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Abstract. We show that any compact quaternionic contact (abbr. qc) hypersurfaces in a hyper-Kähler

manifold which is not totally umbilical has an induced qc structure, locally qc homothetic to the standard

3-Sasakian sphere. We also show that any nowhere umbilical qc hypersurface in a hyper-Kähler manifold is

endowed with an involutive 7-dimensional distribution whose integral leaves are locally qc-conformal to the

standard 3-Sasakian sphere.
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1. Introduction

Any real hypersurface in a complex manifold carries a natural CR structure which in the case of a strictly

positive Levi form endows the surface with a natural pseudo-Hermitian structure. The goal of this paper is

to consider a hyper-Kähler manifold and describe the real hypersurfaces which carry a natural quaternionic

contact (qc) structure. The concept of a qc structure was originally introduced by O. Biquard [2] as a

model for the conformal boundary at infinity of the quaternionic hyperbolic space. According to a result

in [2, 4], every real analytic qc structure is the conformal infinity of a unique (asymptotically hyperbolic)

quaternionic-Kähler metric defined in a neighborhood of the qc structure. Similar to the CR case the

question of embedded quaternionic contact hypersurfaces is a natural one, but in contrast to the CR case it

imposes a rather strong conditions on the hypersurface. The situation has the flavor of the Kähler versus the

hyper-Kähler case. As well known any complex submanifold of a Kähler manifold is a Kähler manifold and a

Kähler metric is locally given by a Kähler potential. In contrast, a hyper-complex manifold of a hyper-Kähler

manifold must be totally geodesic and (in general) there is no hyper-Kähler potential (the structure is rigid).

This suggests that we can expect that there are few quaternionic contact hypersurfaces in a hyper-Kähler

manifold. Indeed, we showed in [9] that given a connected qc-hypersurface M in the flat quaternion space

Hn+1, then, up to a quternionic affine transformation of Hn+1, M is contained in one of the following three

hyperquadrics (the 3-Sasakain sphere, the hyperboloid and the quaternionic Heisenberg group):

(1.1) (i) |q1|2+· · ·+|qn|2+|p|2 = 1, (ii) |q1|2+· · ·+|qn|2−|p|2 = −1, (iii) |q1|2+· · ·+|qn|2+Re(p) = 0,
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where (q1, q2, . . . qn, p) denote the standard quaternionic coordinates of Hn+1. We recall that the above three

examples are locally qc-conformal. Furthermore, it was shown [9] in the general hyper-Kähler case that the

Riemannian curvature of the ambient space has to be degenerate along the normal to the qc-hypersurface

vector field.

The notion of qc-hypersurface was first defined by Duchemin [5] in the general setting of quaternionic

manifold. A manifold K is called quaternionic if K is endowed with a 3-dimensional sub-bundle QK ⊂
End(TK) locally generated by a pointwise quaternionic structure J1, J2, J3 together with a torsion free

connection that preserves QK .

An embedding ι : M → K of a qc manifold M with a horizontal space H equipped with a quaternion

structure QH , see Section 2.1 for precise definition, into a quaternionic manifold (K,QK) is called a qc

embedding if the differential ι∗ intertwines QK and QH , i.e., if

QH = ι−1∗ QK ι∗

is satisfied at each point of M , where QH denotes the point-wise quaternionic structure of the horizontal

distribution H ⊂ TM . In particular, the image ι∗(H) coincides with the maximal QK−invariant subspace

of ι∗(TM) ⊂ TK. A real hypersurface M ⊂ K in a quaternionic manifold K is called a qc hypersurface if

there exists a qc structure on M for which the inclusion map is a qc embedding. Notice that, if such a qc

structure exists, then it is unique, since the qc distribution H is the maximal QK invariant subspace of TM .

Duchemin [5]showed that a real analytic qc manifold can be realized as a qc-hypersurface in an appropriate

quaternionic manifold.

In this paper we consider qc-hypersurfaces in a hyper-Kähler manifold. Our main result in the case of a

compact embedded qc-hypersurface is the following.

Theorem 1.1. Let M be a compact qc-hypersurface of a hyper-Kähler manifold. If M is not a totally

umbilical hypersurface, then the qc-conformal class of the embedded qc structure contains a qc-Einstein

structure of positive qc-scalar curvature which is locally qc-equivalent to the 3-Sasakian sphere.

We note that the existence of a conformal factor leading to a qc-Einstein structure, called calibrated

qc-structure, was established earlier by the authors, see [9, Theorem 1.2]. Thus, the main new result here is

the qc-conformal flatness of the calibrated qc-Einstein structure. In the connected simply-connected case the

above Theorem implies that the qc-conformal class of the embedded qc structure contains a qc structure qc-

equivalent to the round 3-Sasakian sphere, see also Theorem 4.1. It is well known that any totally umbilical

hypersurface of a hyper-Kähler manifold is a qc-hypersurface whose qc structure is generated by its induced

3-Sasakian metric. Furthermore, a 3-Sasakian space can be embedded as a totally umbilical qc-hypersurface

in a hyper-Kähler manifold, namely in its metric cone. The hyperquadric

|q1|2 + · · ·+ |qn|2 + 2|p|2 = 1

in Hn+1 is an example of a compact qc-hypersurface which is not totally umbilical with respect to the

standard flat hyper-Kähler metric of Hn+1.

The case of a local qc-embedding is considered in Section 5 where we prove results which in the seven

dimensional case give the following theorem.

Theorem 1.2. A seven dimensional everywhere non-umbilical qc-hypersurface M embedded in a hyper-

Kähler manifold is qc-conformal to a qc-Einstein structure which is locally qc-equivalent to the 3-Sasakian

sphere, the quaternionic Heisenberg group or the hyperboloid.

The proofs of the main results rely on the known and some new properties of the ”calibratng” qc-conformal

factor. More precisely, as shown in [9], given a qc-hypersurface M in a hyper-Kähler manifold K there is

a positive function f on M called ”calibrating” function so that the qc structure on M obtained from the

embedded one with f as a qc-conformal factor is qc-Einstein, see [9, Lemma 3.7]. Furthermore, if II is the

second fundamental form of M , then the (0,2) tensor f II extends to a covariant constant along M , see [9,

Theorem 3.1]. The new key points for the results of the current paper are certain identities for the second

and third order (horizontal) covariant derivative of the calibrating function f . Using the bracket generating

condition and the relation between the Biquard and Levi-Civita connections these identities lead to a third
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order differential system on M well studied in the Riemannian case by several authors, see [17, 6, 18, 16].

In the compact case, this system is known to have the remarkable property that it admits a non-constant

solution only on Riemannian manifolds which are locally isometric to the round sphere.

Convention 1.3. Throughout the paper, unless explicitly stated otherwise, we will use the following notation.

a) All manifolds are assumed to be C∞ and connected.

b) The triple (i, j, k) denotes any positive permutation of (1, 2, 3).

c) s, t are any numbers from the set {1, 2, 3}, s, t ∈ {1, 2, 3}.
d) For a given decomposition TM = V ⊕H we denote by [.]V and [.]H the corresponding projections to V

and H.

e) A,B,C, etc. will denote sections of the tangent bundle of M , A,B,C ∈ TM .

f) X,Y, Z, U will denote horizontal vector fields, X,Y, Z, U ∈ H.

Acknowledgments. S.I. and I.M. are partially supported by Contract DFNI I02/4/12.12.2014 and

Contract 195/2016 with the Sofia University ”St.Kl.Ohridski”. I.M. is supported by a SoMoPro II Fellowship
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within the EU Seventh Framework Programme on the basis of the grant agreement REA No. 291782. It

is further co-financed by the South-Moravian Region. DV was partially supported by Simons Foundation

grant #279381. The authors would like to thank the Masaryk University, Brno, for the hospitality and the

financial support provided while visiting the Department of Mathematics.

2. Preliminaries

2.1. Quaternionic contact manifolds. Here, we recall briefly the relevant facts and notation needed for

this paper and refer to [2], [7] and [13] for a more detailed exposition. A quaternionic contact (qc) manifold

is a (4n+3)-dimensional manifold M with a codimension three distribution H equipped with an Sp(n)Sp(1)

structure locally defined by an R3-valued 1-form η = (η1, η2, η3). Thus, H = ∩3s=1Ker ηs carries a positive

definite symmetric tensor g, called the horizontal metric, and a compatible rank-three bundle QH consisting

of endomorphisms of H locally generated by three orthogonal almost complex structures Is, satisfying the

unit quaternion relations: (i) I1I2 = −I2I1 = I3, I1I2I3 = −id|H ; (ii) g(Is., Is.) = g(., .); and (iii) the

compatibility conditions 2g(IsX,Y ) = dηs(X,Y ), X,Y ∈ H hold true. Unlike the CR case, in the qc case

the horizontal space determines uniquely the qc-conformal class, cf. [9]. For this reason very often we will

identify the qc structure with the R3-valued 1-form η while supressing the remaining data. We also note

that by virtue of its definition a quaternionic contact manifold is orientable.

Two qc structures η and η̄ on a manifold M are called qc-conformal to each other if η̄ = µΨη for a

positive smooth function µ and an SO(3) matrix Ψ with smooth functions as entries. A diffeomorphism F

between two qc manifolds M and M̄ is called quaternionic contact conformal (qc-conformal) transformation

if F ∗ η̄ = µΨη . The qc-conformal curvature tensor W qc, introduced in [11], is the obstruction for a qc

structure to be locally qc-conformally to the standard 3-Sasakian structure on the (4n+3)-dimensional sphere

[11, 13]. As already noted in the introduction the 3-Sasakain sphere, the hyperboloid and the quaternionic

Heisenberg group are all locally qc-conformal to each other.

As shown in [2], there is a ”canonical” connection associated to every qc manifold of dimension at least

eleven. In the seven dimensional case the existence of such a connection requires the qc structure to be

integrable [4]. The integrability condition is equivalent to the existence of Reeb vector fields [4], which

(locally) generate the supplementary to H distribution V . The Reeb vector fields {ξ1, ξ2, ξ3} are determined

by [2]

(2.1) ηs(ξt) = δst, (ξsydηs)|H = 0, (ξsydηt)|H = −(ξtydηs)|H ,

where y denotes the interior multiplication. Henceforth, by a qc structure in dimension 7 we shall mean

a qc structure satisfying (2.1) and refer to the ”canonical” connection as the Biquard connection. The

Biquard connection is the unique linear connection preserving the decomposition TM = H ⊕ V and the

1This article reflects only the author’s views and the EU is not liable for any use that may be made of the information

contained therein.
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Sp(n)Sp(1) structure on H with torsion T determined by T (X,Y ) = −[X,Y ]|V while the endomorphisms

T (ξs, .) : H → H belong to the orthogonal complement (sp(n) + sp(1))⊥ ⊂ GL(4n,R).

The covariant derivatives with respect to the Biquard connection of the endomorphisms Is and the Reeb

vector fields are given by

(2.2) ∇Ii = −αj ⊗ Ik + αk ⊗ Ij , ∇ξi = −αj ⊗ ξk + αk ⊗ ξj .

The sp(1)-connection 1-forms α1, α2, α3, defined by the above equations satisfy [2]

αi(X) = dηk(ξj , X) = −dηj(ξk, X), X ∈ H.

Let R = [∇,∇]−∇[.,.] be the curvature tensor of∇ and R(A,B,C, D) = g(RA,BC, D) be the corresponding

curvature tensor of type (0,4). The qc Ricci tensor Ric, the qc-Ricci forms ρs and the normalized qc scalar

curvature S are defined by

Ric(A,B) =

4n∑
a=1

R(ea, A,B, ea), 4nρs(A,B) =

4n∑
a=1

R(A,B, ea, Isea), 8n(n+2)S = Scal =

4n∑
a=1

Ric(ea, ea),

where e1, . . . , e4n of H is an g-orthonormal frame on H.

We say that (M,η) is a qc-Einstein manifold if the restriction of the qc-Ricci tensor to the horizontal

space H is trace-free, i.e.,

Ric(X,Y ) =
Scal

4n
g(X,Y ) = 2(n+ 2)Sg(X,Y ), X, Y ∈ H.

The qc-Einstein condition is equivalent to the vanishing of the torsion endomorphism of the Biquard con-

nection, T (ξs, X) = 0 [7]. It is also known [7, 8] that the qc-scalar curvature of a qc Einstein manifold is

constant and the vertical distribution is integrable.

By [8, Theorem 5.1], see also [12] and [13, Theorem 4.4.4] for alternative proofs in the case Scal 6= 0, a

qc-Einstein structure is characterised by either of the following equivalent conditions

i) locally, the given qc structure is defined by 1-form (η1, η2, η3) such that for some constant S, we have

(2.3) dηi = 2ωi + Sηj ∧ ηk;

ii) locally, the given qc structure is defined by a 1-form (η1, η2, η3) such that the corresponding connection

1-forms vanish on H and (cf. the proof of Lemma 4.18 of [7])

(2.4) αs = −Sηs.

2.1.1. The correspondin (pseudo) Riemannian geometry. Let M be a qc-Einstein manifold. Note that, by

applying an appropriate qc homothetic transformation, we can aways reduce a general qc-Einstein structure

to one whose normalized qc-scalar curvature S equals 0, 2 or −2. Consider the one-parameter family of

(pseudo) Riemannian metrics hµ, µ 6= 0 on M by letting

(2.5) hµ = g|H + µ(η21 + η22 + η23).

Let ∇µ be the Levi-Civita connection of hµ. Note that hµ is a positive-definite metric when µ > 0 and has

signature (4n, 3) when µ < 0. The difference L = ∇µ −∇ between the Levi-Cevita connection ∇µ and the

Biquard connection ∇ is given by [7, 8]

(2.6) L(A,B) ≡ ∇µAB −∇AB =
S

2
[A]V × [B]V +

3∑
s=1

{
− ωs(A,B)ξs + µηs(A)IsB + µηs(B)IsA

}
,

where .V × .V is the standard vector cross product on the 3-dimensional vertical space V .

2.2. Quaternionic contact hypersurfaces. In this section we summarize some results from [9] which are

the starting point of the subject of the current paper. For ease of reading we follow [9] closely.
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2.2.1. qc-hypersurfaces. Let K be a hyper-Kähler manifold with hyper-complex structure (J1, J2, J3), quater-

nionic bundle QK , and hyper-Kähler metric G. In particular, the Levi-Civita connection D is a torsion free

connection on K preserving QK .

For a real hypersurface M ⊂ K the maximal QK-invariant subspace TM is denoted by H and refereed to

as the horizontal distribtution. If ι : M → K is the natural inclusion map, then M is a qc-hypersurface if it

is a qc manifold with respect to the induced quaternionic structure ι−1∗ (QK)ι∗ on H. In order to simplify the

notation we shell identify the corresponding points and tensor fields on M with their images through ι in K.

An equivalent characterization of a qc-hypersurface M is that the restriction of the second fundamental form

of M to the horizontal space H is a definite symmetric form, which is invariant with respect to the induced

quaternion structure, see [5, Proposition 2.1]. After choosing the unit normal vector N to M appropriately,

we will assume that the second fundamental form of M ,

II(A,B) = −G(DAN,B), A,B ∈ TM,

is negative definite on the horizontal space H. The defining tensors of the embedded qc structure on M are

given by

(2.7) η̂s(A) = G(JsN,A), ξ̂s = JsN + r̂s, ω̂s(X,Y ) = −II(IsX,Y ), ĝ(X,Y ) = −ω̂s(IsX,Y ),

where Is = Js|H and ξ̂s, are the Reeb vector fields corresponding to η̂s, see [9, Section 2.2].

2.2.2. The calibrating function. Let ω̂s be the fundamental 2-forms corresponding to η̂s, given by

2ω̂s(X,Y ) = dη̂s(X,Y ), X, Y ∈ H and ξ̂tyω̂s = 0, s, t = 1, 2, 3. Following [9, Section 3.1], consider the

complex 2-forms on M ,

γ̂i = ω̂j +
√
−1 ω̂k, Γi(A,B) = G(JjA,B) +

√
−1G(JkA,B).

Using a type decomposition argument it was shown in [9, Section 3.1] that

(2.8) Γns ≡ µsγ̂ns mod {η̂1, η̂2, η̂3},

for s = 1, 2, 3 and some complex valued functions µs and, in fact, µ1 = µ2 = µ3 = µ for a positive (real

valued) function µ on M . The calibrating function of M was defined by

f = µ
1

n+2 .

2.2.3. The calibrated qc structure. The qc structure

(η1, η2, η3)
def
= f(η̂1, η̂2, η̂3)

is called calibrated. As shown in [9], it satisfies the structure equations (2.3). In particular, it is a qc-Einstein

structure. Moreover, by [9, Lemma 3.9] the horizontal metric g of the calibrated qc structure is related to

the second fundamental form of the qc-embedding by the formula

(2.9) g(A′′, B′′) = −fII(A,B)− S

2

3∑
s=1

ηs(A)ηs(B), A,B ∈ TM,

where for A ∈ TM we let A′′ = A −
∑3
s=1 ηs(A)ξs be the horizontal part of A. The corresponding Reeb

vector fields ξs are given by

(2.10) ξs = Js

(
f−1N + r

)
,

where r ∈ H is determined by II(r,X) = f−2df(X), X ∈ H. In fact, we have [9, Lemma 3.8]

r = −f−1∇f,(2.11)

df(ξs) = 0, s = 1, 2, 3,(2.12)

where ∇f ∈ H denotes the horizontal gradient of f , df(X) = g(∇f,X).

The calibrated transversal to M vector field is defined by

(2.13) ξ=f−1N + r.
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From (2.10) and (2.13) we have

(2.14) ξs = Jsξ.

With the obvious identifications, the bundle TK|M →M decomposes as a direct sum,

(2.15) TK|M = H ⊕ V ⊕ Rξ,

where V is the span of the Reeb vector fields ξs of the calibrated qc structure on M . For v ∈ TpK we define

(2.16) v′ = v − λ(v)ξ(p) ∈ TpM = Hp ⊕ Vp, v′′ = πv = v′ −
3∑
s=1

ηs(v
′)ξs ∈ Hp,

where λ = fG(N, .) so that v′ is the projection of v on TpM = Hp⊕Vp parallel to the calibrated transversal

field ξ and π : TK|M → H is the projection on the horizontal space using the decomposition (2.15). Thus,

for v ∈ TK|M we have

(2.17) λ(Jsv) = ηs(v
′)

and the decomposition

(2.18) v = πv +

3∑
s=1

ηs(v
′)ξs + λ(v)ξ ∈ H ⊕ V ⊕ Rξ.

Following [9, (3.23)] consider the symmetric bilinear form W ∈ T ∗K|M ⊗ T ∗K|M ,

(2.19) W(v, w)
def
= −fII(v′, w′) +

S

2
λ(v)λ(w) = g(πv, πw) +

S

2

3∑
s=1

ηs(v
′)ηs(w

′) +
S

2
λ(v)λ(w).

Clearly, W(Js., .Js.) = W(., .), s = 1, 2, 3, and W as the unique Js-invariant extension of the symmetric

bilinear form −fII on TM to a symmetric bilinear form on TK|M . A very important property of the

calibrated qc structure is that W is constant along M with respect to the Levi-Civita connection D of the

hyper-Kähler metric G, see [9, Theorem 3.1]), i.e., we have

(2.20) DAW = 0, A ∈ TM.

Finally, we record an important relation between the calibrating function and the parallel bilinear form,

see [9, (2.16)]

(2.21) W(N,A) = −fII(N ′, A) = f2II(r,A) = −fg(r,A′′) = df(A′′) = df(A).

3. The system of differential equations for the calibrating function

We begin with a lemma relating the Levi-Civita connection D of the hyper-Kähler metric G to the Biquard

connection ∇ of the calibrated qc structure on M .

Lemma 3.1. For any A ∈ TM and X ∈ H we have:

i) DAX = ∇AX +
∑3
t=1

(
(S/2)ηt(A)ItX − ωt(πA,X)ξt

)
− g(πA,X)ξ.

ii) DAξ = (S/2)A and DAξs = (S/2)JsA.

Proof. First we shall prove the formula in part i) for a horizontal vector field A,

(3.1) DXY = ∇XY − ωs(X,Y )ξs − g(X,Y )ξ.

We start with the computation of the horizontal part of DXY ,

(3.2) ∇XY = π(DXY ), X, Y ∈ H,

recalling that π is the projection on the horizontal space, see (2.18). From (2.19) and (2.20) we have

0 = (DXW)(Y, Z) = X
(
W(Y,Z)

)
−W(DXY,Z)−W(Y,DXZ)

= X
(
g(Y,Z)

)
− g
(
π(DXY ), Z

)
− g
(
Y, π(DXZ)

)
.
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Letting F (X,Y )
def
= ∇XY − π(DXY ), we compute

0 = (∇Xg)(Y, Z) = X
(
g(Y,Z)

)
− g
(
π(DXY ) + F (X,Y ), Z

)
− g
(
Y, π(DXZ) + F (X,Z)

)
= −g

(
F (X,Y ), Z

)
− g
(
F (X,Z), Y

)
,

while on the other hand

0 = g
(
π(T (X,Y )), Z

)
= g
(
∇XY −∇YX − π([X,Y ]), Z

)
= g
(
∇XY −∇YX − π(DXY −DYX), Z

)
= g
(
F (X,Y ), Z

)
− g
(
F (Y,X), Z

)
.

Thus, the tensor g
(
F (X,Y ), Z

)
is both symmetric in X,Y and skew-symmetric in Y,Z which implies that

it vanishes.

The remaining part of DXY in the decomposition based on (2.18) can be computed easily as follows,

λ(DXY ) = −fG(DXN,Y ) = fII(X,Y ) = −g(X,Y )

and

ηs((DXY )′) = −λ(JsDXY ) = −λ(DX(JsY )) = g(X, JsY ) = −ωs(X,Y ).

From the above the formula in part i) in the case when A is a horizontal vector field follows.

Next we prove the formula

(3.3) DXN = ∇X∇f +
Sf

2
X − df(JsX)ξs.

In order to determine the horizontal part of DXN we recall (2.20) and then compute the (horizontal) Hessian

of f as follows

∇2f(X,Y ) = X(df(Y ))− df(∇XY ) = X(W(N,Y ))− df(∇XY )

= W(DXN,Y ) + W(N,DXY )− df(∇XY ) = W(DXN,Y ) + W(N,DXY −∇XY )

using (2.21) in the last equality. From (2.19) and (3.1) it follows

∇2f(X,Y ) = g(π(DXN), Y )− 1

2
fSg(X,Y )

noting that W(N, ξ) = 1
2fS. The vertical part of DXN is computed with the the help of (2.9) and (2.13)

ηs(DXN) = −fG
(
N, Js(DXN),

)
= fG

(
DXN, JsN

)
= −fII(X, JsN) = −df(JsX).

The proof of formula (3.3) is complete.

An immediate consequence of (2.13), (2.11), (3.1) and (3.3) is the following formula

(3.4) DXξ
(2.10)

=
1

2
SX.

At this point we can complete the proof of part i). Since the calibrated qc structure is qc-Einstein and the

1-forms ηs satisfy the structure equations (2.3), we have ∇ξsX = [ξs, X]. Therefore,

(3.5) ∇ξsX = [ξ,X] = DξsX −DXξs = DξsX − Js(DXξ)
(3.4)
= DξsX −

S

2
JsX.

Finally, we compute

DAX = DπAX + ηs(A)DξsX
(3.1),(3.5)

= ∇πAX − ωs(πA,X)ξs − g(πA,X)ξ + ηs(A)
(
∇ξsX +

S

2
JsX

)
= ∇AX − ωs(πA,X)ξs − g(πA,X)ξ +

S

2
ηs(A)JsX.

Turning to the proof of ii), we have from (2.9) and (2.17) the formula

G(DξsN,A) = −II(ξs, A) =
1

2
fSηs(A) =

S

2
G(JsN,A),
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hence

(3.6) DξsN =
1

2
SJsN =

1

2
Sξs −

1

2
SJs∇r.

From (2.12) and T (ξs, X) = 0 it follows ∇ξs∇f = 0, hence (2.13), (2.11), (3.6) and (2.10) give

Dξsξ =
S

2
ξs,

which together with (3.4) completes the proof of part ii) after recalling (2.14). �

Corollary 3.2. M is a totally umbilical qc-hypersurface of a hyper-Kähler manifold iff the calibrating func-

tion is locally constant.

Proof. In view of (3.6) and (2.11) it follows the horizontal gradient of f vanishes ∇f = 0, hence f is locally

constant taking into account that the horizontal space is bracket generating. �

As customary, let W : M → End(TK)|M also denote the (1,1) tensor corresponding to the symmetric

bilinear form W, i.e., G(Wu, v) = W(u, v) for all u, v ∈ TK|M . Then WJs = JsW and, since both G and

W are D-parallel along M , we also have

(3.7) (DAW)(u) = 0, A ∈ TM, u ∈ TK|M .

An almost immediate corollary of the proof of Lemma 3.1 is the following formula for W in terms of the

calibrating function.

Lemma 3.3. For X ∈ H we have:

i) WX = f∇X∇f + (Sf2/2)X + df(X)∇f − f
∑3
s=1 df(IsX)ξs + fdf(X)ξ;

ii) Wξ = (Sf/2)∇f + (Sf2/2)ξ;

iii) Wξs = (Sf/2)Is∇f + (Sf2/2)ξs, s = 1, 2, 3.

Proof. By definition (2.19), recall also (2.16), we have

W(X,u) = −fII(X,u′) = fG(DXN, u
′) = fG(DXN, u)− fG(DXN, ξ)λ(u)

= fG(DXN, u
′) = fG(DXN, u)− f2G(DXN, ξ)G(N, u).

Now, the formula of part i) follows by a direct substitution using (2.13), (2.11) and (3.3). Finally, part iii)

follows from Jsξ = ξs, see after equation (2.13).

Partii) is proved similarly with the help of (3.6) instead of (3.3). �

After the preceding technical lemmas we turn to the key result which gives a system of partial differential

equations for the calibrating function. With the help of (2.6) is then expressed in terms of Levi-Civita

connection in the subsequent lemma.

Lemma 3.4. The function φ
def
= 1

2f
2 satisfies the following equations

dφ(ξs) = 0;(3.8)

∇2φ(X,Y ) = ∇2φ(IsX, IsY );(3.9)

∇3φ(X,Y, Z) + Sdφ(X)g(Y, Z) +
S

2
dφ(Y )g(Z,X) +

S

2
dφ(Z)g(X,Y )(3.10)

=
S

2

3∑
s=1

[
dφ(IsY )ωs(X,Z) + dφ(IsZ)ωs(X,Y )

]
.

Proof. Since dφ = fdf and ∇2φ = f∇2f + df ⊗ df, (2.21) gives (3.8). Recalling the decomposition (2.18),

see also (2.16), by Lemma 3.3 we have

(3.11) g
(

(WX)′′, Y
)

= ∇2φ(X,Y ) + Sφg(X,Y ).

From WJs = JsW and g(IsX, IsY ) = g(X,Y ) for s = 1, 2, 3, (3.9) follows from

0 = g
(

(WX)′′, Y
)
− g
(

(WIsX)′′, IsY
)

= ∇2φ(X,Y )−∇2φ(IsX, IsY ).
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We turn to the proof of (3.10). A differentiation of (3.11) gives

(3.12) ∇3φ(X,Y, Z) + Sdφ(X)g(Y,Z) = g
(
∇X (WY )

′′
, Z
)
− g (πW∇XY,Z) .

Taking into account (3.2), (2.18) and (3.7) we can rewrite the first term in the right-hand side of the above

identity as follows

g
(
∇X (WY )

′′
, Z
)

= g
(
πDX (WY )

′′
, Z
)

= g (πWDXY,Z)−ηs
(
(WY )

′)
g (πDXξs, Z)−λ(WY )g (πDXξ, Z) .

Now we use Lemma 3.3 to compute

ηs
(
(WY )

′)
= −fdf(IsY ) and λ(WY ) = fdf(Y ).

A substitution of the last two equations in (3.12) gives

∇3φ(X,Y, Z) + Sdφ(X)g(Y,Z) = g (πW (DXY −∇XY ) , Z) +
Sf

2
ωs(X,Z)df(IsY )− Sf

2
g(X,Z)df(Y )

=
S

2

(
ωs(X,Y )dφ(IsZ)− g(X,Y )dφ(Z) + ωs(X,Z)dφ(IsY )− g(X,Z)dφ(Y )

)
using Lemma 3.1 and Lemma 3.3 in the last equality. The proof of Lemma 3.4 is complete. �

We continue with our main technical result, which allows the partial reduction to a Riemannian geometry

problem.

Proposition 3.5. Let (M,η,Q) be a (4n+3)-dimensional qc-Einstein space with constant qc-scalar curvature

S 6= 0 and φ be a smooth function which satisfies identities (3.8) , (3.9) and (3.10). With respect to the

Levi-Civita connection ∇S of the (pseudo) Riemannian metric given by (2.5) for µ = S
2 , the function φ

satisfies the following identity

(3.13) (∇S)3φ(A,B,C)+Sdφ(A)hS(B,C)+
S

2
dφ(B)hS(C,A)+

S

2
dφ(C)hS(A,B) = 0, A,B,C ∈ Γ(TM).

Proof. From (3.8), the properties of the Biquard connection, the Ricci identities, the vanishing of the torsion

of the Biquard connection and the integrability of the vertical space we have the following equalities

0 = ∇2φ(X, ξs) = ∇2φ(ξs, X) = ∇2φ(ξs, ξt),(3.14)

∇2φ(X,Y )−∇2φ(Y,X) = 2

3∑
s=1

ωs(X,Y )dφ(ξs) = 0.(3.15)

Next, using the equality (2.6) together with the Ricci identities for the Levi-Civita connection, (3.14) gives

the identities

(∇S)2φ(Y,X) = (∇S)2φ(X,Y ) = ∇2φ(X,Y )− dφ(L(X,Y )) = ∇2φ(X,Y ).(3.16)

(∇S)2φ(X, ξs) = (∇S)2φ(ξs, X) = ∇2φ(ξs, X)− dφ(L(ξs, X) = −Sdφ(IsX);(3.17)

(∇S)2φ(ξs, ξt) = (∇S)2φ(ξt, ξs) = ∇2φ(ξs, ξt)− dφ(L(ξs, ξt) = 0.(3.18)

Now we turn to the computation of the third derivative. Using (3.16) and (3.17) we obtain the identities

(3.19) (∇S)3φ(X,Y, Z) = ∇3φ(X,Y, Z)− (∇S)2φ(L(X,Y ), Z)− (∇S)2φ(Y,L(X,Z))

= ∇3φ(X,Y, Z) +

3∑
s=1

[
ωs(X,Y )(∇S)2φ(ξs, Z) + ωs(X,Z)(∇S)2φ(Y, ξs)

]
= ∇3φ(X,Y, Z)− S

2

3∑
s=1

[
ωs(X,Y )dφ(IsZ) + ωs(X,Z)dφ(IsY )

]
= Sdf(X)g(Y, Z) +

S

2
df(Y )g(Z,X) +

S

2
df(Z)g(X,Y ),
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where we used (3.10) in the last equality. Proceeding in the same fashion, we obtain

(3.20) (∇S)3φ(ξs, Y, Z) = ∇3φ(ξs, Y, Z)− (∇S)2φ(L(ξs, Y ), Z)− S

2
(∇S)2φ(Y,L(ξs, Z))

= 0− S

2
(∇S)2φ(IsY, Z)− (∇S)2φ(Y, IsZ) = −S

2
∇2φ(IsY, Z)− S

2
∇2φ(Y, IsZ) = 0,

where we used (3.9) in the last equality. A similar computation shows

(3.21) (∇S)3φ(Y,Z, ξs) = (∇S)3φ(Y, ξs, Z)

= ∇(∇S)2(Y, ξ, Z)− (∇S)2φ(L(Y, ξs), Z)− S(∇S)2φ(ξ, L(Y, Z))

= −S
2
∇2φ(Y, IsZ)− S

2
(∇S)2φ(IsY,Z) = −S

2
∇2φ(IsY, Z)− S

2
∇2φ(Y, IsZ) = 0,

where we used (3.9) in the last equality, and also

(∇S)3φ(Y, ξs, ξs) = ∇3φ(Y, ξs, ξs)− 2(∇S)2φ(L(Y, ξs)ξs) = −2∇2φ(IsY, ξs) = −Sdφ(Y );(3.22)

(∇S)3φ(Y, ξs, ξt) = ∇3φ(Y, ξs, ξt)− (∇S)2φ(L(Y, ξs), ξt)− (∇S)2φ(ξs, L(Y, ξt)) = 0.(3.23)

Finally, we calculate

(∇S)3φ(ξs, ξs, Y ) = ∇3φ(ξs, ξs, Y )− (∇S)2φ((L(ξs, ξs), Y )− (∇S)2φ(ξs, L(ξs, Y )) = −S
2
dφ(Y );(3.24)

(∇S)3φ(ξs, ξt, Y ) = ∇3φ(ξs, ξt, Y )− (∇S)2φ(L(ξs, ξt), Y )− (∇S)2φ(ξs, L(ξt, Y ))(3.25)

= −S
2
dφ(IsItY )− S

2
dφ(ItIsY ) = 0.(3.26)

Equations (3.16)-(3.25) show the validity of (3.13) for all A,B,C ∈ Γ(TM). This completes the proof of the

Proposition. �

4. Compact qc-hypersurfaces

4.1. Proof of Theorem 1.1.

Proof. We begin by showing that if a function φ satisfies (3.10), then h
def
= 4φ is necessarily an eigenfunction

for the sub-Laplacian4h = trg(∇2h). Indeed, see [18, (2.7)] for the analogous calculation in the Riemannian

case, taking a trace in (3.10) we obtain that X(4φ) = −4(n + 1)Sdφ(X) which yields ∇24φ(X,Y ) =

−4(n+ 1)S∇2φ(X,Y ) and 4h = −4(n+ 1)Sh. Since M is compact it follows S ≥ 0.

If the qc-scalar curvature vanishes, S = 0, then it follows φ = const, which contradicts our assumption

that M is non-umbilic, see Corollary 3.2. Thus, we have S > 0. In fact, after a qc-homothety, we can

assume that S = 2. Let h
def
= hS be the corresponding Riemannian metric on M . Now, in view of (3.13), by

Gallot-Obata-Tanno’s theorem [18, 6, 17] it follows that the Riemannian manifold (M,h) is isometric to the

round sphere of radius 1. Therefore, the curvature tensor Rh of the Levi-Civita connection ∇h of h is given

by

(4.1) Rh(A,B,C,D) = h(B,C)h(A,B)− h(B,D)h(A,C).

The relation between the curvatures of the Levi-Civita connection and the Biquard connection for qc-Einstein

spaces with S = 2 (i.e., 3-Sasakian spaces) [7, Corollary 4.13] or [13, Theorem 4.4.3] together with (4.1) yields

(4.2) R(X,Y, Z,W ) = Rh(X,Y, Z,W )

+

3∑
s=1

[
ωs(Y, Z)ωs(X,W )− ωs(X,Z)ωs(Y,W )− 2ωs(X,Y )ωs(Z,W )

]
= h(Y,Z)h(X,W )−h(Y,W )h(X,Z)+

3∑
s=1

[
ωs(Y, Z)ωs(X,W )−ωs(X,Z)ωs(Y,W )−2ωs(X,Y )ωs(Z,W )

]
.
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According to [11, Proposition 4.2], the qc conformal curvature tensor W qc can by expressed in terms of

the curvature R of the Biquard connection, in general, on a qc-Einstein spaces with qc scalar curvature S

by the formula

(4.3) W qc(X,Y, Z,W ) = R(X,Y, Z,W ) +
S

2

{
− g(X,W )g(Y, Z) + g(X,Z)g(Y,W )+

3∑
s=1

[
− ωs(X,W )ωs(Y,Z) + ωs(X,Z)ωs(Y,W ) + 2ωs(X,Y )ωs(Z,W )

]}
.

Then, since in our case g(X,Y ) = h(X,Y ) and S = 2, (4.2) implies that W qc = 0 and therefore, (M,η) is

qc-conformally flat (cf. [11, Theorem 1.3]). Now, the result follows by Theorem 6.1.

Let us remark that the final step of the proof is similar to an argumentation that had been already used

before in the proof of [10, Theorem 1.3].

�

In the case of a positive qc-scalar curvature of the calibrated qc structure we can substitute the compact-

ness with completeness assumption of the Riemannian metric noting that the Gallot-Obata-Tanno’s theorem

holds for a complete Riemannian manifold. In particular, the manifold is compact. In addition, the local

qc-conformal maps considered in the proof of Theorem 1.1 define a global qc-conformality to the round

sphere, see Theorem 6.1. Therefore, we have

Theorem 4.1. Let M be a simply connected qc hypersurface of a hyper-Kähler manifold which is not totally

umbilical. Suppose that the calibrated qc structure (η1, η2, η3) on M has a positive qc-scalar curvature and

that it is complete with respect to the natural Riemannian metric h = g + η21 + η22 + η23. Then the calibrated

qc structure on M is qc-homothetic to the standard 3-Sasakian sphere.

5. Locally embedded qc-hypersurfaces

In the non-compact case we show

Theorem 5.1. Let M be a qc-hypersurface in a hyper-Kähler manifold such that all points of M are non-

umbilic. Then there exists a 7 dimensional involutive distribution D on M such that the induced qc structure

on each integral leaf of D is locally qc-conformal to the standard 7-dimensional 3-Sasakian sphere.

Proof. We achieve Theorem 5.1 with a series of lemmas. We begin with the following

Lemma 5.2. Let M be a qc Einstein space with local qc 1-forms η1, η2, η3 satisfying the structure equations

(2.3) and let ξ1, ξ2, ξ3 be the corresponding Reeb vector fields. If there exists a function φ with a nowhere

vanishing horizontal gradient ∇φ on M , satisfying (3.10)-(3.8), then the 7-dimensional distribution D =

span{ξ1, ξ2, ξ3,∇φ, I1∇φ, I2∇φ, I3∇φ} is integrable.

Proof. Since η1, η2, η3 satisfy (2.3), the vertical distribution spand{ξ1, ξ2, ξ3} is integrable and we have

∇Xξs = 0. Moreover,

(5.1) [∇φ, Ii∇φ] = ∇∇φ(Ii∇φ)−∇Ii∇φ(∇φ)− T (∇φ, Ii∇φ)

= −Ii∇∇φ(∇φ)−∇Ii∇φ(∇φ)− 2

3∑
t=1

ωt(∇φ, Ii∇φ)ξt
(3.9)
= −2g(∇φ,∇φ)ξi.

We have also that T (ξs, X) = 0, which leads to

[ξs,∇φ] = ∇ξs∇φ−∇∇φξs − T (ξs,∇φ) = ∇2φ(ξs, ea)ea −∇∇φξs
(3.8)
= ∇∇φξs ⊂ D.

Similarly, [ξs, It∇φ] ⊂ D and thus the integrability of the distribution D is proved. �

We need the following

Lemma 5.3. The qc-conformal curvature of a qc-Einstein space has the property

W qc(X,Y, Z, U) = W qc(Z,U,X, Y ) = W qc(X,Y, IsZ, IsU) = W qc(IsX, IsY,Z, U).
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Proof. The first equality in the lemma is already known, see e.g. [8]. The second equality follows after a

small calculation using formula (4.3) combined with

(5.2) ρs = −Sωs, R(X,Y, Z,W ) = R(Z,W,X, Y )

(cf. [8, (3.28)] and [11, Theorem 3.1]). �

We proceed with

Lemma 5.4. Let M be a 7-dimensional qc Einstein space with local qc 1-forms η1, η2, η3, satisfying the

structure equations (2.3), corresponding Reeb vector fields ξ1, ξ2, ξ3 and Biquard connection ∇. If there

exists a function φ on M satisfying at each point: (i) ∇φ 6= 0 , (ii) dφ(ξ1) = dφ(ξ2) = dφ(ξ3) = 0 and (iii)

∇2φ(X,Y ) = hg(X,Y ), for a smooth function h on M , then M is locally qc-conformally flat.

Proof. Since we assume that the qc 1-forms ηs satisfy (2.3), we have ∇Xξs = 0 and thus

(5.3) ∇2φ(ξs, X) = ∇2φ(X, ξs) = X
(
dφ(ξs)

)
= 0.

By differentiating (iii) we get

(5.4) ∇3φ(X,Y, Z) = dh(X)g(Y, Z).

The Ricci identity for the Biquard connection ∇ implies that

∇2
X,Y∇φ−∇2

Y,X∇φ = R(X,Y )∇φ−∇T (X,Y )∇φ = R(X,Y )∇φ− 2ωs(X,Y )∇ξs∇φ
(5.3)
= R(X,Y )∇φ,

which by means of (5.4) gives

(5.5) R(X,Y, Z,∇φ) = −∇3φ(X,Y, Z) +∇3φ(Y,X,Z) = −dh(X)g(Y,Z) + dh(Y )g(X,Z).

We take a trace in (5.5) to obtain

(5.6) Ric(X,∇φ) = −3dh(X).

On the other hand, since M is qc Einstein, Ric(X,Y ) = 6Sg(X,Y ), hence Ric(X,∇φ) = 6Sdφ(X).

Therefore,

(5.7) 2Sdφ(X) + dh(X) = 0.

The qc-conformal curvature tensor is given by (4.3), which, by (5.5) and (5.7), implies that

(5.8) W qc(X,Y, Z,∇φ) = R(X,Y, Z,∇φ) + 2S
(
− dφ(X)g(Y,Z) + dφ(Y )g(X,Z)

)
−
(

2Sdφ(X) + dh(X)
)
g(Y,Z) +

(
2Sdφ(Y ) + dh(Y )

)
g(X,Z) = 0.

Since the dimension of M is seven and since by assumption ∇φ 6= 0 on M , the vector fields

∇φ, I1∇φ, I2∇φ, I3∇φ form an orthogonal frame of the 4-dimensional horizontal distribution H. Then,

by (5.8) and Lemma 5.3, we have W qc(X,Y, Z, Is∇φ) = −W qc(X,Y, IsZ,∇φ) = 0 which implies that

W qc(X,Y, Z,W ) = 0, i.e. M is locally qc conformally flat.

�

The next lemma together with [11, Theorem 3.1] completes the proof of Theorem 5.1.

Lemma 5.5. Let M be a qc Einstein space, φ be the non-constant function satisfying (3.10)-(3.8) and D =

span{ξ1, ξ2, ξ3,∇φ, I1∇φ, I2∇φ, I3∇φ} be the integrable distribution from Lemma 5.2. Then each integral

manifold ι : N →M of D caries an induced qc structure, defined locally by the 1-forms ι∗(η1), ι∗(η2), ι∗(η3),

which is qc conformally flat and qc-Einstein with qc-scalar curvature with the same sign as the qc-scalar

curvature of M .
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Proof. Let j : N →M be any integral manifold of D. Then the pull-back 1-forms j∗(η1), j∗(η2), j∗(η3) on N

define a qc structure on N with Reeb vector fields ξ̃s = j−1∗ (ξs). The horizontal distribution on N is then just

H̃ = j−1∗ (H) and the corresponding quaternionic structure on it is given by the endomorphisms Ĩs = j−1∗ Isj∗.

Moreover, the pull-backs of the structure equations (2.3) remain satisfied on N and thus the induced qc

structure on N is again qc Einstein with the same qc scalar curvature as M . Let us denote the corresponding

Biquard connection on N by ∇̃ and consider the function φ̃ = j∗φ. Then, clearly, ∇̃ (φ̃) = j−1∗ ∇φ and thus,

for any s = 1, 2, 3,

[∇̃φ̃, Ĩs∇̃φ̃] = j−1∗ [∇φ, Is∇φ]
(5.1)
= j−1∗

(
− 2g(∇φ,∇φ)ξs

)
= −2g̃(∇̃φ̃, ∇̃φ̃)ξ̃s.

Therefore,

−2g̃(∇̃φ̃, ∇̃φ̃)ξ̃s = [∇̃φ̃, Ĩs∇̃φ̃] = Ĩs(∇̃∇̃φ̃∇̃φ̃)− ∇̃Ĩs∇̃φ̃∇̃φ̃− 2

3∑
t=1

ω̃t(∇̃φ̃, Ĩs∇̃φ̃)ξ̃t,

i.e. we have

∇̃2φ̃(∇̃φ̃, ĨsX) = −∇̃2φ̃(Ĩs∇̃φ̃,X), X ∈ H̃.
Since the four vector fields ∇̃φ̃, Ĩ1∇̃φ̃, Ĩ2∇̃φ̃, Ĩ3∇̃φ̃ define a frame for the distribution H̃ we obtain that

∇̃2φ(ĨsX, ĨsY ) = ∇̃2φ(X,Y )

for any X,Y ∈ H̃ and s = 1, 2, 3. This implies that ∇̃2φ̃(X,Y ) = hg̃(X,Y ) and thus the function φ̃ satisfies

the assertions of Lemma 5.4. Therefore, the integral manifold N is locally qc-conformally flat. �

�

We finish the section with the prof of Theorem 1.2.

Proof. The proof is similar to that of Theorem 1.1 noting that, here, the qc-conformal flatness follows from

Lemma 5.4. However, the (constant) qc-scalar curvature is not necessarily positive. The proof is complete

taking into account Theorem 6.1. �

6. Appendix.

In the course of the paper we used several times the fact that a qc-Einstein qc-conformally flat manifold

is locally qc-homothetic to one of the standard model qc-spaces (1.1). As indicated below, this fact has been

essentially proved before, but due to its independent interest we formulate it explicitly. Furthermore, we

include an argument for global equivalence.

Theorem 6.1. A qc-conformally flat qc-Einstein manifold M is locally qc-homothetic to one of the following

three model spaces: the 3-Sasakian sphere S4n+3, the quaternionic Heisenberg group G (H) or the hyperboloid

S4n
3 depending on the sign of the qc-scalar curvature, respectively. If in addition M is connected, simply

connected with complete Biquard connection then we have a global qc-homothety with the model spaces (1.1).

Proof. By a qc-homothety, depending on the sign of the qc-scalar curvature, we can reduce the claim to one

of the cases S = 2, S = 0 or S = −2. We recall that the model spaces (1.1) are qc-Einstein qc-conformally

flat manifolds with positive qc-scalar curvature S = 2 in the case i) of the 3-Sasakian sphere [7, 10], flat in

the case of the quaternionic Heisenberg group iii) [7], and negative qc-scalar curvature S = −2, [9], for the

hyperboloid ii).

One proof of the local equivalence goes as follows. Due to the local qc-conformality with the quaternionic

Heisenberg group, with the help of [14, Theorem 6.2], see [7, Theorem 1.2] for the positive qc-scalar curvature

case, we can determine the exact form of the conformal factor relating the invariant qc structure on the

Heisenberg group to the image by a qc-conformal transformation of the given qc-Einstein structure. The

proof of the local equivalence statement in Theorem 1.1 follows, for more details see [7, Theorem 1.2] in the

case of positive qc-scalar curvature, the paragraph after [14, Lemma 8.6] in the zero qc-scalar curvature case,

while the negative qc-scalar curvature case follows analogously. The global result in the case of a compact

manifold is achieved by a monodromy argument and Liouville’s theorem [14, Theorem 8.5], [3]. Below is
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an argument using that in our case Biquard’s connection is an affine connection with parallel torsion and

parallel curvature, hence we can invoke the results in [15, Chapter VI].

For a qc-Einstein manifold we have from [7, 8] T 0 = U = 0, the qc-scalar curvature is constant, S = const

and the vertical space is integrable. As a consequence, on a qc-Einstein manifold we have [7, 11, 13, 8]

T (X,Y ) = 2

3∑
s=1

ωs(X,Y )ξs; T (ξi, ξj) = −Sξk,(6.1)

R(ξs, X, Y, Z) = R(ξs, ξt, X, Y ) = 0, R(A,B)ξ = −2S

3∑
s=1

ωs(A,B)ξs × ξ.(6.2)

Using (2.2), we obtain from (6.1) that the torsion of the Biquard connection is parallel, ∇T = 0. Similarly,

(6.2) implies that ∇R(ξs, A,B,C) = ∇R(A,B,C, ξs) = 0.

For the horizontal part of R we apply the second condition of the qc-conformal flatness, W qc = 0. A

substitution of (5.2) into (4.3) gives

(6.3) R(X,Y, Z,W ) =
S

2

[
g(Y,Z)g(X,W )− g(Y,W )g(X,Z)

]
+
S

2

3∑
s=1

[
ωs(Y, Z)ωs(X,W )− ωs(X,Z)ωs(Y,W )− 2ωs(X,Y )ωs(Z,W )

]
.

Hence, by (2.2), it follows that the horizontal curvature of the Biquard connection is parallel as well, i.e., we

have ∇T = ∇R = 0.

Let F be a linear isomorphism between the tangent spaces Tp(M) and T ′p(M
′) of a point p in M and

a point p′ in the model space (1.1) of same qc-scalar curvature, such that, F maps an orthonormal basis

{ea, I1ea, I2ea, I3ea}na=1 of the horizontal space at p to the an orthonormal basis {e′a, I ′1e′a, I ′2e′a, I ′3ea}na=1 of

the horizontal space at p′ and also sends the corresponding Reeb vector fields at p to those at p′. Thus, F

preserves the horizontal and vertical spaces F (Hp) = H ′q, F (Vp) = V ′q , and the Sp(n)Sp(1)-structure, i.e.,

it maps the tensors gp, (Is)|p, (ξs)|p at the point p ∈M into the tensors g′q, (I
′
s)|q, (ξ′s)|q. Taking into account

S = S′, (6.1) together with (6.2), and (6.3) show that F maps the torsion Tp and the curvature Rp at p into

the torsion T ′q and the curvature R′q at q ∈M ′, respectively.

Now, we can apply the affine equivalence theorem [15, Theorem 7.4] to obtain an affine local isomorphism

between M and the coresponding model space. Since the qc structure (H ⊕ V,Q, g) is parallel the affine

local isomorphism is a qc-homothety.

Finally, if in addition M is connected, simply connected with a complete Biquard connections then [15,

Theorem 7.8] gives us a global qc-homothety to the corresponding model case. We note that the Biquard

connection in each of the model cases is complete since the 3-Sasakian spere is compact, the Biquard connec-

tion on the qc Heisenberg group is an invariant connection of a homogeneous space, while the hyperboloid

is Sp(n, 1)Sp(1)/Sp(n)Sp(1), see e.g. [1, Theorem 5.1], with the invariant Biquard connection determined

by (2.6). �
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