the eigenfunction φ satisfies the system

∇2φ = −φg, after which he defines an isometry using analysis based on the geodesics and Hessian comparison

of the distance function from a point. Later Gallot [20] generalized these results to statements involving the

higher eigenvalues and corresponding eigenfunctions of the Laplace operator.

It is natural to ask if there is a sub-Riemannian version of the above results. Greenleaf [23] gave a version

of Lichnerowicz’ result on a compact strongly pseudo-convex CR manifold. Suppose M is 2n + 1, n ≥ 3

dimensional strongly pseudo-convex CR manifold. If

Ric(X,Y ) + 4A(X, JY ) ≥ (n+ 1)g(X,X)

for all horizontal vectors X, where Ric and A are, correspondingly, the Ricci curvature and the Webster

torsion of the Tanaka-Webster connection (in the notation from [30, 29]), then the first positive eigenvalue

λ1 of the sub-Laplacian satisfies the inequality λ1 ≥ n. The standard CR structure on the sphere achieves

equality in this inequality. Further results in the CR case have been proved in [33], [14], [11, 10, 9], [3] and

[12] adding a corresponding inequality for n = 1, or characterizing the equality case in the vanishing torsion

case (the Sasakian case).

One purpose of this paper is to consider these questions in the setting of a closed compact quaternionic

contact manifold. The Lichnerowicz type result is as follows.

Theorem 1.1. Let (M, g,Q) be a compact quaternionic contact manifold of dimension 4n + 3 > 7. If the

Ricci tensor and torsion of the Biquard connection satisfy the inequality

(1.1) Ric(X,X) +
2(4n+ 5)

2n+ 1
T 0(X,X) +

3(2n2 + 5n− 1)

(n− 1)(2n+ 1)
U(X,X) ≥ k0g(X,X)

for some positive constant k0 then any positive eigenvalue λ of the sub-Laplacian 4 satisfies the inequality

λ ≥ n

n+ 2
k0.

The second goal then is to investigate the case of equality in Theorem 1.1. We restrict our considerations

to the case when the torsion of the Biquard connection vanishes, T 0 = U = 0. In this case it is known [24]

that the qc manifold is qc-Einstein, Ric = k.g, the qc-scalar curvature is constant (n > 1) and if it is positive

then the qc manifold is locally qc equivalent to a 3-Sasakian space. The corresponding result in the negative

scalar curvature case can be found in [28] and [29]. We prove the following result.

Theorem 1.2. Let (M, g,Q) be a compact qc-Einstein manifold of dimension 4n + 3 > 7 of qc scalar

curvature Scal = 16n(n+ 2),

Ric(X,Y ) =
1

4n
Scalg(X,Y ) = 4(n+ 2)g(X,Y ).

The first positive eigenvalue λ1 of the sub-Laplacian equals 4n if and only if (M, g,Q) is qc equivalent to the

3-Sasakian sphere of dimension 4n+ 3.

In particular, on a 3-Sasakian manifold of dimension (4n+3), n > 1, the first positive eigenvalue of the

sub-laplacian is equal to 4n if and only if the 3-Sasakian manifold is qc-equivalent to the 3-Sasakian sphere.

We note that in [26] is given an explicit formula for the eigenfunctions of the above eigenvalue, see also

[1].

The second main theme of the paper is the derivation of an a-priori inequality between the (horizontal)

Hessian and sub-Laplacian. For the Heisenberg group a corresponding sharp estimate was found in [17].

Equipped with our estimate we precise the scope of use of [16] for the quaternionic Heisenberg group. We

recall that the main application is the establishment of the C1,α regularity for the p sub-Laplacian with p

close to 2. The exact interval for p around 2 is determined by the constant found in this paper. Using

Bochner’s identity we will find an integral identity. Such integral identities have been exploited earlier in [21]

in the setting of Carnot groups. A similar method based on Greenleaf’s formula was employed in [13], but
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due to the different quaternionic linear algebra our proof proceeds in a way particular to the quaternionic

case. Here we prove the following result.

Theorem 1.3. Let (M,η) be a (4n+ 3)-dimensional qc manifold, n > 1. For any f ∈ C∞o (M) the following

inequality holds true

(1.2)

∫
M

|4f |2 V olη ≥
n

n+ 1

∫
M

|∇2f |2 V olη +
n2

n2 − 1

∫
M

Ric(∇f,∇f)V olη

+
n2

n2 − 1

∫
M

− 4

n
T 0(∇f,∇f)− 6U(∇f,∇f)− 6S|∇f |2 V olη

=
n

n+ 1

∫
M

|∇2f |2 V olη +

∫
M

2n(n+ 2)

n+ 1
T 0(∇f,∇f) +

4n2

n− 1
U(∇f,∇f) +

2n2

n+ 1
S|∇f |2 V olη.

The proofs of the last Theorem is presented in Section 6.

Convention 1.4.

a) We shall use X,Y, Z, U to denote horizontal vector fields, i.e. X,Y, Z, U ∈ H.

b) {e1, . . . , e4n} denotes a local orthonormal basis of the horizontal space H.

c) The summation convention over repeated vectors from the basis {e1, . . . , e4n} will be used. For

example, for a (0,4)-tensor P , the formula k = P (eb, ea, ea, eb) means

k =

4n∑
a,b=1

P (eb, ea, ea, eb);

d) The triple (i, j, k) denotes any cyclic permutation of (1, 2, 3).

e) s will be any number from the set {1, 2, 3}, s ∈ {1, 2, 3}.

Acknowledgments The research is partially supported by the Contract 181/2011 with the University

of Sofia ‘St.Kl.Ohridski’ and Contract “Idei”, DID 02-39/21.12.2009. . S.I and D.V. are partially supported

by Contract “Idei”, DO 02-257/18.12.2008.

2. Quaternionic contact manifolds

In this section we will briefly review the basic notions of quaternionic contact geometry and recall some

results from [4], [24] and [27] which we will use in this paper.

2.1. Quaternionic contact structures and the Biquard connection. A quaternionic contact (qc)

manifold (M, g,Q) is a 4n+3-dimensional manifold M with a codimension three distribution H locally given

as the kernel of a 1-form η = (η1, η2, η3) with values in R3. In addition H has an Sp(n)Sp(1) structure, that

is, it is equipped with a Riemannian metric g and a rank-three bundle Q consisting of endomorphisms of H

locally generated by three almost complex structures I1, I2, I3 on H satisfying the identities of the imaginary

unit quaternions, I1I2 = −I2I1 = I3, I1I2I3 = −id|H which are hermitian compatible with the metric

g(Is., Is.) = g(., .) and the following compatibility condition holds 2g(IsX,Y ) = dηs(X,Y ), X, Y ∈ H.
A special phenomena, noted in [4], is that the contact form η determines the quaternionic structure and

the metric on the horizontal distribution in a unique way.

If the first Pontryagin class of M vanishes then the 2-sphere bundle of R3-valued 1-forms is trivial [2], i.e.

there is a globally defined form η that anihilates H, we denote the corresponding qc manifold (M,η). In this

case the 2-sphere of associated almost complex structures is also globally defined on H.

On a qc manifold with a fixed metric g on H there exists a canonical connection defined in [4] when the

dimension (4n+ 3) > 7, and in [18] for the 7-dimensional case.

Theorem 2.1. .[4] Let (M, g,Q) be a qc manifold of dimension 4n + 3 > 7 and a fixed metric g on H in

the conformal class [g]. Then there exists a unique connection ∇ with torsion T on M4n+3 and a unique

supplementary subspace V to H in TM , such that:

i) ∇ preserves the decomposition H ⊕ V and the Sp(n)Sp(1) structure on H, i.e. ∇g = 0,∇σ ∈ Γ(Q)

for a section σ ∈ Γ(Q), and its torsion on H is given by T (X,Y ) = −[X,Y ]|V ;
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ii) for ξ ∈ V , the endomorphism T (ξ, .)|H of H lies in (sp(n)⊕ sp(1))⊥ ⊂ gl(4n);

iii) the connection on V is induced by the natural identification ϕ of V with the subspace sp(1) of the

endomorphisms of H, i.e. ∇ϕ = 0.

In ii), the inner product <,> of End(H) is given by < A,B >=
∑4n
i=1 g(A(ei), B(ei)), for A,B ∈ End(H).

We shall call the above connection the Biquard connection. When the dimension of M is at least eleven [4]

also described the supplementary distribution V , which is (locally) generated by the so called Reeb vector

fields {ξ1, ξ2, ξ3} determined by

(2.1)
ηs(ξk) = δsk, (ξsydηs)|H = 0,

(ξsydηk)|H = −(ξkydηs)|H ,

where y denotes the interior multiplication. If the dimension of M is seven Duchemin shows in [18] that if

we assume, in addition, the existence of Reeb vector fields as in (2.1), then Theorem 2.1 holds. Henceforth,

by a qc structure in dimension 7 we shall mean a qc structure satisfying (2.1).

The qc conformal curvature tensor W qc, introduced in [27], is the obstruction for a qc structure to be

locally qc conformal to the flat structure on the quaternionic Heisenberg group G (H). A qc conformally

flat structure is also locally qc conformal to the standard 3-Sasaki sphere due to the local qc conformal

equivalence of the standard 3-Sasakian structure on the (4n + 3)-dimensional sphere and the quaternionic

Heisenberg group [24, 27].

Notice that equations (2.1) are invariant under the natural SO(3) action. Using the triple of Reeb vector

fields we extend g to a metric on M by requiring span{ξ1, ξ2, ξ3} = V ⊥ H and g(ξs, ξk) = δsk. The

extended metric does not depend on the action of SO(3) on V , but it changes in an obvious manner if

η is multiplied by a conformal factor. Clearly, the Biquard connection preserves the extended metric on

TM,∇g = 0. Since the Biquard connection is metric it is connected with the Levi-Civita connection ∇g of

the metric g by the general formula

(2.2) g(∇AB,C) = g(∇gAB,C) +
1

2

[
g(T (A,B), C)− g(T (B,C), A) + g(T (C,A), B)

]
.

The covariant derivative of the qc structure with respect to the Biquard connection and the covariant

derivative of the distribution V are given by

(2.3) ∇Ii = −αj ⊗ Ik + αk ⊗ Ij , ∇ξi = −αj ⊗ ξk + αk ⊗ ξj .

The sp(1)-connection 1-forms αs on H are expressed in [4] by

αi(X) = dηk(ξj , X) = −dηj(ξk, X), X ∈ H, ξi ∈ V,(2.4)

while the sp(1)-connection 1-forms αs on the vertical space V are calculated in [24]

αi(ξs) = dηs(ξj , ξk)− δis

(
S

2
+

1

2
( dη1(ξ2, ξ3) + dη2(ξ3, ξ1) + dη3(ξ1, ξ2))

)
,(2.5)

where S is the normalized qc scalar curvature defined below in (2.11). The vanishing of the sp(1)-connection

1-forms on H implies the vanishing of the torsion endomorphism of the Biquard connection (see [24]).

The fundamental 2-forms ωs of the quaternionic structure Q are defined by

(2.6) 2ωs|H = dηs|H , ξyωs = 0, ξ ∈ V.

Due to (2.6), the torsion restricted to H has the form

(2.7) T (X,Y ) = −[X,Y ]|V = 2ω1(X,Y )ξ1 + 2ω2(X,Y )ξ2 + 2ω3(X,Y )ξ3.

2.2. Invariant decompositions. Any endomorphism Ψ ofH can be decomposed with respect to the quater-

nionic structure (Q, g) uniquely into four Sp(n)-invariant parts Ψ = Ψ+++ + Ψ+−−+ Ψ−+−+ Ψ−−+, where

Ψ+++ commutes with all three Ii, Ψ+−− commutes with I1 and anti-commutes with the others two and etc.

Explicitly,

(2.8)
4Ψ+++ = Ψ− I1ΨI1 − I2ΨI2 − I3ΨI3, 4Ψ+−− = Ψ− I1ΨI1 + I2ΨI2 + I3ΨI3,

4Ψ−+− = Ψ + I1ΨI1 − I2ΨI2 + I3ΨI3, 4Ψ−−+ = Ψ + I1ΨI1 + I2ΨI2 − I3ΨI3.
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The two Sp(n)Sp(1)-invariant components are given by

Ψ[3] = Ψ+++, Ψ[−1] = Ψ+−− + Ψ−+− + Ψ−−+

with the following characterizing equations

(2.9)
Ψ = Ψ[3] ⇐⇒ 3Ψ + I1ΨI1 + I2ΨI2 + I3ΨI3 = 0,

Ψ = Ψ[−1] ⇐⇒ Ψ− I1ΨI1 − I2ΨI2 − I3ΨI3 = 0.

With a short calculation one sees that the Sp(n)Sp(1)-invariant components are the projections on the

eigenspaces of the Casimir operator

(2.10) Υ = I1 ⊗ I1 + I2 ⊗ I2 + I3 ⊗ I3
corresponding, respectively, to the eigenvalues 3 and −1, see [8]. If n = 1 then the space of symmetric endo-

morphisms commuting with all Is is 1-dimensional, i.e. the [3]-component of any symmetric endomorphism

Ψ on H is proportional to the identity, Ψ3 = |Ψ|2
4 Id|H . Note here that each of the three 2-forms ωs belongs

to its [-1]-component, ωs = ωs[−1] and constitute a basis of the lie algebra sp(1).

2.3. The torsion tensor. The properties of the Biquard connection are encoded in the properties of the

torsion endomorphism Tξ = T (ξ, ·) : H → H, ξ ∈ V . Decomposing the endomorphism Tξ ∈ (sp(n) +

sp(1))⊥ into its symmetric part T 0
ξ and skew-symmetric part bξ, Tξ = T 0

ξ + bξ, O. Biquard shows in [4] that

the torsion Tξ is completely trace-free, tr Tξ = tr Tξ ◦ Is = 0, its symmetric part has the properties T 0
ξi
Ii =

−IiT 0
ξi

I2(T 0
ξ2

)+−− = I1(T 0
ξ1

)−+−, I3(T 0
ξ3

)−+− = I2(T 0
ξ2

)−−+, I1(T 0
ξ1

)−−+ = I3(T 0
ξ3

)+−−, where the

upperscript + + + means commuting with all three Ii, + − − indicates commuting with I1 and anti-

commuting with the other two and etc. The skew-symmetric part can be represented as bξi = Iiu, where u is

a traceless symmetric (1,1)-tensor on H which commutes with I1, I2, I3. If n = 1 then the tensor u vanishes

identically, u = 0 and the torsion is a symmetric tensor, Tξ = T 0
ξ .

Any 3-Sasakian manifold has zero torsion endomorphism, and the converse is true if in addition the qc

scalar curvature (see (2.11)) is a positive constant [24]. We remind that a (4n+ 3)-dimensional Riemannian

manifold (M, g) is called 3-Sasakian if the cone metric gc = t2g + dt2 on C = M × R+ is a hyper Kähler

metric, namely, it has holonomy contained in Sp(n+ 1) [6]. A 3-Sasakian manifold of dimension (4n+ 3) is

Einstein with positive Riemannian scalar curvature (4n+ 2)(4n+ 3) [31] and if complete it is compact with

a finite fundamental group, (see [5] for a nice overview of 3-Sasakian spaces).

2.4. Torsion and curvature. Let R = [∇,∇] − ∇[ , ] be the curvature tensor of ∇ and the dimension is

4n+ 3. We denote the curvature tensor of type (0,4) and the torsion tensor of type (0,3) by the same letter,

R(A,B,C,D) := g(R(A,B)C,D), T (A,B,C) := g(T (A,B), C), A,B,C,D ∈ Γ(TM). The Ricci tensor,

the normalized scalar curvature and the Ricci 2-forms of the Biquard connection, called qc-Ricci tensor Ric,

normalized qc-scalar curvature S and qc-Ricci forms ρs, τs, respectively, are defined by

(2.11)

Ric(A,B) = R(eb, A,B, eb), 8n(n+ 2)S = R(eb, ea, ea, eb),

ρs(A,B) =
1

4n
R(A,B, ea, Isea), τs(A,B) =

1

4n
R(ea, Isea, A,B, ).

The sp(1)-part of R is determined by the Ricci 2-forms and the connection 1-forms by

(2.12) R(A,B, ξi, ξj) = 2ρk(A,B) = (dαk + αi ∧ αj)(A,B), A,B ∈ Γ(TM).

The two Sp(n)Sp(1)-invariant trace-free symmetric 2-tensors T 0(X,Y ) = g((T 0
ξ1
I1 + T 0

ξ2
I2 + T 0

ξ3
I3)X,Y ),

U(X,Y ) = g(uX, Y ) on H, introduced in [24], have the properties:

(2.13)
T 0(X,Y ) + T 0(I1X, I1Y ) + T 0(I2X, I2Y ) + T 0(I3X, I3Y ) = 0,

U(X,Y ) = U(I1X, I1Y ) = U(I2X, I2Y ) = U(I3X, I3Y ).

In dimension seven (n = 1), the tensor U vanishes identically, U = 0.

We shall need the following identity taken from [27, Proposition 2.3]

(2.14) 4T 0(ξs, IsX,Y ) = T 0(X,Y )− T 0(IsX, IsY ).
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Thus, taking into account (2.14) we have the formula

(2.15) T (ξs, IsX,Y ) = T 0(ξs, IsX,Y ) + g(IsuIsX,Y ) =
1

4

[
T 0(X,Y )− T 0(IsX, IsY )

]
− U(X,Y ).

Definition 2.2. A qc structure is said to be qc Einstein if the horizontal qc-Ricci tensor is a scalar multiple

of the metric,

Ric(X,Y ) = 2(n+ 2)Sg(X,Y ).

The horizontal Ricci tensor and the horizontal Ricci 2-forms can be expressed in terms of the torsion

of the Biquard connection [24] (see also [25, 27]). We collect the necessary facts from [24, Theorem 1.3,

Theorem 3.12, Corollary 3.14, Proposition 4.3 and Proposition 4.4] with slight modification presented in [27]

Theorem 2.3 ([24]). On a (4n+ 3)-dimensional qc manifold (M,η,Q) with a normalized scalar curvature

S we have the following relations

(2.16)

Ric(X,Y ) = (2n+ 2)T 0(X,Y ) + (4n+ 10)U(X,Y ) + 2(n+ 2)Sg(X,Y ),

ρs(X, IsY ) = −1

2

[
T 0(X,Y ) + T 0(IsX, IsY )

]
− 2U(X,Y )− Sg(X,Y ),

τs(X, IsY ) = −n+ 2

2n

[
T 0(X,Y ) + T 0(IsX, IsY )

]
− Sg(X,Y ),

T (ξi, ξj) = −Sξk − [ξi, ξj ]H , S = −g(T (ξ1, ξ2), ξ3),

g(T (ξi, ξj), X) = −ρk(IiX, ξi) = −ρk(IjX, ξj) = −g([ξi, ξj ], X),

1

2
ξj(S) = ρi(ξi, ξj) + ρk(ξk, ξj),

ρi(ξi, X) =
X(S)

4
+

1

2
(ρi(ξj , IkX)− ρj(ξk, IiX)− ρk(ξi, IjX)) .

For n = 1 the above formulas hold with U = 0.

The qc Einstein condition is equivalent to the vanishing of the torsion endomorphism of the Biquard

connection. In this case S is constant and the vertical distribution is integrale provided n > 1.

2.5. The Ricci identities. We shall use repeatedly the following Ricci identities of order two and three,

see also [27]. Let ξi, i = 1, 2, 3 be the Reeb vector fields, X,Y ∈ H and f a smooth function on the qc

manifold M with ∇f its horizontal gradient of f , g(∇f,X) = df(X). We have:

(2.17)

∇2f(X,Y )−∇2f(Y,X) = −2

3∑
s=1

ωs(X,Y )df(ξs)

∇2f(X, ξs)−∇2f(ξs, X) = T (ξs, X,∇f)

∇3f(X,Y, Z)−∇3f(Y,X,Z) = −R(X,Y, Z,∇f)− 2

3∑
s=1

ωs(X,Y )∇2f(ξs, Z)

where we used (2.7) in the last equalities in the first and the fourth lines.

2.6. The horizontal divergence theorem. Let (M, g,Q) be a qc manifold of dimension 4n + 3 > 7 For

a fixed local 1-form η and a fix s ∈ {1, 2, 3} the form

(2.18) V olη = η1 ∧ η2 ∧ η3 ∧ ω2n
s

is a locally defined volume form. Note that V olη is independent on s as well as it is independent on the local

one forms η1, η2, η3. Hence it is globally defined volume form denoted with V olη.

We consider the (horizontal) divergence of a horizontal vector field/one-form σ ∈ Λ1 (H) defined by

(2.19) ∇∗ σ = −tr|H∇σ = −∇σ(ea, ea).

We need the following Proposition from [24], see also [37], which allows ”integration by parts”.
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Proposition 2.4 ([24]). On a compact quaternionic contact manifold (M,η) the following divergence formula

holds true ∫
M

(∇∗σ) V olη = 0.

3. The Bochner formula for the sub-Laplacian

The horizontal sub-Laplacian 4f and the norm of the horizontal gradient ∇f of a smooth function f on

M are defined respectively by

(3.1) 4f = − trgH(∇2f) = ∇∗df = − ∇2f(ea, ea), |∇f |2 = df(ea) df(ea).

The function f is an eigenfunction with eigenvalue λ of the sub-Laplacian if

(3.2) 4f = λf,

for some constant λ. The divergence formula implies that on a compact qc manifolds all eigenvalues of

the sub-Laplacian are non-negative. Our main result Theorem 1.1 gives a lower bound on the positive

eigenvalues. Therefore, Theorem 1.1 can also be interpreted as giving a bound from below on the first

eigenvalue λ1, i.e., of the smallest positive eigenvalue for which (3.2) holds.

We start with the proof of the following Bochner-type formula.

Theorem 3.1. On a qc manifold of dimension 4n+ 3 the next formula holds true

(3.3)
1

2
4|∇f |2 = |∇2f |2 − g (∇(4f),∇f) +Ric(∇f,∇f) + 2

3∑
s=1

T (ξs, Is∇f,∇f) + 4

3∑
s=1

∇2f(ξs, Is∇f).

Proof. By definition we have

(3.4) − 1

2
4|∇f |2 = ∇3f(ea, ea, eb)df(eb) +∇2f(ea, eb)∇2f(ea, eb) = ∇3f(ea, ea, eb)df(eb) + |∇2f |2.

To evaluate the first term in the right hand side of (3.4) we use the Ricci identities (2.17). An application

of (2.3) to (2.7) gives

(3.5) (∇XT )(Y, Z) = 0.

Applying successively the Ricci identities (2.17) and also (3.5) we obtain the next sequence of equalities

(3.6) ∇3f(ea, ea, eb)df(eb) = ∇3f(ea, eb, ea)df(eb)− 2

3∑
s=1

ωs(ea, eb)df(eb)∇2f(ea, ξs)

= ∇3f(eb, ea, ea)df(eb)−R(ea, eb, ea, ec)df(ec)df(eb)− 2

3∑
s=1

ωs(ea, eb)df(eb)
[
∇2f(ξs, ea) +∇2f(ea, ξs)

]
= −d(4f)(eb)df(eb) +Ric(∇f,∇f) + 4

3∑
s=1

∇2f(ξs, Is∇f) + 2

3∑
s=1

T (ξs, Is∇f,∇f)

A substitution of (3.6) in (3.4) completes the proof of (3.3). �

Corollary 3.2. On a qc manifold of dimension 4n+ 3 the next formula holds

(3.7)
1

2
4|∇f |2 = −d(4f)(ea)df(ea) +Ric(∇f,∇f) + 2T 0(∇f,∇f)− 6U(∇f,∇f) + |∇2f |2

+ 4

3∑
s=1

∇2f(ξs, Is∇f).

Proof. Using (2.15) together with (2.13), we calculate

(3.8) 2

3∑
s=1

T (ξs, Is∇f,∇f) = 2T 0(∇f,∇f)− 6U(∇f,∇f),

which when combined with (3.8) and (3.3) give (3.7). �
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Our next goal is to evaluate in two ways the last term of (3.7). First using the Sp(n)Sp(1)-invariant

orthogonal decomposition Ψ[3] ⊕ Ψ[−1] of all linear maps on H, we obtain the Sp(n)Sp(1)-invariant de-

composition of the horizontal Hessian ∇2f (after the usual identification of tensors through the metric),

namely

(3.9)

(∇2f)[3](X,Y ) =
1

4

[
∇2f(X,Y ) +

3∑
s=1

∇2f(IsX, IsY )
]

(∇2f)[−1](X,Y ) =
1

4

[
3∇2f(X,Y )−

3∑
s=1

∇2f(IsX, IsY )
]
.

We continue with the next lemma where we give the first formula for the last term of (3.7).

Lemma 3.3. On a compact qc manifold of dimension 4n+ 3 the next integral formula holds

(3.10)

∫
M

3∑
s=1

∇2f(ξs, Is∇f)V olη =

∫
M

[ 3

4n
|(∇2f)[3]|2 −

1

4n
|(∇2f)[−1]|2 −

1

2

3∑
s=1

τs(Is∇f,∇f)
]
V olη.

Proof. We recall that an orthonormal frame

{e1, e2 = I1e1, e3 = I2e1, e4 = I3e1, . . . , e4n = I3e4n−3, ξ1, ξ2, ξ3}
is a qc-normal frame (at a point) if the connection 1-forms of the Biquard connection vanish (at that point).

Lemma 4.5 in [24] asserts that a qc-normal frame exists at each point of a qc manifold.

Using the identification of the 3-dimensional vector spaces spanned by {ξ1, ξ2, ξ3} and {I1, I2, I3} with

R3, the restriction of the action of Sp(n)Sp(1) to this spaces can be identified with the action of the group

SO(3), i.e., ξi =
∑3
t=1 Ψitξ̄t and Ii =

∑3
t=1 ΨitĪt, i = 1, 2, 3 with Ψ ∈ SO(3). One verifies easily that the

horizontal 1-form

B(X) =

3∑
s=1

∇2f(IsX, Isea)df(ea)

is Sp(n)Sp(1) invariant on H, for example B̄(X) = (detΨ)B(X) = B(X). Thus, it is sufficient to compute

the divergence of B in a qc-normal frame. To avoid the introduction of new variables we shall assume that

{e1, . . . , e4n, ξ1, ξ2, ξ3} is a qc-normal frame.

Using that the Biquard connection preserves the splitting of TM , the Ricci identities (2.17), the definition

of τs and (2.7), we find

(3.11) ∇∗B =

3∑
s=1

[
∇3f(eb, Iseb, Isea)df(ea) +∇2f(Iseb, Isea)∇2f(eb, ea)

]
=

1

2

3∑
s=1

[
∇3f(eb, Iseb, Isea)−∇3f(Iseb, eb, Isea)

]
df(ea) +

3∑
s=1

∇2f(Iseb, Isea)∇2f(eb, ea)

= −1

2
R(eb, Iseb, Isea, ec)df(ec)df(ea)−

3∑
s=1

ωs(eb, Iseb)∇2f(ξs, Isea)df(ea) +

3∑
s=1

∇2f(Iseb, Isea)∇2f(eb, ea)

= −2n

3∑
s=1

τs(Is∇f,∇f)− 4n

3∑
s=1

∇2f(ξs, Is∇f) + g
(
Υ∇2f,∇2f

)
,

where we used (2.10) in the last term and the convention Isα(X) = −α(IsX) for a horizontal 1-form α.

Using the orthogonality of the spaces Ψ[3] and Ψ[−1] we have

g
(
Υ∇2f,∇2f

)
= 3|(∇2f)[3]|2 − |(∇2f)[−1]|2.

A substitution of the last equality in (3.11) and the divergence formula give (3.10). This completes the proof

of the Lemma. �

The second integral formula for the last term in (3.7) follows.
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Lemma 3.4. On a compact qc manifold of dimension 4n+ 3 the following integral formula holds

(3.12)

∫
M

3∑
s=1

∇2f(ξs, Is∇f)V olη = −
∫
M

[
4n

3∑
s=1

(df(ξs))
2 +

3∑
s=1

T (ξs, Is∇f,∇f)
]
V olη.

Proof. Note, that by definition we have[
g
(
∇2f, ωs

) ]2
=
[
∇2f(ea, Isea)

]2
.

From the Ricci identities we have

(3.13) g(∇2f, ωs) = ∇2f(ea, Isea) = −4ndf(ξs)

which implies

(3.14) 16n2

∫
M

3∑
s=1

(df(ξs))
2
V olη =

∫
M

3∑
s=1

[
g
(
∇2f, ωs

)]2
V olη = −4n

∫
M

3∑
s=1

g(∇2f, ωs) df(ξs) V olη.

Let us consider the Sp(n)Sp(1) invariant horizontal 1-form defined by

C(X) =

3∑
s=1

df(IsX)df(ξs)

whose divergence is (computing as usual in a qc normal frame)

(3.15) ∇∗C =

3∑
s=1

[
∇2f(ea, Isea) df(ξs) +∇2f(ea, ξs) df(Isea)

]
=

3∑
s=1

[
g(∇2f, ωs) df(ξs)−∇2f(ξs, Is∇f)− T (ξs, Is∇f,∇f)

]
.

In the above calculation we used the second formula of (2.17) to obtain the second equality of (3.15).

Integrate (3.15) over M and use (3.14) to get (3.12) which completes the proof of the lemma. �

4. Proof of Theorem 1.1

Proof. We begin by integrating the Bochner type formula (3.3) over the compact qc manifold M of dimension

4n+ 3. Using the divergence formula we come to

(4.1) 0 =

∫
M

[
− (4f)2 + |(∇2f)[3]|2 + |(∇2f)[−1]|2 +Ric(∇f,∇f) + 2

3∑
s=1

T (ξs, Is∇f,∇f)
]
V olη

+ 4

∫
M

3∑
s=1

∇2f(ξs, Is∇f) V olη.

Following Greenleaf [23], we represent the last term in (4.1) as follows

∫
M

3∑
s=1

∇2f(ξs, Is∇f) V olη = (1− c)
∫
M

3∑
s=1

∇2f(ξs, Is∇f) V olη + c

∫
M

3∑
s=1

∇2f(ξs, Is∇f) V olη,
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where c is a constant. Then we apply Lemma 3.3 and Lemma 3.4, correspondingly, to the first and the

second terms in the obtained identity after which the above equality (4.1) takes the form

(4.2) 0 =

∫
M

[
− (4f)2 + |(∇2f)[3]|2 + |(∇2f)[−1]|2 +Ric(∇f,∇f) + 2

3∑
s=1

T (ξs, Is∇f,∇f)
]
V olη

+ 4(1− c)
∫
M

[ 3

4n
|(∇2f)[3]|2 −

1

4n
|(∇2f)[−1]|2 −

1

2

3∑
s=1

τs(Is∇f,∇f)
]
V olη

− 4c

∫
M

[
4n

3∑
s=1

(df(ξs))
2 +

3∑
s=1

T (ξs, Is∇f,∇f)
]
V olη.

Equation (4.2) can be simplified as follows

(4.3) 0 =

∫
M

[
− (4f)2 +

(
1 +

3(1− c)
n

)
|(∇2f)[3]|2 +

(
1− (1− c)

n

)
|(∇2f)[−1]|2 +Ric(∇f,∇f)

]
V olη

+

∫
M

[
− 16nc

3∑
s=1

(df(ξs))
2 − 2(1− c)

3∑
s=1

τs(Is∇f,∇f) + (2− 4c)

3∑
s=1

T (ξs, Is∇f,∇f)
]
V olη.

Using that
{

1
2
√
n
ωs

}
is an orthonormal set in Ψ[−1] we have

(4.4) |(∇2f)[−1]|2 ≥
1

4n

3∑
s=1

[
g
(
∇2f, ωs

)]2
= 4n

3∑
s=1

(df(ξs))
2,

while a projection on
{

1
2
√
n
g
}

gives

(4.5) |(∇2f)[3]|2 ≥
1

4n
(4f)2.

We obtain from (4.3) taking into account (4.5) and (4.4) that for any constant c such that

(4.6) 1 +
3(1− c)

n
≥ 0, 1− (1− c)

n
≥ 0

we have the following inequality

(4.7) 0 ≥
∫
M

[( 1

4n
+

3(1− c)
4n2

− 1
)

(4f)2 + 16n2
( 1

4n
− (1− c)

4n2
− c

n

) 3∑
s=1

(df(ξs))
2
]
V olη

+

∫
M

[
Ric(∇f,∇f)− 2(1− c)

3∑
s=1

τs(Is∇f,∇f) + (2− 4c)

3∑
s=1

T (ξs, Is∇f,∇f)
]
V olη.

The coefficient in front of
∑3
s=1(df(ξs))

2 is non-negative provided c ≤ n−1
4n−1 , so in order to cancel the∑3

s=1(df(ξs))
2 term we take

(4.8) c =
n− 1

4n− 1
.

Note that the inequalities (4.6) are satisfies and with this choice of c (4.7) yields

(4.9) 0 ≥
∫
M

(2(1− n)(2n+ 1)

n(4n− 1)

)
(4f)2 V olη

+

∫
M

[
Ric(∇f,∇f)− 6n

4n− 1

3∑
s=1

τs(Is∇f,∇f) +
4n+ 2

4n− 1

3∑
s=1

T (ξs, Is∇f,∇f)
]
V olη.

Applying the identities from Theorem 2.3 and (2.13) we calculate

(4.10)

3∑
s=1

τs(IsX,Y ) =
n+ 2

n
T 0(X,Y ) + 3Sg(X,Y ).
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Using the first equality in Theorem 2.3, (3.8) and (4.10), we express the second line in (4.9) in terms of

Ric, T 0 and U as follows

(4.11) Ric(∇f,∇f)− 6n

4n− 1

3∑
s=1

τs(Is∇f,∇f) +
4n+ 2

4n− 1

3∑
s=1

T (ξs, Is∇f,∇f)

=
2(n− 1)(2n+ 1)

(4n− 1)(n+ 2)

[
Ric(∇f,∇f) + αnT

0(∇f,∇f) + βnU(∇f,∇f)
]
,

where

(4.12) αn =
2(4n+ 5)

2n+ 1
, βn = 3

2n2 + 5n− 1

(2n+ 1)(n− 1)
.

At this point we let f be an eigenfunction of the sub-Laplacian with eigenvalue λ, i.e., (3.2) holds. An

integration by parts yields

(4.13)

∫
M

(4f)2 V olη = λ

∫
M

f4f V olη = λ

∫
M

|∇f |2 V olη.

Let us assume n ≥ 2. A substitution of (4.13) and (4.11) in (4.9) gives

(4.14) 0 ≥
∫
M

−λ|∇f |2 +
n

n+ 2

[
Ric(∇f,∇f) + αnT

0(∇f,∇f) + βnU(∇f,∇f)
]
V olη.

The conditions of the theorem together with (4.14) yield the inequality

(4.15) 0 ≥
∫
M

(
−λ+

n

n+ 2
k0

)
|∇f |2 V olη,

which implies the desired inequality

λ ≥ n

n+ 2
k0.

This completes the proof of Theorem 1.1. �

Remark 4.1. Suppose we have the case of equality in Theorem 1.1, i.e., we have

λ =
n

n+ 2
k0, 4f =

n

n+ 2
k0f

For c given by (4.8) equalities in (4.4) and (4.5) must hold which implies that the horizontal Hessian of the

eigenfunction f is given by the next equation

(4.16) ∇2f(X,Y ) = − k0

4(n+ 2)
fg(X,Y )−

3∑
s=1

df(ξs)ωs(X,Y ).

5. Proof of Theorem 1.2

We proof Theorem 1.2 using the Lichnerowicz’ estimate for the first positive eigenvalue of Riemannian

Laplacian and the Obata’ theorem [36] which says that the equality in the Lichnerowicz’ estimate is achieved

only on the round sphere.

5.1. Relation between the Laplacian and the sub-Laplacian. We start with the next lemma relating

the Riemannian Laplacian and the sub-Laplacian.

Lemma 5.1. Let M be a (4n+3)-dimensional qc manifold. Then the sub-Laplacian 4 and the Riemannian

Laplacian 4g, corresponding to the Levi-Civita connection ∇g of the extended metric g, are connected by

(5.1) 4gf = 4f −
3∑
s=1

ξ2
sf + df(

3∑
s=1

∇ξsξs).
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Proof. By definition, 4gf = −
∑4n
a=1∇gdf(ea, ea) −

∑3
s=1∇gdf(ξs, ξs), where {e1, . . . , e4n, ξ1, ξ2, ξ3} is an

orthonormal basis of H ⊕ V . Write d̃f for the gradient of f , the last equality can be write in the form

(5.2) 4gf = −g(∇gea d̃f , ea)−
3∑
s=1

g(∇gξs d̃f , ξs) = −g(∇ea d̃f , ea)−
3∑
s=1

g(∇ξs d̃f , ξs),

where we used (2.2) and the identities

(5.3) T (ea, A, ea) = T (ξs, A, ξs) = 0

following from the properties of the torsion tensor T of ∇ listed in (2.16). Now, we get (5.1) from (5.2). �

Next we give an estimate between the first eigenvalues of the Riemannian Laplacian and the sub-Laplacian.

Proposition 5.2. Let M be a (4n+3)-dimensional closed compact qc manifold. The first positive eigenvalue

µ of the Riemannian Laplacian and the first positive eigenvalue λ of the sub-Laplacian satisfy the following

inequality

(5.4) µ ≤ λ+

∫
M

3∑
s=1

(df(ξs))
2 V olη

for any smooth function f with
∫
M
f2 V olη = 1.

Proof. From the variational characterization of the first eigenvalue and (5.1) we have the estimate

(5.5) µ ≤
∫
M

(4gf)f V olη =

∫
M

(4f)f V olη −
∫
M

[ 3∑
s=1

(ξ2
sf)f − df(

3∑
s=1

∇ξsξs)f
]
V olη.

For the term df(
∑3
s=1∇ξsξs), we obtain consecutively

(5.6) df(

3∑
s=1

∇ξsξs) = g(d̃f ,

3∑
s=1

∇ξsξs) =

3∑
t=1

df(ξt)g(ξt,

3∑
s=1

∇ξsξs) =

3∑
s,t=1

df(ξt)g(∇ξsξs, ξt),

where we used for the third equality that the Biquard connection is metric.

Consider the vector field fdf(ξs)ξs. We calculate its Riemannian divergence div[fdf(ξs)ξs] as follows

(5.7) div[f(ξsf)ξs] = (df(ξs))
2 + (ξ2

sf)f + fdf(ξs)
[
g(∇geaξs, ea) +

3∑
t=1

g(∇gξtξs, ξt)
]

= (df(ξs))
2 + (ξ2

sf)f + fdf(ξs)
[
g(∇eaξs, ea) +

3∑
t=1

g(∇ξtξs, ξt)
]

= (df(ξs))
2 + (ξ2

sf)f − fdf(ξs)

3∑
t=1

g(∇ξtξt, ξs)
]
,

where we used (2.2), (5.3) and the fact that the Biquard connection preserves the splitting H ⊕ V to

established the second and the third equality. A substitution of (5.7) and (5.6) in (5.5) followed by an

application of the Riemannian divergence formula give inequality (5.4). �

Proof of Theorem 1.2. Suppose that M is a qc-Einstein structure of dimension at least eleven with a normal-

ized qc scalar S = 2, hence the qc Ricci tensor given by the first equality in (2.16) satisfies Ric = 4(n+ 2)g.

Suppose the equality case of Theorem 1.2 holds, i.e., λ = 4n and let 4f = λf . After a possible rescaling of

f and using the divergence formula we have then the following identities

(5.8)

λ = 4n, 4f = 4nf,

∫
M

f2 V olη = 1,∫
M

|∇f |2 V olη = λ =
1

λ

∫
M

|4f |2 V olη.
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In this case Lemmas 3.3 and 3.4 together with equation (4.10) yield

(5.9)

∫
M

3∑
s=1

(df(ξs))
2 V olη = 3.

Therefore, from (5.9) we have the inequality

(5.10) µ ≤ 4n+ 3.

On the other hand, any qc-Einstein manifold with a positive qc scalar curvature is locally 3-Sasakian [24]

and it is well known that a 3-Sasakian manifold is Einstein (with respect to the extended metric) with

Riemannian scalar curvature (4n+2) [31], i.e., the Riemannian Ricci tensor Ricg is given by

(5.11) Ricg(A,A) = (4n+ 2)g(A,A).

By Lichnerowicz’ theorem and (5.11) we have

(5.12) µ ≥ 4n+ 3.

The inequalities (5.10) and (5.12) yield the equality

(5.13) µ = 4n+ 3.

Therefore, by Obata’s result we conclude that the manifold (M, g) is isometric to the sphere S4n+3(1) and

hence the manifold (M, g,Q) is qc equivalent to the 3-Sasakian sphere of dimension 4n+ 3. This completes

the proof of Theorem 1.2. �

6. Sharp estimates for square integrals of derivatives

In this section we prove Theorem 1.3.

Proof of Theorem 1.3. Notice that we are using a function which vanishes outside some compact so the

integrals are well defined. The proof is similar to the proof of Theorem 1.1 except we have to express

|(∇2f)[3]|2 in two different ways. This is the place where the qc case differs from the CR case. We start with

the identity (4.1), in which we first move the integral of the square of the sub-Laplacian to the left-hand side

of the equality. Then we write

|(∇2f)[3]|2 = (1− c) |(∇2f)[3]|2 + c |(∇2f)[3]|2

and use (4.5) to obtain

|(∇2f)[3]|2 ≥
1− c
4n
|4f |2 + c |(∇2f)[3]|2

when 1− c ≥ 0. Finally, we use (3.10) for the last term in the thus obtained form of (4.1). The result is the

following inequality (valid for 1− c ≥ 0)

(6.1)

(
1− 1− c

4n

)∫
M

|4f |2 V olη ≥
∫
M

[(
c+

3

n

)
|(∇2f)[3]|2 +

(
1− 1

n

)
|(∇2f)[−1]|2

]
V olη

+

∫
M

[
Ric(∇f,∇f)− 2

3∑
s=1

τs(Is∇f,∇f) + 2

3∑
s=1

T (ξs, Is∇f,∇f)
]
V olη.

In order to obtain the norm of horizontal Hessian we solve for c the equation

c+
3

n
= 1− 1

n
,

which gives c = (n − 4)/n. Since 1 − c = 4/n > 0 we let c = (n − 4)/n in the above inequality (6.1) which

becomes

(6.2)
n2 − 1

n2

∫
M

|4f |2 V olη ≥
n− 1

n

∫
M

|∇2f |2 V olη

+

∫
M

[
Ric(∇f,∇f)− 2

3∑
s=1

τs(Is∇f,∇f) + 2

3∑
s=1

T (ξs, Is∇f,∇f)
]
V olη.
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Recalling the formula for the Ricci tensor in Theorem 2.3, (3.8) and (4.10) after a short simplification (using

that n > 1) we obtain the desired inequality, which completes the proof. �

For a qc-Einstein manifold, where T 0 = U = 0, Theorem 1.3 gives the next corollary taking into account

that a qc-Einstein manifold of dimension eleven and higher is of constant scalar curvature, see [24].

Corollary 6.1. Let (M,η) be a (4n+ 3)-dimensional qc-Einstein manifold, n > 1. For any f ∈ C∞o (M) we

have

(6.3)

∫
M

|4f |2 V olη ≥
n

n+ 1

∫
M

|∇2f |2 V olη +
2n2S

n+ 1

∫
M

|∇f |2 V olη.

For the quaternionic Heisenberg group with its standard qc structure, see [24] and [29], the above Corollary

gives the following result. The point here is the precise value of the constant cn since even the more general

Calderón-Zygmund Lp version is well known to hold on nilpotent Lie groups, see [19] for an excellent overview.

Corollary 6.2. Let (G (H), Θ̃) be the (4n+ 3)-dimensional Heisenberg group equipped with its standard qc

structure. For any f ∈ C∞o (G (H)) we have

(6.4) ‖∇2f‖L2(G (H)) ≤ cn ‖4f‖L2(G (H)), cn =

√
1 +

1

n
.

As a consequence of the above estimate, [17] and [16] which generalize Cordes’ results to the sub-

Riemannian setting it follows that for

(6.5) 2 ≤ p < 2 +
n+ n

√
16n2 + 8n− 3

4n2 + 2n− 1

a p-harmonic function on an open set Ω ⊂ G (H) on the quaternionic Heisenberg group of dimension 4n+ 3,

f ∈ S1,p(G (H)), has in fact additional regularity f ∈ S2,2
loc (G (H)). Here Sk,p (Ω) denote the usual non-

isotropic Sobolev spaces, see for example [19]. Similarly to [17] and [16] one can then obtain a C1,α under

suitable restrictions on p. Obtaining the C1,α property of the solution is in general still an open problem

except in some cases, see [16], [34] and [22] and references therein. The first C1,α estimate was obtained for

the-Laplacian operator on the Heisenberg group [7].

References

[1] Astengo, F., Cowling, M., & Di Blasio, B., The Cayley transform and uniformly bounded representations, J. Funct.

Anal. 213 (2004), no. 2, 241-269. 2

[2] Alekseevsky, D. & Kamishima, Y., Pseudo-conformal quaternionic CR structure on (4n + 3)-dimensional manifold,

Ann. Mat. Pura Appl. 187 (2008), 487–529; math.GT/0502531. 3

[3] Barletta, E., The Lichnerowicz theorem on CR manifolds. Tsukuba J. Math. 31 (2007), no. 1, 77–97. 2

[4] Biquard, O., Métriques d’Einstein asymptotiquement symétriques, Astérisque 265 (2000). 3, 4, 5
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