
THE OBATA SPHERE THEOREMS ON A QUATERNIONIC CONTACT MANIFOLD

OF DIMENSION BIGGER THAN SEVEN

S. IVANOV, A. PETKOV, AND D. VASSILEV

Abstract. On a compact quaternionic contact (qc) manifold of dimension bigger than seven and satisfying

a Lichnerowicz type lower bound estimate we show that if the first positive eigenvalue of the sub-Laplacian

takes the smallest possible value then, up to a homothety of the qc structure, the manifold is qc equivalent

to the standard 3-Sasakian sphere. The same conclusion is shown to hold on a non-compact qc manifold

which is complete with respect to the associated Riemannian metric assuming the existence of a function

with traceless horizontal Hessian.
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1. Introduction

Motivated by the classical Lichnerowicz [55] and Obata [62] theorems, earlier papers of the authors

[36, 37] established a Lichnerowicz type lower bound estimate for the first eigenvalue of the sub-Laplacian

on a compact quaternionic contact (qc) manifold. The case of equality in the lower bound estimate (Obata-

type theorem) was settled in the special case of a 3-Sasakian compact manifold where it was shown that the

lower bound for the first eigenvalue of the sub-Laplacian is achieved if and only if the 3-Sasakian manifold

is isometric to the standard 3-Sasakian sphere. Quaternionic contact (qc) structures were introduced by O.
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Biquard [6] and are modeled on the conformal boundary at infinity of the quaternionic hyperbolic space.

Thus, manifolds equipped with a qc structure are examples of sub-Riemannian geometries. The (locally)

3-Sasakian manifolds were characterized in [32, 40] by the vanishing of the torsion tensor of the Biquard

connection. The qc geometry was a crucial geometric tool in finding the extremals and the best constant in

the L2 Folland-Stein Sobolev-type embedding, [23, 24], completely described on the quaternionic Heisenberg

groups, [34, 35].

In this paper we prove the full qc version of Obata’s results for a general qc manifold of dimension bigger

than seven. We find that the equality case of Lichnerowicz’ type inequality on a compact qc manifold of

dimension at least eleven can be achieved only on the 3-Sasakian spheres. More general, we show that on

a complete with respect to the associated Riemannian metric qc manifold a certain (horizontal) Hessian

equation, cf. (1.6), allows a non-trivial solution if and only if the manifold is qc homothetic to the standard

3-Sasakian sphere.

The qc seven dimensional case was considered in [37], however, the general qc Obata results in dimension

seven remain open.

Turning to some details, let us recall the mentioned classical results. Using the classical Bochner-

Weitzenböck formula Lichnerowicz [55] showed that on a compact Riemannian manifold (M,h) of dimension

n for which the Ricci curvature satisfies Ric(X,Y ) ≥ (n − 1)h(X,Y ) the first positive eigenvalue λ1 of the

(positive) Laplace operator satisfies the inequality λ1 ≥ n. Subsequently, Obata [62] proved that equality is

achieved if and only if the Riemannian manifold is isometric to the round unit sphere. Obata observed that

the trace-free part of the Riemannian Hessian of an eigenfunction f with eigenvalue λ = n vanishes, i.e., it

satisfies the system

(1.1) (∇h)2f = −fh

after which he defined an isometry using analysis based on the geodesics and Hessian comparison of the

distance function from a point. In fact, Obata showed that on a complete Riemannian manifold (M,h)

equation (1.1) allows a non-constant solution if and only if the manifold is isometric to the round unit

sphere. In this case, the eigenfunctions corresponding to the first eigenvalue are the solutions of (1.1).

Later, Gallot [26] generalized these results to statements involving the higher eigenvalues and corresponding

eigenfunctions of the Laplace operator.

The interest in relations between the spectrum of the Laplacian and geometric quantities justified the

interest in Lichnerowicz-Obata type theorems in other geometric settings such as Riemannian foliations (and

the eigenvalues of the basic Laplacian) [51, 50], [47] and [63], to CR geometry (and the eigenvalues of the

sub-Laplacian) [29], [4], [16, 14, 15], [17], [19], [52], and to general sub-Riemannian geometries, see [5] and

[31]. In the CR case, Greenleaf [29] gave a version of Lichnerowicz’ result showing that if a compact strongly

pseudo-convex CR manifold M of dimension 2n+ 1, n ≥ 3 satisfies a Lichnerowicz type inequality

Ric(X,X) + 4A(X, JX) ≥ (n+ 1)g(X,X)

for all horizontal vectors X, where Ric and A are, correspondingly, the Ricci curvature and the Webster

torsion of the Tanaka-Webster connection (in the notation from [44, 41]), then the first positive eigenvalue

λ1 of the sub-Laplacian satisfies the inequality λ1 ≥ n. The standard (Sasakian) CR structure on the

sphere achieves equality in this inequality. Following [29] the above cited results on a compact CR manifold

focused on adding a corresponding inequality for n = 1, 2 or characterizing the equality case mainly in the

vanishing Webster-torsion case (the Sasakian case). The general case on a compact CR manifold satisfying

the Lichnerowicz type condition was proved in [53, 54] using the results and the method of [42]. This

was achieved by introducing a new integration by parts step proving the vanishing of the Webster torsion

assuming the first eigenvalue is equal to n (for the three dimensional case see [43]). On the other hand, a

generalization of the Obata result in the complete non-compact case was achieved in [42], where the standard

Sasakian structure on the unit sphere was characterized through the existence of a non-trivial solution of a

(horizontal) Hessian equation on a complete with respect to the associated Riemannian metric CR manifold

with a divergence free Webster torsion. To the best of our knowledge the case of a general torsion remains

still open.
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The main purpose of this paper is to prove the qc version of both results of Obata under no extra

assumptions on the Biquard’ torsion when the dimension of the qc manifold is at least eleven, cf. Theorem 1.2

and Theorem 1.3. In particular, completeness rather than compactness is required in the second result, cf.

Theorem 1.3, in contrast to the currently known CR case as mentioned in the previous paragraph.

The quaternionic contact version of the Lichnerowicz’ result was found in [36] in dimensions grater than

seven and in [37] in the seven dimensional case. The following result of [36] gives a lower bound on the

positive eigenvalues of the sub-Laplacian on a qc manifold.

Theorem 1.1 ([36]). Let (M,η, g,Q) be a compact quaternionic contact manifold of dimension 4n+ 3 > 7.

Suppose that there is a positive constant k0 such that the qc-Ricci tensor and torsion of the Biquard connection

satisfy the inequality

(1.2) Ric(X,X) +
2(4n+ 5)

2n+ 1
T 0(X,X) +

6(2n2 + 5n− 1)

(n− 1)(2n+ 1)
U(X,X) ≥ k0g(X,X),

where Ric, T 0, U are, correspondingly, the Ricci curvature and the components of the torsion of the Biquard

connection and X is a horizontal vector.

Then, any eigenvalue λ of the sub-Laplacian 4 satisfies the inequality

λ ≥ n

n+ 2
k0.

The equality case of Theorem 1.1 is achieved on the 3-Sasakian sphere. It was shown in [35], see also [2],

that the eigenspace of the first non-zero eigenvalue of the sub-Laplacian on the unit 3-Sasakian sphere in

Euclidean space is given by the restrictions to the sphere of all linear functions.

The main results of this paper are the following two theorems.

Theorem 1.2. Let (M,η, g,Q) be a compact quaternionic contact manifold of dimension 4n+ 3 > 7 whose

qc-Ricci tensor and torsion of the Biquard connection satisfy the inequality (1.2). Then, the first positive

eigenvalue λ of the sub-Laplacian 4 satisfies the equality

(1.3) λ =
n

n+ 2
k0

if and only if the qc manifold (M, g,Q) is qc-homothetic to the unit (4n+3)-dimensional 3-Sasakian sphere.

According to [36, Remark 4.1], under the conditions of Theorem 1.1, an eigenfunction f corresponding to

the first non-zero eigenvalue as in (1.3), 4f = n
n+2k0f, satisfies a linear PDE system, namely, the horizontal

Hessian of f is given by (see Corollary 4.2 in the Appendix)

(1.4) ∇df(X,Y ) = − 1

4(n+ 2)
k0fg(X,Y )−

3∑
s=1

df(ξs)ωs(X,Y ),

where ξ1, ξ2, ξ3 and ω1, ω2, ω3 are the vertical Reeb vector fieds and the fundamental 2-forms, respectively.

This brings us to our second main result, in which no compactness of M is assumed a-priori,

Theorem 1.3. Let (M,η, g,Q) be a quaternionic contact manifold of dimension 4n+3 > 7 which is complete

with respect to the associated Riemannian metric

(1.5) h = g + (η1)2 + (η2)2 + (η3)2.

Suppose there exists a non-constant smooth function f whose horizontal Hessian satisfies

(1.6) ∇df(X,Y ) = −fg(X,Y )−
3∑
s=1

df(ξs)ωs(X,Y ).

Then the qc manifold (M,η, g,Q) is qc homothetic to the unit (4n+3)-dimensional 3-Sasakian sphere.

Clearly Theorem 1.3 implies Theorem 1.2 since any Riemannian metric on a compact manifold is complete

and a qc-homothety allows us to reduce to the case k0 = 4(n+ 2), which turns (1.4) in (1.6).

We prove Theorem 1.3 by showing first that M is isometric to the unit sphere S4n+3 and then that M

is qc-equivalent to the standard 3-Sasakian structure on S4n+3. To this effect we show that the torsion
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of the Biquard connection vanishes and in this case the Riemannian Hessian satisfies (1.1) after which we

invoke the classical Obata theorem showing that M is isometric to the unit sphere. In order to prove the

qc-equivalence part we show that the qc-conformal curvature vanishes, which gives the local qc-conformal

equivalence with the 3-Sasakian sphere due to [39, Theorem 1.3]. The existence of a global qc-conformal map

between M and the 3-Sasakian sphere follows, for example, from a qc Liouville-type result on the extension

of a local (qc-conformal) automorphism to a global one, see [10, Proposition 1.5.2] for a general statement

in the setting of Cartan geometries.

In the Appendix, for completeness, we recall the notion of the P -function introduced in [37] and give a

different proof of Theorem 1.1 based on the positivity of the P -function in the case n > 1 established in

[37, Theorem 3.3]. As a corollary of the proof, we show the validity of (1.4) for any eigenfunction of the

sub-Laplacian with eigenvalue given by (1.3).

Convention 1.4.

a) We shall use X,Y, Z, U to denote horizontal vector fields, i.e. X,Y, Z, U ∈ H.

b) {e1, . . . , e4n} denotes a local orthonormal basis of the horizontal space H.

c) The summation convention over repeated vectors from the basis {e1, . . . , e4n} will be used. For example,

for a (0,4)-tensor P , the formula k = P (eb, ea, ea, eb) means k =
∑4n
a,b=1 P (eb, ea, ea, eb).

d) The triple (i, j, k) denotes any cyclic permutation of (1, 2, 3).

e) The sum
∑

(ijk) means the cyclic sum. For example,∑
(ijk)

df(IiX)ωj(Y, Z) = df(I1X)ω2(Y,Z) + df(I2X)ω3(Y, Z) + df(I3X)ω1(Y,Z).

e) s will be any number from the set {1, 2, 3}, s ∈ {1, 2, 3}.
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2. Quaternionic contact manifolds

In this section we will briefly review the basic notions of quaternionic contact geometry and recall some

results from [6], [32] and [39] which we will use in this paper.

It is well known that the sphere at infinity of a non-compact symmetric space M of rank one carries a

natural Carnot-Carathéodory structure, see [58, 60]. In the real hyperbolic case one obtains the conformal

class of the round metric on the sphere. In the remaining cases, each of the complex, quaternion and

octonionic hyperbolic metrics on the unit ball induces a Carnot-Carathéodory structure on the unit sphere.

This defines a conformal structure on a sub-bundle of the tangent bundle of co-dimension dimR K− 1, where

K = C, H, O. In the complex case the obtained geometry is the well studied standard CR structure on the

unit sphere in complex space. Quaternionic contact (qc) structure were introduced by O. Biquard, see [6], and

are modeled on the conformal boundary at infinity of the quaternionic hyperbolic space. Biquard showed

that the infinite dimensional family [49] of complete quaternionic-Kähler deformations of the quaternion

hyperbolic metric have conformal infinities which provide an infinite dimensional family of examples of qc

structures. Conversely, according to [6] every real analytic qc structure on a manifold M of dimension at

least eleven is the conformal infinity of a unique quaternionic-Kähler metric defined in a neighborhood of M .

Furthermore, [6] considered CR and qc structures as boundaries of infinity of Einstein metrics rather than

only as boundaries at infinity of Kähler-Einstein and quaternionic-Kähler metrics, respectively. In fact, in

[6] it was shown that in each of the three cases (complex, quaternionic, octoninoic) any small perturbation

of the standard Carnot-Carathéodory structure on the boundary is the conformal infinity of an essentially

unique Einstein metric on the unit ball, which is asymptotically symmetric. In the Riemannian case the

corresponding question was posed in [22] and the perturbation result was proven in [28].
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Another natural extension of an interesting Riemannian problem is the quaternionic contact Yamabe

problem, a particular case of which [27, 65, 32, 34] amounts to finding the best constant in the L2 Folland-

Stein Sobolev-type embedding and the functions for which the equality is achieved, [23] and [24], with a

complete solution on the quaternionic Heisenberg groups given in [34, 35].

2.1. Quaternionic contact structures and the Biquard connection. A quaternionic contact (qc) man-

ifold (M,η, g,Q) is a 4n+ 3-dimensional manifold M with a codimension three distribution H locally given

as the kernel of a 1-form η = (η1, η2, η3) with values in R3. In addition H has an Sp(n)Sp(1) structure, that

is, it is equipped with a Riemannian metric g and a rank-three bundle Q consisting of endomorphisms of H

locally generated by three almost complex structures I1, I2, I3 on H satisfying the identities of the imagi-

nary unit quaternions, I1I2 = −I2I1 = I3, I1I2I3 = −id|H which are hermitian compatible with the metric

g(Is., Is.) = g(., .) and the following compatibility condition holds 2g(IsX,Y ) = dηs(X,Y ), X, Y ∈ H.
The transformations preserving a given quaternionic contact structure η, i.e., η̄ = µΨη for a positive

smooth function µ and an SO(3) matrix Ψ with smooth functions as entries are called quaternionic contact

conformal (qc-conformal) transformations. If the function µ is constant η̄ is called qc-homothetic to η. The

qc conformal curvature tensor W qc, introduced in [39], is the obstruction for a qc structure to be locally qc

conformal to the standard 3-Sasakian structure on the (4n+ 3)-dimensional sphere [32, 39].

A special phenomena, noted in [6], is that the contact form η determines the quaternionic structure and

the metric on the horizontal distribution in a unique way.

On a qc manifold with a fixed metric g on H there exists a canonical connection defined first by O.

Biquard in [6] when the dimension (4n+ 3) > 7, and in [21] for the 7-dimensional case. Biquard showed that

there is a unique connection ∇ with torsion T and a unique supplementary subspace V to H in TM , such

that:

(i) ∇ preserves the decomposition H ⊕ V and the Sp(n)Sp(1) structure on H, i.e. ∇g = 0,∇σ ∈ Γ(Q) for

a section σ ∈ Γ(Q), and its torsion on H is given by T (X,Y ) = −[X,Y ]|V ;

(ii) for ξ ∈ V , the endomorphism T (ξ, .)|H of H lies in (sp(n)⊕ sp(1))⊥ ⊂ gl(4n);

(iii) the connection on V is induced by the natural identification ϕ of V with the subspace sp(1) of the

endomorphisms of H, i.e. ∇ϕ = 0.

This canonical connection is also known as the Biquard connection. When the dimension of M is at least

eleven [6] also described the supplementary distribution V , which is (locally) generated by the so called Reeb

vector fields {ξ1, ξ2, ξ3} determined by

(2.1) ηs(ξk) = δsk, (ξsydηs)|H = 0, (ξsydηk)|H = −(ξkydηs)|H ,

where y denotes the interior multiplication. If the dimension of M is seven Duchemin shows in [21] that if we

assume, in addition, the existence of Reeb vector fields as in (2.1), then the Biquard result holds. Henceforth,

by a qc structure in dimension 7 we shall mean a qc structure satisfying (2.1).

Notice that equations (2.1) are invariant under the natural SO(3) action. Using the triple of Reeb

vector fields we extend the metric g on H to a metric h on TM by requiring span{ξ1, ξ2, ξ3} = V ⊥
H and h(ξs, ξk) = δsk. The Riemannian metric h as well as the Biquard connection do not depend on the

action of SO(3) on V , but both change if η is multiplied by a conformal factor [32]. Clearly, the Biquard

connection preserves the Riemannian metric on TM,∇h = 0. Since the Biquard connection is metric it is

connected with the Levi-Civita connection ∇h of the metric h by the general formula

(2.2) h(∇AB,C) = h(∇hAB,C) +
1

2

[
h(T (A,B), C)− h(T (B,C), A) + h(T (C,A), B)

]
, A,B,C ∈ Γ(TM).

The covariant derivative of the qc structure with respect to the Biquard connection and the covariant

derivative of the distribution V are given by

(2.3) ∇Ii = −αj ⊗ Ik + αk ⊗ Ij , ∇ξi = −αj ⊗ ξk + αk ⊗ ξj .

The vanishing of the sp(1)-connection 1-forms on H implies the vanishing of the torsion endomorphism of

the Biquard connection (see [32]).
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The fundamental 2-forms ωs of the quaternionic structure Q are defined by

(2.4) 2ωs|H = dηs|H , ξyωs = 0, ξ ∈ V.

Due to (2.4), the torsion restricted to H has the form

(2.5) T (X,Y ) = −[X,Y ]|V = 2ω1(X,Y )ξ1 + 2ω2(X,Y )ξ2 + 2ω3(X,Y )ξ3.

2.2. Invariant decompositions. An endomorphism Ψ of H can be decomposed with respect to the quater-

nionic structure (Q, g) uniquely into four Sp(n)-invariant parts Ψ = Ψ+++ + Ψ+−−+ Ψ−+−+ Ψ−−+, where

Ψ+++ commutes with all three Ii, Ψ+−− commutes with I1 and anti-commutes with the others two and etc.

The two Sp(n)Sp(1)-invariant components Ψ[3] = Ψ+++, Ψ[−1] = Ψ+−− + Ψ−+− + Ψ−−+ are determined

by

Ψ = Ψ[3] ⇐⇒ 3Ψ + I1ΨI1 + I2ΨI2 + I3ΨI3 = 0,

Ψ = Ψ[−1] ⇐⇒ Ψ− I1ΨI1 − I2ΨI2 − I3ΨI3 = 0.

With a short calculation one sees that the Sp(n)Sp(1)-invariant components are the projections on the

eigenspaces of the Casimir operator Υ = I1 ⊗ I1 + I2 ⊗ I2 + I3 ⊗ I3 corresponding, respectively, to

the eigenvalues 3 and −1, see [11]. If n = 1 then the space of symmetric endomorphisms commuting with

all Is is 1-dimensional, i.e. the [3]-component of any symmetric endomorphism Ψ on H is proportional to

the identity, Ψ[3] = − trΨ4 Id|H . Note here that each of the three 2-forms ωs belongs to its [-1]-component,

ωs = ωs[−1] and constitute a basis of the Lie algebra sp(1).

2.3. The torsion tensor. The properties of the Biquard connection are encoded in the properties of the

torsion endomorphism Tξ = T (ξ, ·) : H → H, ξ ∈ V . Decomposing the endomorphism Tξ ∈ (sp(n) +

sp(1))⊥ into its symmetric part T 0
ξ and skew-symmetric part bξ, Tξ = T 0

ξ + bξ, O. Biquard shows in [6] that

the torsion Tξ is completely trace-free, tr Tξ = tr Tξ ◦ Is = 0, its symmetric part has the properties T 0
ξi
Ii =

−IiT 0
ξi

I2(T 0
ξ2

)+−− = I1(T 0
ξ1

)−+−, I3(T 0
ξ3

)−+− = I2(T 0
ξ2

)−−+, I1(T 0
ξ1

)−−+ = I3(T 0
ξ3

)+−−, where the

superscript +++ means commuting with all three Ii, +−− indicates commuting with I1 and anti-commuting

with the other two and etc. The skew-symmetric part can be represented as bξi = Iiu, where u is a traceless

symmetric (1,1)-tensor on H which commutes with I1, I2, I3. Therefore we have Tξi = T 0
ξi

+ Iiu. If n = 1

then the tensor u vanishes identically, u = 0, and the torsion is a symmetric tensor, Tξ = T 0
ξ .

Any 3-Sasakian manifold has zero torsion endomorphism, Tξ = 0, and the converse is true if in addition

the qc scalar curvature (see (2.6)) is a positive constant [32] (the case of negative qc-scalar curvature can

be treated very similarly, see [40, 41]). We remind that a (4n+ 3)-dimensional Riemannian manifold (M, g)

is called 3-Sasakian if the cone metric gc = t2h + dt2 on C = M × R+ is a hyper Kähler metric, namely,

it has holonomy contained in Sp(n + 1) [9]. A 3-Sasakian manifold of dimension (4n + 3) is Einstein with

positive Riemannian scalar curvature (4n+ 2)(4n+ 3) [48] and if complete it is a compact manifold with a

finite fundamental group (see [8] for a nice overview of 3-Sasakian spaces).

2.4. Torsion and curvature. Let R = [∇,∇] − ∇[ , ] be the curvature tensor of ∇ and the dimension is

4n+ 3. We denote the curvature tensor of type (0,4) and the torsion tensor of type (0,3) by the same letter,

R(A,B,C,D) := h(R(A,B)C,D), T (A,B,C) := h(T (A,B), C), A,B,C,D ∈ Γ(TM). The qc-Ricci

tensor Ric, the normalized qc-scalar curvature S, the qc-Ricci 2-forms ρs, and the qc-Ricci type-tensors ζs
are given by

(2.6)

Ric(A,B) = R(eb, A,B, eb), 8n(n+ 2)S = R(eb, ea, ea, eb),

ρs(A,B) =
1

4n
R(A,B, ea, Isea), ζs(A,B) =

1

4n
R(ea, A,B, Isea).

The sp(1)-part of R is determined by the Ricci 2-forms and the connection 1-forms by

(2.7) R(A,B, ξi, ξj) = 2ρk(A,B) = (dαk + αi ∧ αj)(A,B), A,B ∈ Γ(TM).
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The two Sp(n)Sp(1)-invariant trace-free symmetric 2-tensors T 0(X,Y ) = g((T 0
ξ1
I1 + T 0

ξ2
I2 + T 0

ξ3
I3)X,Y ),

U(X,Y ) = g(uX, Y ) on H, introduced in [32], have the properties:

(2.8)
T 0(X,Y ) + T 0(I1X, I1Y ) + T 0(I2X, I2Y ) + T 0(I3X, I3Y ) = 0,

U(X,Y ) = U(I1X, I1Y ) = U(I2X, I2Y ) = U(I3X, I3Y ).

In dimension seven (n = 1), the tensor U vanishes identically, U = 0.

We shall need the following identity taken from [39, Proposition 2.3] 4T 0(ξs, IsX,Y ) = T 0(X,Y ) −
T 0(IsX, IsY ) which implies the formula

(2.9) T (ξs, IsX,Y ) = T 0(ξs, IsX,Y ) + g(IsuIsX,Y ) =
1

4

[
T 0(X,Y )− T 0(IsX, IsY )

]
− U(X,Y ).

We recall that a qc structure is said to be qc-Einstein if the horizontal qc-Ricci tensor is a scalar multiple of

the metric, Ric(X,Y ) = 2(n + 2)Sg(X,Y ). The horizontal Ricci-type tensor can be expressed in terms of

the torsion of the Biquard connection [32] (see also [34, 39]). We collect below the necessary facts from [32,

Theorem 1.3, Theorem 3.12, Corollary 3.14, Proposition 4.3 and Proposition 4.4] with slight modification

presented in [39]

(2.10)

Ric(X,Y ) = (2n+ 2)T 0(X,Y ) + (4n+ 10)U(X,Y ) + 2(n+ 2)Sg(X,Y ),

ρs(X, IsY ) = −1

2

[
T 0(X,Y ) + T 0(IsX, IsY )

]
− 2U(X,Y )− Sg(X,Y ),

ζs(X, IsY ) =
2n+ 1

4n
T 0(X,Y ) +

1

4n
T 0(IsX, IsY ) +

2n+ 1

2n
U(X,Y ) +

S

2
g(X,Y ),

T (ξi, ξj) = −Sξk − [ξi, ξj ]|H , S = −h(T (ξ1, ξ2), ξ3),

g(T (ξi, ξj), X) = −ρk(IiX, ξi) = −ρk(IjX, ξj) = −h([ξi, ξj ], X).

For n = 1 the above formulas hold with U = 0. Hence, the qc-Einstein condition is equivalent to the

vanishing of the torsion endomorphism of the Biquard connection. In this case the normalized qc scalar

curvature S is constant and the vertical distribution V is integrable [32] for n > 1 and [33] for n = 1. If

S > 0 then the qc manifold is locally 3-Sasakian [32], (see [40] for the negative qc scalar curvature).

We shall also need the general formula for the curvature [39, 41]

(2.11) R(ξi, X, Y, Z) = −(∇XU)(IiY, Z) + ωj(X,Y )ρk(IiZ, ξi)− ωk(X,Y )ρj(IiZ, ξi)

− 1

4

[
(∇Y T 0)(IiZ,X) + (∇Y T 0)(Z, IiX)

]
+

1

4

[
(∇ZT 0)(IiY,X) + (∇ZT 0)(Y, IiX)

]
− ωj(X,Z)ρk(IiY, ξi) + ωk(X,Z)ρj(IiY, ξi)− ωj(Y,Z)ρk(IiX, ξi) + ωk(Y,Z)ρj(IiX, ξi),

where the Ricci two forms are given by, cf. [39, Theorem 3.1] or [41, Theorem4.3.11]

(2.12)

6(2n+ 1)ρs(ξs, X) = (2n+ 1)X(S) +
1

2
(∇eaT 0)[(ea, X)− 3(Isea, IsX)]− 2(∇eaU)(ea, X),

6(2n+ 1)ρi(ξj , IkX) = (2n− 1)(2n+ 1)X(S)− 1

2
(∇eaT 0)[(4n+ 1)(ea, X) + 3(Iiea, IiX)]

−4(n+ 1)(∇eaU)(ea, X).

2.5. The Ricci identities, the divergence theorem. We shall use repeatedly the following Ricci identi-

ties of order two and three, see also [39] and [36]. Let ξs be the Reeb vector fields, f a smooth function on
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the qc manifold M and ∇f its horizontal gradient, g(∇f,X) = df(X). We have:

(2.13)

∇2f(X,Y )−∇2f(Y,X) = −2

3∑
s=1

ωs(X,Y )df(ξs),

∇2f(X, ξs)−∇2f(ξs, X) = T (ξs, X,∇f),

∇3f(X,Y, Z)−∇3f(Y,X,Z) = −R(X,Y, Z,∇f)− 2

3∑
s=1

ωs(X,Y )∇2f(ξs, Z),

∇3f(X,Y, ξi)−∇3f(Y,X, ξi) = −2df(ξj)ρk(X,Y ) + 2df(ξk)ρj(X,Y )− 2

3∑
s=1

ωs(X,Y )∇2f(ξs, ξi),

∇3f(ξs, X, Y )−∇3f(X, ξs, Y ) = −R(ξs, X, Y,∇f)−∇2f(T (ξs, X), Y ),

∇3f(ξs, X, Y )−∇3f(X,Y, ξs) = −∇2f (T (ξs, X) , Y )−∇2f (X,T (ξs, Y ))− df ((∇XT ) (ξs, Y ))

−R(ξs, X, Y,∇f).

The sub-Laplacian 4f and the norm of the horizontal gradient ∇f of a smooth function f on M are

defined respectively by

4f = − trgH(∇2f) = ∇∗df = − ∇2f(ea, ea), |∇f |2 = df(ea) df(ea).

The function f is an eigenfunction with eigenvalue λ of the sub-Laplacian if, for some constant λ we have

(2.14) 4f = λf.

From the Ricci identities we have the following formulas for the traces through the almost complex structures

of the Hessian

(2.15) g(∇2f, ωs) = ∇2f(ea, Isea) = −4ndf(ξs).

For a fixed local 1-form η and a fix s ∈ {1, 2, 3} the form V olη = η1∧η2∧η3∧ω2n
s is a locally defined volume

form. Note that V olη is independent of s and the local one forms η1, η2, η3 and therefore it is a globally

defined volume form denoted with V olη. The (horizontal) divergence of a horizontal vector field/one-form

σ ∈ Λ1 (H) defined by ∇∗ σ = −tr|H∇σ = −∇σ(ea, ea) supplies the ”integration by parts” over compact

M formula [32], see also [65],

(2.16)

∫
M

(∇∗σ) V olη = 0.

3. Proof of the main Theorems

The proof of Theorem 1.3 is lengthy and requires a number of steps which we present in the following

subsections. Throughout this section we will work with the assumptions of Theorem 1.3. In particular, f is a

non-constant smooth function whose horizontal Hessian satisfies (1.6). Our first step is to show the vanishing

of the torsion tensor, T 0 = 0 and U = 0. We start by expressing the remaining parts of the Hessian (w.r.t.

the Biquard connection) in terms of the torsion tensors and show that f satisfies an elliptic equation on M .

A simple argument shows that T 0(Is∇f,∇f) = U(Is∇f,∇f) = 0, s = 1, 2, 3. Furthermore, using the [−1]-

component of the curvature tensor we show that T 0(Is∇f, It∇f) = 0, s, t ∈ {1, 2, 3}, s 6= t. In addition, we

determine the torsion tensors T 0 and U in terms of the horizontal gradient of f and the tensor U(∇f,∇f).

The analysis proceeds by finding formulas of the same type for the covariant derivatives of T 0 and U . Thus,

the crux of the matter in showing that the torsion vanishes is the proof that U(∇f,∇f) = 0. This fact will be

achieved with the help of the Ricci identities, the contracted Bianchi second identity and thus far established

results. In the next step of the proof of Theorem 1.3 we compute the Riemannian Hessian of f , with respect

to the Levi-Civita connection of the metric (1.5) which allow us to invoke Obata’s result thus proving that

M equipped with the Riemannian metric (1.5) is homothetic to the unit sphere in quaternion space. The

final step is to show that M is qc-homothetic to the (4n+ 3)-dimensional 3-Sasakian unit sphere. Here, we

employ a standard monodromy argument showing that a compact simply connected locally qc-conformally

flat manifold is globally qc-conformal to the 3-Sasakian unit sphere. For this we invoke the Liouville theorem
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[10], showing that every qc-conformal transformation between open subsets of the 3-Sasakian unit sphere is

the restriction of a global qc-conformal transformation, i.e., an element of the group PSp(n+ 1, 1).

3.1. Some basic identities. We start our analysis by finding a formula for the third covariant derivative

of a function which satisfies (1.6).

Lemma 3.1. With the assumptions of Theorem 1.3 we have the following formula for the third covariant

derivative of the function f ,

(3.1) ∇3f(A,X, Y ) = −df(A)g(X,Y )−
3∑
s=1

ωs(X,Y )∇2f(A, ξs), A ∈ Γ(TM).

Proof. The claimed formula is obtained by differentiating the Hessian equation (1.6). Indeed, the covariant

derivative along A ∈ Γ(TM) of (1.6) gives

∇3f(A,X, Y ) = −df(A)g(X,Y )

−
3∑
s=1

[
∇2f(A, ξs)ωs(X,Y ) + df(∇Aξs)ωs(X,Y ) + df(ξs) (∇Aωs) (X,Y )

]
,

which together with (2.3) gives the identity, cf. also Convention 1.4 e),

∇3f(A,X, Y ) = −df(A)g(X,Y )−
∑
(ijk)

[
∇2f(A, ξi)ωi(X,Y ) + df(∇Aξi)ωi(X,Y ) + df(ξi) (∇Aωi) (X,Y )

]
= −df(A)g(X,Y )−

3∑
t=1

[
∇2f(A, ξt)ωt(X,Y )

]
−
∑
(ijk)

[−αj(A)df(ξk) + αk(A)df(ξj)]ωi(X,Y )−
∑
(ijk)

[−αj(A)ωk(X,Y ) + αk(A)ωj(X,Y )] df(ξi)

= −df(A)g(X,Y )−
3∑
t=1

[
∇2f(A, ξt)ωt(X,Y )

]
,

which completes the proof. �

After this technical Lemma, our first goal is to find a formula for the curvature tensor R(Z,X, Y,∇f),

for f satisfying (1.6), using Lemma 3.1 with A = Z, the Ricci identities (2.13), and the properties of the

torsion. In fact, after some standard calculations it follows

(3.2) R(Z,X, Y,∇f) =
[
df(Z)g(X,Y )− df(X)g(Z, Y )

]
+

3∑
s=1

[
∇df(ξs, Z)ωs(X,Y )−∇df(ξs, X)ωs(Z, Y )− 2∇df(ξs, Y )ωs(Z,X)

]
+

3∑
s=1

[
T (ξs, Z,∇f)ωs(X,Y )− T (ξs, X,∇f)ωs(Z, Y )

]
.

By taking traces in (3.2) we can derive formulas for the various contracted tensors (2.6). We shall use the

following,

(3.3)

Ric(Z,∇f) = (4n− 1)df(Z)−
3∑
s=1

T (ξs, IsZ,∇f)− 3

3∑
s=1

∇df(ξs, IsZ),

4nζi(IiZ,∇f) = −df(Z) + (4n− 1)T (ξi, IiZ,∇f) + T (ξj , IjZ,∇f) + T (ξk, IkZ,∇f)

+ (4n+ 1)∇df(ξi, IiZ)−∇df(ξj , IjZ)−∇df(ξk, IkZ).
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The above formulas imply some other basic identities to which we turn next. Note that with the help of

(2.10) we can rewrite the Lichnerowicz type assumption (1.2) in the form

L(X,X)
def
= 2(n+ 2)Sg(X,X) + α′nT

0(X,X) + β′nU(X,X) ≥ k0g(X,X), X ∈ H,(3.4)

α′n =
2(2n+ 3)(n+ 2)

2n+ 1
, β′n =

4(2n− 1)(n+ 2)2

(2n+ 1)(n− 1)
,

which allows to write the first claim of the following Lemma in the form L(Z,∇f) = 0 for all Z ∈ H whenever

f satisfies (1.6) taking k0 = 4(n+ 2).

Lemma 3.2. With the assumptions of Theorem 1.3, the next identity holds true

(3.5) (S − 2)df(Z) +
2n+ 3

2n+ 1
T 0(Z,∇f) +

2(2n− 1)(n+ 2)

(2n+ 1)(n− 1)
U(Z,∇f) = 0.

Furthermore, we have

(3.6) T 0(Is∇f,∇f) = 0, U(Is∇f,∇f) = 0.

Proof. The first equations in (3.3) and (2.10) together with (2.9) imply

(3.7) 3

3∑
s=1

∇df(ξs, IsZ) =
[
4n− 1− (2n+ 4)S

]
df(Z)− (2n+ 3)T 0(Z,∇f)− (4n+ 7)U(Z,∇f).

The sum over 1, 2, 3 of the second equality in (3.3) together with the third equality of (2.10) and (2.9) gives

(3.8) (4n− 1)

3∑
s=1

∇df(ξs, IsZ) = (3− 6nS)df(Z)− (2n+ 3)T 0(Z,∇f)− 3U(Z,∇f).

Subtracting (3.7) from (3.8) we obtain

4(n− 1)

3∑
s=1

∇df(ξs, IsZ) = 4(1− n)(1 + S)df(Z) + 4(n+ 1)U(Z,∇f),

which for n > 1 yields

(3.9)

3∑
s=1

∇df(ξs, IsZ) = −(1 + S)df(Z) +
n+ 1

n− 1
U(Z,∇f).

The sum of (3.7) and (3.8) gives

(3.10) (2n+ 1)

3∑
s=1

∇df(ξs, IsZ) = (2n+ 1)(1− 2S)df(Z)− (2n+ 3)T 0(Z,∇f)− (2n+ 5)U(Z,∇f).

Equalities (3.9) and (3.10) imply (3.5). Letting Z = Is∇f in the latter it follows T 0(Is∇f,∇f) = 0 since

U(Is∇f,∇f) = 0. �

3.2. Formulas for the derivatives of f . By assumption, the second order horizontal derivatives of f

satisfy the Hessian equation (1.6). We derive next formulas for the second order derivatives involving a

horizontal and a vertical directions.

Lemma 3.3. With the assumptions of Theorem 1.3 we have

(3.11) ∇df(ξi, IiZ) = −df(Z) +
2n+ 3

4(2n+ 1)

[
T 0(Z,∇f)− T 0(IiZ, Ii∇f)

]
+

2n2 + 3n− 1

(2n+ 1)(n− 1)
U(Z,∇f)

and

(3.12) ∇df(Z, ξi) = df(IiZ)− n+ 1

2n+ 1

[
T 0(IiZ,∇f) + T 0(Z, Ii∇f)

]
− 4n

(2n+ 1)(n− 1)
U(IiZ,∇f).
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Proof. The second equality of (3.3) can be written in the form

(3.13) 4nζi(IiZ,∇f) = −df(Z) + (4n− 2)T (ξi, IiZ,∇f) +

3∑
s=1

T (ξs, IsZ,∇f)

+ (4n+ 2)∇df(ξi, IiZ)−
3∑
s=1

∇df(ξs, IsZ)

= −df(Z) + (4n− 2)
[1

4

(
T 0(Z,∇f)− T 0(IiZ, Ii∇f)

)
− U(Z,∇f)

]
+ T 0(Z,∇f)− 3U(Z,∇f)

+ (1 + S)df(Z)− n+ 1

n− 1
U(Z,∇f) + (4n+ 2)∇df(ξi, IiZ),

where we used (2.9) and (3.9). Now, equalities (3.13), (3.5) and the third equality in (2.10) imply

(3.14) ∇df(ξi, IiZ) = −S
2
df(Z)− 2n+ 3

4(2n+ 1)

[
T 0(Z,∇f) + T 0(IiZ, Ii∇f)

]
+

1

(2n+ 1)(n− 1)
U(Z,∇f)

= −df(Z) +
2n+ 3

4(2n+ 1)

[
T 0(Z,∇f)− T 0(IiZ, Ii∇f)

]
+

2n2 + 3n− 1

(2n+ 1)(n− 1)
U(Z,∇f).

Finally, the Ricci identity, (2.9) and (3.11) yield

(3.15) ∇2f(Z, ξi) = ∇df(ξi, Z) + T (ξi, Z,∇f)

=
S

2
df(IiZ) +

1

2(2n+ 1)
T 0(IiZ,∇f)− n+ 1

2n+ 1
T 0(Z, Ii∇f) +

2n2 − n− 2

(2n+ 1)(n− 1)
U(IiZ,∇f)

= df(IiZ)− n+ 1

2n+ 1

[
T 0(IiZ,∇f) + T 0(Z, Ii∇f)

]
− 4n

(2n+ 1)(n− 1)
U(IiZ,∇f),

which completes the proof. �

Next, we compute the second vertical derivatives of f . We start with a basic useful identity involving

only vertical derivatives.

Lemma 3.4. With the assumptions of Theorem 1.3 the following identity holds

(3.16) ∇2f(ξi, ξi) = −f − n+ 1

4n(2n+ 1)

[
(∇eaT 0)(ea,∇f)− (∇eaT 0)(Iiea, Ii∇f)

]
− 1

(2n+ 1)(n− 1)
(∇eaU)(ea,∇f).

Proof. Differentiating (3.12), using (1.6) and (2.3) we obtain

(3.17) ∇3f(X,Y, ξi)− αj(X)∇2f(Y, ξk) + αk(X)∇2f(Y, ξj)

= − n+ 1

2n+ 1

[
(∇XT 0)(IiY,∇f) + (∇XT 0)(Y, Ii∇f)

]
− 4n

(2n+ 1)(n− 1)
(∇XU)(IiZ,∇f)

+ f
{
ωi(X,Y ) +

n+ 1

2n+ 1

[
T 0(X, IiY ) + T 0(IiX,Y )

]
+

4n

(2n+ 1)(n− 1)
U(X, IiY )

}
+ df(ξi)

{
− g(X,Y ) +

n+ 1

2n+ 1

[
T 0(IiX, IiY )− T 0(X,Y )

]
+

4n

(2n+ 1)(n− 1)
U(X,Y )

}
+ df(ξj)

{
ωk(X,Y ) +

n+ 1

2n+ 1

[
T 0(IjX, IiY ) + T 0(IkX,Y )

]
+

4n

(2n+ 1)(n− 1)
U(X, IkY )

}
+ df(ξk)

{
− ωj(X,Y ) +

n+ 1

2n+ 1

[
T 0(IkX, IiY )− T 0(IjX,Y )

]
− 4n

(2n+ 1)(n− 1)
U(X, IjY )

}
− αj(X)

[
df(IkY )− n+ 1

2n+ 1
T 0(IkY,∇f)− n+ 1

2n+ 1
T 0(Y, Ik∇f)− 4n

(2n+ 1)(n− 1)
U(IkY∇f)

]
+ αk(X)

[
df(IjY )− n+ 1

2n+ 1
T 0(IjY,∇f)− n+ 1

2n+ 1
T 0(Y, Ij∇f)− 4n

(2n+ 1)(n− 1)
U(IjY,∇f)

]
.
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Applying again (3.12) to the second and the third terms in the first line we see that the terms involving the

connection 1-forms cancel and (3.17) takes the following form

(3.18) ∇3f(X,Y, ξi)

= − n+ 1

2n+ 1

[
(∇XT 0)(IiY,∇f) + (∇XT 0)(Y, Ii∇f)

]
− 4n

(2n+ 1)(n− 1)
(∇XU)(IiZ,∇f)

+ f
{
ωi(X,Y ) +

n+ 1

2n+ 1

[
T 0(X, IiY ) + T 0(IiX,Y )

]
+

4n

(2n+ 1)(n− 1)
U(X, IiY )

}
+ df(ξi)

{
− g(X,Y ) +

n+ 1

2n+ 1

[
T 0(IiX, IiY )− T 0(X,Y )

]
+

4n

(2n+ 1)(n− 1)
U(X,Y )

}
+ df(ξj)

{
ωk(X,Y ) +

n+ 1

2n+ 1

[
T 0(IjX, IiY ) + T 0(IkX,Y )

]
+

4n

(2n+ 1)(n− 1)
U(X, IkY )

}
+ df(ξk)

{
− ωj(X,Y ) +

n+ 1

2n+ 1

[
T 0(IkX, IiY )− T 0(IjX,Y )

]
− 4n

(2n+ 1)(n− 1)
U(X, IjY )

}
.

On the other hand, the skew-symmetric part of (3.18) and the Ricci identity listed in the fourth line of (2.13)

yield

(3.19) ∇3f(X,Y, ξi)−∇3f(Y,X, ξi)

= − n+ 1

2n+ 1

[
(∇XT 0)(IiY,∇f) + (∇XT 0)(Y, Ii∇f)− (∇Y T 0)(IiX,∇f)− (∇Y T 0)(X, Ii∇f)

]
− 4n

(2n+ 1)(n− 1)

[
(∇XU)(IiY,∇f)− (∇Y U)(IiX,∇f)

]
+ 2f

[
ωi(X,Y ) +

4n

(2n+ 1)(n− 1)
U(X, IiY )

]
+ 2df(ξj)

{
ωk(X,Y ) +

n+ 1

2n+ 1

[
T 0(IkX,Y )− T 0(X, IkY )

]
+

4n

(2n+ 1)(n− 1)
U(X, IkY )

}
+ 2df(ξk)

{
− ωj(X,Y ) +

n+ 1

2n+ 1

[
T 0(X, IjY )− T 0(IjX,Y )

]
− 4n

(2n+ 1)(n− 1)
U(X, IjY )

}
= −2df(ξj)ρk(X,Y ) + 2df(ξk)ρj(X,Y )− 2

3∑
s=1

ωs(X,Y )∇2f(ξs, ξi).

The trace X = ea, Y = Iiea of (3.19) and the second equality of (2.10) give (3.16), which completes the

proof. �

Remark 3.5. The detailed proof of (3.18) shows a particular consequence of (2.3) which is that a covariant

derivative of identities that are not Sp(1) invariant can lead to formulas which do not involve the connection

one-forms. In the rest of the paper we shall usually skip many straightforward calculations some of which

rely on a similar use of (2.3).

3.3. The elliptic eigenvalue problem. In this sub-section we will show that (1.6) implies that f satisfies

an elliptic PDE. Let 4h be the Riemannian Laplacian of the metric (1.5).

Lemma 3.6. On a qc manifold of dimension bigger than seven any smooth function satisfying (1.6) obeys

the following identity

(3.20) 4hf = (4n+ 3)f +
n+ 1

n(2n+ 1)
(∇eaT 0)(ea,∇f) +

3

(2n+ 1)(n− 1)
(∇eaU)(ea,∇f).

Proof. It is shown in [36, Lemma 5.1] that the Riemannian Laplacian 4h and the sub-Laplacian 4 of a

smooth function f are connected by

(3.21) 4hf = 4f −
3∑
s=1

∇2f(ξs, ξs).

Equation (3.21) is a consequence of the formula (2.2), 4hf = −
∑4n
a=1∇hdf(ea, ea)−

∑3
s=1∇hdf(ξs, ξs), and

the identities T (ea, A, ea) = T (ξs, A, ξs) = 0, A ∈ Γ(TM) which follow from the properties of the torsion
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tensor T of ∇ listed in (2.10). Lemma 3.4 and (2.8) imply

(3.22)

3∑
s=1

∇2f(ξs, ξs) = −3f − n+ 1

n(2n+ 1)
(∇eaT 0)(ea,∇f)− 3

(2n+ 1)(n− 1)
(∇eaU)(ea,∇f).

A substitution of (3.22) in (3.21), taking into account that f satisfies (1.6) hence 4f = 4nf , we obtain

(3.20) which proves the lemma. �

A consequence of Lemma 3.6 and Aronszajn’s unique continuation result [1], is that |∇f | cannot vanish

on any open set. We note this important fact in the next remark.

Remark 3.7. If M and f are as in Theorem 1.3 then |∇f | 6= 0 in a dense set since f 6= const.

3.4. Formulas for the torsion tensors. In this sub-section we derive formulas for the components T 0 and

U of the torsion tensor.

Lemma 3.8. With the assumption of Theorem 1.3 the following identities hold true for any X,Y, Z ∈ H

(3.23) T 0(Is∇f, It∇f) = 0, s 6= t, s, t ∈ {1, 2, 3},

(3.24) T 0(∇f,∇f) = − 6n

n− 1
U(∇f,∇f), T 0(Is∇f, Is∇f) =

2n

n− 1
U(∇f,∇f), s ∈ {1, 2, 3},

(3.25) |∇f |2T 0(Z,∇f) = − 6n

n− 1
U(∇f,∇f)df(Z), |∇f |2U(Z,∇f) = U(∇f,∇f)df(Z),

(3.26) |∇f |4T 0(X,Y ) = − 2n

n− 1
U(∇f,∇f)

[
3df(X)df(Y )−

3∑
s=1

df(IsX)df(IsY )
]
,

(3.27) |∇f |4U(Z,X) = − 1

n− 1
U(∇f,∇f)

[
|∇f |2g(Z,X)− n

(
df(Z)df(X) +

3∑
s=1

df(IsZ)df(IsX)
)]
.

Proof. To determine the torsion tensors T 0 and U we are going to apply the following identity [39, 41] for

the [−1] component of the curvature

(3.28) 3R(Z,X, Y,∇f)−R(I1Z, I1X,Y,∇f)−R(I2Z, I2X,Y,∇f)−R(I3Z, I3X,Y,∇f)

= 2
[
g(X,Y )T 0(Z,∇f) + g(Z,∇f)T 0(Y,X)− g(Y, Z)T 0(X,∇f)− g(∇f,X)T 0(Y,Z)

]
− 2

3∑
s=1

[
ωs(X,Y )T 0(Z, Is∇f) + ωs(Z,∇f)T 0(X, IsY )− ωs(Z, Y )T 0(X, Is∇f)− ωs(X,∇f)T 0(Z, IsY )

]
+

3∑
s=1

[
2ωs(Z,X)

(
T 0(Y, Is∇f)− T 0(IsY,∇f)

)
− 8ωs(Y,∇f)U(IsZ,X)− 4Sωs(Z,X)ωs(Y,∇f)

]
.

With the help of the Ricci identity, cf. the second equality of (2.13), we write the curvature tensor given by

(3.2) in the form

(3.29) R(Z,X, Y,∇f) =
[
df(Z)g(X,Y )− df(X)g(Z, Y )

]
+

3∑
s=1

[
∇df(Z, ξs)ωs(X,Y )−∇df(X, ξs)ωs(Z, Y )− 2∇df(ξs, Y )ωs(Z,X)

]
.
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A calculation shows

(3.30)

3∑
t=1

R(ItZ, ItX,Y,∇f) =

3∑
s=1

[
df(IsZ)ωs(X,Y )− df(IsX)ωs(Z, Y )

]
+

3∑
s,t=1

[
∇df(ItZ, ξs)ωs(ItX,Y )−∇df(ItX, ξs)ωs(ItZ, Y )− 2∇df(ξs, Y )ωs(ItZ, ItX)

]

=

3∑
s=1

[
df(IsZ)ωs(X,Y )− df(IsX)ωs(Z, Y ) + 2∇df(ξs, Y )ωs(Z,X)

]
− g(X,Y )

3∑
s=1

∇df(IsZ, ξs) + g(Z, Y )

3∑
s=1

∇df(IsX, ξs)−
∑
(ijk)

ωi(X,Y )
[
∇df(IjZ, ξk)−∇df(IkZ, ξj)

]
+
∑
(ijk)

ωi(Z, Y )
[
∇df(IjX, ξk)−∇df(IkX, ξj)

]
,

where
∑

(ijk) denotes the cyclic sum. Now, (3.29) and (3.30) together with (3.11) and (3.12) yield

(3.31) 3R(Z,X, Y,∇f)−R(I1Z, I1X,Y,∇f)−R(I2Z, I2X,Y,∇f)−R(I3Z, I3X,Y,∇f)

= g(X,Y )
[
3df(Z) +

3∑
s=1

∇2f(IsZ, ξs)
]
− g(Z, Y )

[
3df(X) +

3∑
s=1

∇2f(IsX, ξs)
]
− 8

3∑
s=1

ωs(Z,X)∇df(ξs, Y )

+
∑
(ijk)

ωi(X,Y )
[
3∇2f(Z, ξi)− df(IiZ) +∇2f(IjZ, ξk)−∇2f(IkZ, ξj)

]
−
∑
(ijk)

ωi(Z, Y )
[
3∇2f(X, ξi)− df(IiX) +∇2f(IjX, ξk)−∇2f(IkX, ξj)

]
= g(X,Y )

[4n+ 4

2n+ 1
T 0(Z,∇f) +

12n

(2n+ 1)(n− 1)
U(Z,∇f)

]
− g(Z, Y )

[4n+ 4

2n+ 1
T 0(X,∇f) +

12n

(2n+ 1)(n− 1)
U(X,∇f)

]
−

3∑
s=1

ωs(Z,X)
{

4Sdf(IsY ) +
4n+ 6

2n+ 1

[
T 0(IsY,∇f)− T 0(Y, Is∇f)

]
− 8

(2n+ 1)(n− 1)
U(IsY,∇f)

}
−

3∑
s=1

ωs(X,Y )
{4n+ 4

2n+ 1
T 0(Z, Is∇f) +

4n

(2n+ 1)(n− 1)
U(IsZ,∇f)

}
+

3∑
s=1

ωs(Z, Y )
{4n+ 4

2n+ 1
T 0(X, Is∇f) +

4n

(2n+ 1)(n− 1)
U(IsX,∇f)

}
.

Subtracting (3.28) from (3.31) and applying (3.11), (3.12) and the properties of the torsion we come to

(3.32) 0 = g(X,Y )
[
T 0(Z,∇f) +

6n

n− 1
U(Z,∇f)

]
− g(Z, Y )

[
T 0(X,∇f) +

6n

n− 1
U(X,∇f)

]
−

3∑
s=1

ωs(X,Y )
[
T 0(Z, Is∇f) +

2n

n− 1
U(IsZ,∇f)

]
+

3∑
s=1

ωs(Z, Y )
[
T 0(X, Is∇f) +

2n

n− 1
U(IsX,∇f)

]
−

3∑
s=1

ωs(Z,X)
[
2T 0(IsY,∇f)− 2T 0(Y, Is∇f)− 4

n− 1
U(IsY,∇f)

]
− (2n+ 1)

3∑
s=1

[
df(IsX)T 0(Z, IsY )− df(IsZ)T 0(X, IsY )− 4df(IsY )U(IsZ,X)

]
+ (2n+ 1)df(X)T 0(Z, Y )− (2n+ 1)df(Z)T 0(X,Y ).
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Setting Z = ∇f into (3.32), after some calculations, we obtain

(3.33) (2n+ 1)|∇f |2T 0(X,Y ) = (2n+ 1)df(X)T 0(∇f, Y )

+ g(X,Y )
[
T 0(∇f,∇f) +

6n

n− 1
U(∇f,∇f)

]
− df(Y )

[
T 0(X,∇f) +

6n

n− 1
U(X,∇f)

]
−

3∑
s=1

df(IsY )
[
T 0(X, Is∇f) +

8n2 − 2n− 4

n− 1
U(IsX,∇f)

]
−

3∑
s=1

df(IsX)
[
2T 0(Y, Is∇f) + (2n− 1)T 0(IsY,∇f) +

4

n− 1
U(IsY,∇f)

]
.

Letting Y = ∇f in (3.33), then using (3.34) and (3.6) shows

(3.34) |∇f |2T 0(X,∇f) = T 0(∇f,∇f)df(X) +
3n

(n+ 1)(n− 1)

[
U(∇f,∇f)df(X)− |∇f |2U(X,∇f)

]
.

On the other hand, letting X = I1∇f in (3.33), using (3.6) and (3.34) gives

(3.35) 0 = −df(I1Y )
[
T 0(∇f,∇f) + T 0(I1∇f, I1∇f)− 8n2 − 8n− 4

n− 1
U(∇f,∇f)

]
− df(I2Y )T 0(I1∇f, I2∇f)− df(I3Y )T 0(I1∇f, I3∇f)

− (2n− 1)|∇f |2
[
T 0(Y, I1∇f)− T 0(I1Y,∇f)

]
+

4

n− 1
|∇f |2U(I1Y,∇f).

From (3.35) with Y = I2∇f and (3.8) the identity (3.23) follows since |∇f |2 6= 0.

Setting Y = I1∇f into (3.35) implies

(3.36) T 0(∇f,∇f) + T 0(I1∇f, I1∇f) = − 4n

n− 1
U(∇f,∇f).

The latter equality together with the (2.8) yield (3.24).

The equalities (3.35), (3.23) and (3.24) imply

(3.37) (2n− 1)|∇f |2T 0(Y, Is∇f) = (2n− 1)|∇f |2T 0(IsY,∇f) +
4

n− 1
|∇f |2U(IsY,∇f)

− df(IsY )
[
T 0(∇f,∇f) + T 0(Is∇f, Is∇f)− 8n2 − 8n− 4

n− 1
U(∇f,∇f)

]
= (2n− 1)|∇f |2T 0(IsY,∇f) +

4

n− 1
|∇f |2U(IsY,∇f) + 4(2n+ 1)df(IsY )U(∇f,∇f).

Let Y = I1∇f in (3.32) in order to see

(3.38) 2(2n+ 1)|∇f |2U(I1Z,X) = ω1(Z,X)
[
T 0(∇f,∇f) + T 0(I1∇f, I1∇f)− 2

n− 1
U(∇f,∇f)

]
+ ndf(X)

[
T 0(Z, I1∇f)− 1

n− 1
U(I1Z,∇f)

]
− ndf(Z)

[
T 0(X, I1∇f)− 1

n− 1
U(I1X,∇f)

]
+ ndf(I1X)

[
T 0(Z,∇f)− 3

n− 1
U(Z,∇f)

]
− ndf(I1Z)

[
T 0(X,∇f)− 3

n− 1
U(X,∇f)

]
+ ndf(I2X)

[
T 0(Z, I3∇f)− 1

n− 1
U(I3Z,∇f)

]
− ndf(I2Z)

[
T 0(X, I3∇f)− 1

n− 1
U(I3X,∇f)

]
− ndf(I3X)

[
T 0(Z, I2∇f)− 1

n− 1
U(I2Z,∇f)

]
+ ndf(I3Z)

[
T 0(X, I2∇f)− 1

n− 1
U(I2X,∇f)

]
.

Letting X = ∇f in (3.38) and applying (3.24) we obtain

(3.39) (4n2 − n− 2)U(Z,∇f)|∇f |2 = (6n2 − n− 2)U(∇f,∇f)df(Z)− n(n− 1)T 0(I1Z, I1∇f)|∇f |2.

Therefore,

(3.40) |∇f |2
[
n(n− 1)T 0(Z,∇f)− 3(4n2 − n− 2)U(Z,∇f)

]
= −3(6n2 − n− 2)U(∇f,∇f)df(Z).
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On the other hand, taking into account (3.24), equality (3.34) yields

(3.41) |∇f |2
[
(n2 − 1)T 0(Z,∇f) + 3nU(Z,∇f)

]
= −3n(2n+ 1)U(∇f,∇f)df(Z).

Solving the system of equations (3.40) and (3.41), we obtain (3.25).

A substitution of (3.25) and (3.43) in (3.33) gives (3.26). Now, a substitution of (3.25) and (3.43) in

(3.38) shows (3.27). �

We finish this section with a few useful facts. As a direct corollary from (3.5), (3.25) and (3.43) it follows

(3.42) |∇f |2(S − 2) =
4(n+ 1)

n− 1
U(∇f,∇f).

In addition, from (3.25) and (3.37) it follows

(3.43) |∇f |2T 0(Z, Is∇f) = − 2n

n− 1
U(∇f,∇f)df(IsZ), |∇f |2T 0(IsY, Is∇f) =

2n

n− 1
U(∇f,∇f)df(Z).

The equalities (3.25) and (3.43) yield

(3.44) T 0(IsZ,∇f) = 3T 0(Z, Is∇f), T 0(Z,∇f) = −3T 0(IsZ, Is∇f), T 0(Z,∇f) = − 6n

n− 1
U(Z,∇f),

3.5. Formulas for the covariant derivatives of the torsion tensors. Here we shall prove formulas for

the covariant derivative of the torsion tensor.

Lemma 3.9. If M and f are as in Theorem 1.3, then we have the following identities for the covariant

derivatives of the torsion tensor at the points where |∇f | 6= 0,

(3.45) |∇f |2(∇ZT 0)(X,Y ) =
4n+ 2

n+ 2
fdf(Z)T 0(X,Y )

− 2n

n− 1

U(∇f,∇f)

|∇f |2
f
[
− 3df(Y )g(X,Z)− 3df(X)g(Y,Z) +

3∑
s=1

(
df(IsY )ωs(X,Z) + df(IsX)ωs(Y, Z)

)]
− 2n

n− 1

U(∇f,∇f)

|∇f |2
∑
(ijk)

df(ξi)
[
3df(Y )ωi(X,Z) + df(IiY )g(X,Z)− df(IjY )ωk(X,Z) + df(IkY )ωj(X,Z)

]
− 2n

n− 1

U(∇f,∇f)

|∇f |2
∑
(ijk)

df(ξi)
[
3df(X)ωi(Y,Z) + df(IiX)g(Y,Z)− df(IjX)ωk(Y,Z) + df(IkX)ωj(Y, Z)

]
and

(3.46) |∇f |2(∇ZU)(X,Y )− 2fdf(Z)U(X,Y )− 2

3∑
s=1

df(ξs)df(IsZ)U(X,Y ) =
2n− 2

n+ 2
fdf(Z)U(X,Y )

− 2

3∑
s=1

df(ξs)df(IsZ)U(X,Y )− 1

n− 1

U(∇f,∇f)

|∇f |2
[
− 2fdf(Z)− 2

3∑
s=1

df(ξs)df(IsZ)
]
g(X,Y )

− n

n− 1

U(∇f,∇f)

|∇f |2
f
[
df(Y )g(X,Z) + df(X)g(Y,Z) +

3∑
s=1

(
df(IsY )ωs(X,Z) + df(IsX)ωs(Y,Z)

)]
+

n

n− 1

U(∇f,∇f)

|∇f |2
∑
(ijk)

df(ξi)
[
df(Y )ωi(X,Z)− df(IiY )g(X,Z) + df(IjY )ωk(X,Z)− df(IkY )ωj(X,Z)

]
+

n

n− 1

U(∇f,∇f)

|∇f |2
∑
(ijk)

df(ξi)
[
df(X)ωi(Y,Z)− df(IiX)g(Y,Z) + df(IjX)ωk(Y,Z)− df(IkX)ωj(Y,Z)

]
,

where
∑

(ijk) means the cyclic sum, cf. Convention 1.4.
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Proof. The contracted Bianchi identity reads [32, 41]

(3.47) (∇eaT 0)(ea, X) +
2n+ 4

n− 1
(∇eaU)(ea, X)− (2n+ 1)dS(X) = 0.

After taking the trace in the covariant derivatives of (3.25) and (3.42) we obtain

(3.48)

(∇eaT 0)(ea,∇f) = − 6n

n− 1
∇f
(U(∇f,∇f)

|∇f |2
)

+
24n2

n− 1
f
U(∇f,∇f)

|∇f |2
,

(∇eaU)(ea,∇f) = ∇f
(U(∇f,∇f)

|∇f |2
)
− 4nf

U(∇f,∇f)

|∇f |2
,

∇f(S) =
4n+ 4

n− 1
∇f
(U(∇f,∇f)

|∇f |2
)
.

The system (3.48) and (3.47) imply

(3.49) ∇f
(U(∇f,∇f)

|∇f |2
)

= 2
n− 1

n+ 2
f
U(∇f,∇f)

|∇f |2
.

Similarly, using in addition (3.44), we have

(3.50)

(∇eaT 0)(ea, Is∇f) =
2n

n− 1
Is∇f

(U(∇f,∇f)

|∇f |2
)

+
8n2

n− 1
df(ξs)

U(∇f,∇f)

|∇f |2
,

(∇eaU)(ea, Is∇f) = Is∇f
(U(∇f,∇f)

|∇f |2
)

+ 4ndf(ξs)
U(∇f,∇f)

|∇f |2
,

Is∇f(S) =
4n+ 4

n− 1
Is∇f

(U(∇f,∇f)

|∇f |2
)
.

Since the differentiation of (3.43) involves covariant derivatives of the almost complex structures the deriva-

tion of (3.50) requires some care we do it explicitly again, cf. Remark 3.5. We start with the proof of the

first formula in (3.50). Differentiating the first equation in (3.43), taking into account (2.3), we have(
∇XT 0

)
(Z, Ii∇f)− αj(X)T 0(Z, Ik∇f) + αk(X)T 0(Z, Ij∇f) + T 0(Z, Ii∇X (∇f))

= − 2n

n− 1

[
X

(
U(∇f,∇f)

|∇f |2

)
df(IiZ) +

U(∇f,∇f)

|∇f |2
g (∇X (∇f) , IiZ)

]
− 2n

n− 1

U(∇f,∇f)

|∇f |2
[−αj(X)df (IkZ) + αk(X)df (IjZ)] .

The formula for the Hessian (1.6) gives

(
∇XT 0

)
(Z, Ii∇f)− αj(X)T 0(Z, Ik∇f) + αk(X)T 0(Z, Ij∇f)− fT 0(IiX,Z)−

3∑
s=1

df (ξs)T
0(IiIsX,Z)

= − 2n

n− 1

[
X

(
U(∇f,∇f)

|∇f |2

)
df(IiZ)− U(∇f,∇f)

|∇f |2

(
fg (X, IiZ) +

3∑
s=1

df (ξs) g (IsX, IiZ)

)]

− 2n

n− 1

U(∇f,∇f)

|∇f |2
[−αj(X)df (IkZ) + αk(X)df (IjZ)] .

Taking the trace in the above identity and then applying the first equation in (3.43) to the obtained equality

we see that the terms involving the connection 1-forms cancel, which gives the first identity in (3.50).

The second line in (3.50) follows similarly.

The system (3.50) and (3.47) yields

(3.51) Is∇f
(U(∇f,∇f)

|∇f |2
)

= 2df(ξs)
U(∇f,∇f)

|∇f |2
.
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We calculate the divergence of T 0 differentiating (3.26), taking the trace in the obtained equality and applying

(3.49), (3.51). After a short computation we obtain

(3.52) |∇f |2(∇eaT 0)(ea, Y )− 2fT 0(Y,∇f) + 2

3∑
s=1

df(ξs)T
0(Y, Is∇f) =

− 2n

n− 1

[
3∇f

(
U(∇f,∇f)

|∇f |2

)
df(Y ) +

3∑
s=1

Is∇f
(
U(∇f,∇f)

|∇f |2

)
df(IsY )

]

− 2n

n− 1

U(∇f,∇f)

|∇f |2

[
3∇2f(ea, ea)df(Y )−

3∑
s=1

∇2f(ea, Isea)df(IsY )

]

− 2n

n− 1

U(∇f,∇f)

|∇f |2

[
3∇2f(∇f, Y ) +

3∑
s=1

∇2f(Is∇f, IsY )

]
.

Applying (1.6), (3.25), (3.43), (3.49) and (3.51) to (3.52), we get

(3.53) |∇f |2(∇eaT 0)(ea, Y ) =

− 12n

n− 1
f
U(∇f,∇f)

|∇f |2
df(Y ) +

4n

n− 1

U(∇f,∇f)

|∇f |2
3∑
s=1

df(ξs)df(IsY )− 12n

n+ 2

U(∇f,∇f)

|∇f |2
fdf(Y )

− 4n

n− 1

U(∇f,∇f)

|∇f |2
3∑
s=1

df(ξs)df(IsY ) +
24n2

n− 1

U(∇f,∇f)

|∇f |2
fdf(Y )− 8n2

n− 1

U(∇f,∇f)

|∇f |2
3∑
s=1

df(ξs)df(IsY )

+
6n

n− 1

U(∇f,∇f)

|∇f |2
fdf(Y )− 6n

n− 1

U(∇f,∇f)

|∇f |2
3∑
s=1

df(ξs)df(IsY )

− 2n

n− 1

U(∇f,∇f)

|∇f |2
3∑
i=1

[−fdf(Y ) + df(ξi)df(IiY )− df(ξj)df(IjY )− df(ξk)df(IkY )]

=
12n (n+ 1) (2n+ 1)

(n+ 2) (n− 1)

U(∇f,∇f)

|∇f |2
fdf(Y )− 4n

2n+ 1

n− 1

U(∇f,∇f)

|∇f |2
3∑
s=1

df(ξs)df(IsY ).

Applying (3.25) and (3.43) to (3.53), we derive

(3.54) |∇f |2(∇eaT 0)(ea, Y ) = − (4n+ 2)(n+ 1)

n+ 2
fT 0(Y,∇f) + (4n+ 2)

3∑
s=1

df(ξs)T
0(Y, Is∇f).
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Now, we calculate the divergence of U differentiating (3.27), taking the trace in the obtained equality and

applying (1.6), (3.49) and (3.51). We have

(3.55) |∇f |2(∇eaU)(ea, Y )− 2fU(Y,∇f) + 2

3∑
s=1

df(ξs)U(Y, Is∇f) =

− 1

n− 1
Y
(U(∇f,∇f)

|∇f |2
)
|∇f |2 +

n

n− 1

[
∇f
(U(∇f,∇f)

|∇f |2
)
df(Y )−

3∑
s=1

Is∇f
(U(∇f,∇f)

|∇f |2
)
df(IsY )

]
− 1

n− 1

U(∇f,∇f)

|∇f |2
[
2∇2f(Y,∇f)− n∇2f(ea, ea)df(Y )− n

3∑
s=1

∇2f(ea, Isea)df(IsY )
]

+
n

n− 1

U(∇f,∇f)

|∇f |2
[
∇2f(∇f, Y )−

3∑
s=1

∇2f(Is∇f, IsY )
]

= − 1

n− 1
Y
(U(∇f,∇f)

|∇f |2
)
|∇f |2 +

2n

n− 1

[n− 1

n+ 2
fU(Y,∇f)−

3∑
s=1

df(ξs)U(IsY,∇f)
]

+
2n

n− 1
fU(Y,∇f) +

2n

n− 1

3∑
s=1

df(ξs)U(IsY,∇f)− 4n2 − 2

n− 1

[
fU(Y,∇f) +

3∑
s=1

df(ξs)U(IsY,∇f)
]
.

Thus, from (3.55) we obtain

(3.56) |∇f |2(∇eaU)(ea, Y ) = − 1

n− 1
Y
(U(∇f,∇f)

|∇f |2
)
|∇f |2

− 4n2 + 6n

n+ 2
fU(Y,∇f)− 4n2 − 2n

n− 1

3∑
s=1

df(ξs)U(IsY,∇f).

A substitution of (3.54), (3.56) and

|∇f |2Y (S) =
4n+ 4

n− 1
Y
(U(∇f,∇f)

|∇f |2
)
|∇f |2

in (3.47) implies

(3.57) Y
(U(∇f,∇f)

|∇f |2
)
|∇f |2 =

2n− 2

n+ 2
fU(Y,∇f)− 2

3∑
s=1

df(ξs)U(IsY,∇f).

The equalities (3.56) and (3.57) yield

(3.58) |∇f |2(∇eaU)(ea, Y ) = −2(n+ 1)(2n+ 1)

n+ 2
fU(Y,∇f)− 2(2n+ 1)

3∑
s=1

df(ξs)U(IsY,∇f).



20 S. IVANOV, A. PETKOV, AND D. VASSILEV

We calculate from (3.26) using (1.6), (3.25) and (3.57) that

|∇f |2(∇ZT 0)(X,Y )− 2fdf(Z)T 0(X,Y )− 2

3∑
s=1

df(ξs)df(IsZ)T 0(X,Y )

=
2n− 2

n+ 2
fdf(Z)T 0(X,Y )− 2

3∑
s=1

df(ξs)df(IsZ)T 0(X,Y )

− 2n

n− 1

U(∇f,∇f)

|∇f |2
f
[
− 3df(Y )g(X,Z) +

3∑
s=1

df(IsY )ωs(X,Z)
]

− 2n

n− 1

U(∇f,∇f)

|∇f |2
f
[
− 3df(X)g(Y,Z) +

3∑
s=1

df(IsX)ωs(Y, Z)
]

− 2n

n− 1

U(∇f,∇f)

|∇f |2
df(ξ1)

[
3df(Y )ω1(X,Z) + df(I1Y )g(X,Z)− df(I2Y )ω3(X,Z) + df(I3Y )ω2(X,Z)

]
− 2n

n− 1

U(∇f,∇f)

|∇f |2
df(ξ1)

[
3df(X)ω1(Y,Z) + df(I1X)g(Y,Z)− df(I2X)ω3(Y, Z) + df(I3X)ω2(Y,Z)

]
− 2n

n− 1

U(∇f,∇f)

|∇f |2
df(ξ2)

[
3df(Y )ω2(X,Z) + df(I2Y )g(X,Z) + df(I1Y )ω3(X,Z)− df(I3Y )ω1(X,Z)

]
− 2n

n− 1

U(∇f,∇f)

|∇f |2
df(ξ2)

[
3df(X)ω2(Y,Z) + df(I2X)g(Y,Z) + df(I1X)ω3(Y, Z)− df(I3X)ω1(Y,Z)

]
− 2n

n− 1

U(∇f,∇f)

|∇f |2
df(ξ3)

[
3df(Y )ω3(X,Z) + df(I3Y )g(X,Z)− df(I1Y )ω2(X,Z) + df(I2Y )ω1(X,Z)

]
− 2n

n− 1

U(∇f,∇f)

|∇f |2
df(ξ3)

[
3df(X)ω3(Y,Z) + df(I3X)g(Y,Z)− df(I1X)ω2(Y, Z) + df(I2X)ω1(Y,Z)

]
.

The last equality yields (3.45). Finally, equation (3.46) follows from (3.27) using (1.6), (3.25) and (3.57). �

In the next, key step of the proof, where we show that the torsion tensor vanishes, we shall use the

following particular cases of Lemma 3.9. For Z = ∇f , (3.45) gives

(3.59) (∇∇fT 0)(X,Y ) =
2n− 2

n+ 2
fT 0(X,Y ) + df(ξ1)

[
T 0(I1X,Y ) + T 0(X, I1Y )

]
+ df(ξ2)

[
T 0(I2X,Y ) + T 0(X, I2Y )

]
+ df(ξ3)

[
T 0(I3X,Y ) + T 0(X, I3Y )

]
.

Similarly, letting Z = Ii∇f in (3.45) we obtain

(3.60) (∇Ii∇fT 0)(X,Y ) = 2df(ξi)T
0(X,Y ) + f

[
T 0(IiX,Y ) + T 0(X, IiY )

]
− df(ξj)

[
T 0(IkX,Y ) + T 0(X, IkY )

]
+ df(ξk)

[
T 0(IjX,Y ) + T 0(X, IjY )

]
.

The substitution of Y = ∇f in (3.54) taking into account (3.24) and Lemma 3.2 gives

(3.61) |∇f |2(∇eaT 0)(ea,∇f) =
12n(n+ 1)(2n+ 1)

(n+ 2)(n− 1)
fU(∇f,∇f),

while the substitution Z = ea, X = Iiea, Y = Ii∇f in (3.45) and (3.43) gives

(3.62) |∇f |2(∇eaT 0)(Iiea, Ii∇f) = −4n (n+ 1) (2n+ 1)

(n+ 2) (n− 1)
fU(∇f,∇f).

Finally, letting Z = ∇f, Is∇f in (3.46) shows the next equalities

(3.63) (∇∇fU)(X,Y ) =
2n− 2

n+ 2
fU(X,Y ), (∇Is∇fU)(X,Y ) = 2df(ξs)U(X,Y ).
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3.6. Vanishing of the torsion. In this section we show the vanishing of the torsion, T 0 = U = 0, by

calculating in two ways the mixed third covariant derivatives of a function satisfying (1.6).

Lemma 3.10. If M satisfies the assumptions of Theorem 1.3, then the torsion tensor vanishes, T 0 = 0,

U = 0, i.e., M is a qc-Einstein manifold.

The proof occupies the remaining part of this sub-section.

3.6.1. The Ricci identities. We are going to use the sixth line in (2.13). A substitution of the contracted

Bianchi identity (3.47) in the second formula of (2.12) gives

(3.64) (2n+ 1)ρi(ξj , IkX) = −(2n+ 1)ρi(ξk, IjX)

= −1

4
[(∇eaT 0)(ea, X) + (∇eaT 0)(Iiea, IiX)] +

n

n− 1
(∇eaU)(ea, X).

Let Z = ∇f in (2.11), and then substitute the obtained equality in the sixth formula of (2.13), after which

use (3.64) in order to see

(3.65) ∇3f(ξi, X, Y )−∇3f(X,Y, ξi)

= −∇2f(T (ξi, X), Y )−∇2f(X,T (ξi, Y ))− df((∇XT )(ξi, Y )) + (∇XU)(IiY,∇f)

+
1

4

[
(∇Y T 0)(Ii∇f,X) + (∇Y T 0)(∇f, IiX)

]
− 1

4

[
(∇∇fT 0)(IiY,X) + (∇∇fT 0)(Y, IiX)

]
+

1

2n+ 1

[
−1

4
(∇eaT 0) [(ea, Ik∇f)− (Ikea,∇f)] +

n

n− 1
(∇eaU)(ea, Ik∇f)

]
ωj(X,Y )

− 1

2n+ 1

[
−1

4
(∇eaT 0) [(ea, Ij∇f)− (Ijea,∇f)] +

n

n− 1
(∇eaU)(ea, Ij∇f)

]
ωk(X,Y )

+
1

2n+ 1

[
1

4
(∇eaT 0) [(ea, IkY )− (Ikea, Y )]− n

n− 1
(∇eaU)(ea, IkY )

]
df(IjX)

− 1

2n+ 1

[
1

4
(∇eaT 0) [(ea, IjY )− (Ijea, Y )]− n

n− 1
(∇eaU)(ea, IjY )

]
df(IkX)

+
1

2n+ 1

[
1

4
(∇eaT 0) [(ea, IkX)− (Ikea, X)]− n

n− 1
(∇eaU)(ea, IkX)

]
df(IjY )

− 1

2n+ 1

[
1

4
(∇eaT 0) [(ea, IjX)− (Ijea, X)]− n

n− 1
(∇eaU)(ea, IjX)

]
df(IkY ).

Note that from (2.9) we have

(3.66) T (ξi, X, Y ) = −1

4

[
T 0(IiX,Y ) + T 0(X, IiY )

]
− U(X, IiY ).

Differentiating the above formula we find, applying (2.3),

(3.67) df ((∇XT ) (ξi, Y )) = −1

4

[
(∇XT 0)(IiY,∇f) + (∇XT 0)(Y, Ii∇f)

]
+ (∇XU)(IiY,∇f).
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Using (1.6), (3.66), (3.67) and the properties of torsion tensor listed in (2.8), we obtain from (3.65)

(3.68) ∇3f(ξi, X, Y )−∇3f(X,Y, ξi)

=
1

4

[
(∇XT 0)(IiY,∇f) + (∇XT 0)(Y, Ii∇f)

]
+

1

4

[
(∇Y T 0)(IiX,∇f) + (∇Y T 0)(X, Ii∇f)

]
− 1

4

[
(∇∇fT 0)(X, IiY ) + (∇∇fT 0)(IiX,Y )

]
− 1

2

[
T 0(IiX,Y ) + T 0(X, IiY )

]
f

+

[
1

2

[
T 0(X, IkY )− T 0(IkX,Y )

]
+ 2U(X, IkY )

]
df(ξj)

+

[
1

2

[
T 0(IjX,Y )− T 0(X, IjY )

]
+ 2U(IjX,Y )

]
df(ξk)

+
1

2n+ 1

[
−1

4
(∇eaT 0) [(ea, Ik∇f)− (Ikea,∇f)] +

n

n− 1
(∇eaU)(ea, Ik∇f)

]
ωj(X,Y )

− 1

2n+ 1

[
−1

4
(∇eaT 0) [(ea, Ij∇f)− (Ijea,∇f)] +

n

n− 1
(∇eaU)(ea, Ij∇f)

]
ωk(X,Y )

+
1

2n+ 1

[
1

4
(∇eaT 0) [(ea, IkY )− (Ikea, Y )]− n

n− 1
(∇eaU)(ea, IkY )

]
df(IjX)

− 1

2n+ 1

[
1

4
(∇eaT 0) [(ea, IjY )− (Ijea, Y )]− n

n− 1
(∇eaU)(ea, IjY )

]
df(IkX)

+
1

2n+ 1

[
1

4
(∇eaT 0) [(ea, IkX)− (Ikea, X)]− n

n− 1
(∇eaU)(ea, IkX)

]
df(IjY )

− 1

2n+ 1

[
1

4
(∇eaT 0) [(ea, IjX)− (Ijea, X)]− n

n− 1
(∇eaU)(ea, IjX)

]
df(IkY ).

For X = Ii∇f , Y = ∇f equation (3.68) together with (3.59), (3.60), (3.6) and (3.23) imply

(3.69) ∇3f(ξi, Ii∇f,∇f)−∇3f(Ii∇f,∇f, ξi) = 0.

On the other hand, a subtraction of (3.18) from (3.1) with A = ξi gives

(3.70) ∇3f(ξi, X, Y )−∇3f(X,Y, ξi) =
n+ 1

2n+ 1

[
(∇XT 0)(IiY,∇f) + (∇XT 0)(Y, Ii∇f)

]
+

4n

(2n+ 1)(n− 1)
(∇XU)(IiY,∇f)− f n+ 1

2n+ 1

[
T 0(X, IiY ) + T 0(IiX,Y )

]
+

4n

(2n+ 1)(n− 1)
fU(X, IiY )

− df(ξi)
n+ 1

2n+ 1

[
T 0(IiX, IiY )− T 0(X,Y )

]
+

4n

(2n+ 1)(n− 1)
df(ξi)U(X,Y )

− df(ξj)
n+ 1

2n+ 1

[
T 0(IjX, IiY ) + T 0(IkX,Y )

]
+

4n

(2n+ 1)(n− 1)
df(ξj)U(X, IkY )

− df(ξk)
n+ 1

2n+ 1

[
T 0(IkX, IiY )− T 0(IjX,Y )

]
− 4n

(2n+ 1)(n− 1)
df(ξk)U(X, IjY )

−
3∑
s=1

[
∇2f(ξi, ξs) + f

]
ωs(X,Y ).

Letting X = Ii∇f, Y = ∇f in (3.70) and then applying (3.6) and (3.23) we obtain

(3.71) ∇3f(ξi, Ii∇f,∇f)−∇3f(Ii∇f,∇f, ξi) =
2(n+ 1)

2n+ 1
(∇Ii∇fT 0)(Ii∇f,∇f)

+
4n

(2n+ 1)(n− 1)
(∇Ii∇fU)(Ii∇f,∇f)− n+ 1

2n+ 1
f
[
T 0(Ii∇f, Ii∇f)− T 0(∇f,∇f)

]
+

4n

(2n+ 1)(n− 1)
fU(∇f,∇f) +

[
∇2f(ξi, ξi) + f

]
|∇f |2.
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Using (3.60), (3.63) as well as (3.24) in (3.71) we conclude

(3.72) ∇3f(ξi, Ii∇f,∇f)−∇3f(Ii∇f,∇f, ξi) =
4n

n− 1
fU(∇f,∇f) +

[
∇2f(ξi, ξi) + f

]
|∇f |2.

The formula for the last term is given in (3.16) to whose right-hand side we apply (3.61), (3.62) and (3.58)

in order to obtain

(3.73) ∇2f(ξi, ξi) + f = −2 (n+ 1) (2n+ 1)

(n+ 2) (n− 1)
f
U(∇f,∇f)

|∇f |2
.

Now (3.73) applied to (3.72) allows us to conclude

(3.74) ∇3f(ξi, Ii∇f,∇f)−∇3f(Ii∇f,∇f, ξi) =
2

n+ 2
fU(∇f,∇f).

Comparing (3.69) and (3.74) we obtain fU(∇f,∇f) = 0, which implies U(∇f,∇f) = 0 taking into account

Remark 3.7. Hence, T 0 = U = 0 due to (3.26) and (3.27). This completes the proof of Lemma 3.10.

3.7. The Riemannian Hessian. Here we show that if T 0 = U = 0 the equality (1.6) implies that the

Riemannian Hessian satisfies (1.1) and therefore the manifold is the standard sphere due to the Obata’s

theorem.

Lemma 3.11. Let (M,η, g,Q) be a qc-Einstein manifold, T 0 = U = 0, of dimension 4n + 3 > 7. Let h be

the associated Riemannian metric (1.5). If f is a smooth function whose horizontal Hessian satisfies (1.6),

then the Riemannian Hessian of f with respect to the metric h satisfies (1.1).

Proof. Taking into account (2.2) we have the following formula relating the Hessian with respect to the

Levi-Civita and the Biquard connections

(3.75) (∇h)2f(A,B) = ∇2f(A,B) +
1

2

[
h(T (A,B), df)− h(T (B, df), A) + h(T (df,A), B)

]
, A,B ∈ Γ(TM).

From (3.75), (2.5) and (1.6) it follows that

(3.76) (∇h)2f(X,Y ) = −fh(X,Y ).

Let us recall that a qc-Einstein manifold, T 0 = U = 0, has integrable vertical space [32] thus the fourth line

in (2.10) shows

(3.77) h(T (ξs, ξt), X) = 0.

Now, using (3.12) with T 0 = U = 0, we calculate from (3.75)

(3.78) (∇h)2f(X, ξi) = df(IiX) +
1

2
h(T (X, ξi),∇f)− 1

2
h(T (ξi,∇f), X)− 1

2
h(T (ξi,

3∑
s=1

df(ξs)ξs, X)

+
1

2
h(T (∇f,X), ξi) +

1

2
h(T (

3∑
s=1

df(ξs)ξs, X), ξi) = df(IiX) + ωi(∇f,X) = 0,

taking into account (3.77) and the properties of the torsion (2.9) and (2.5). A similar argument shows the

identity

(3.79) (∇h)2f(ξi, ξi) = ∇2f(ξi, ξi) = −f,

where we have used (3.16) taken with T 0 = U = 0.

Finally, we have to show (∇h)2f(ξi, ξj) = 0. The trace with respect to X = ea, Y = Ijea in (3.19) together

with the second equality in (2.10) and the condition T 0 = U = 0 yields

(3.80) ∇2f(ξj , ξi) = (1− S)df(ξk).

Now, the equality (3.75) together with the fourth equality in (2.10), (3.77) and (3.80) imply

(3.81) (∇h)2f(ξi, ξj) = (1− S)df(ξk) +
1

2
Sdf(ξk) = (1− 1

2
S)df(ξk) = 0,

since (3.5) shows S = 2 in the case T 0 = U = 0. �
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At this point, applying the Obata theorem we conclude that our manifold is isometric to the unit sphere.

In order to show that it is qc-equivalent to the sphere we shall use a Liouville-type result in the quaternionic

contact case which we present next.

3.8. Proof of Theorem 1.3. From Lemma 3.10, Lemma 3.11 and the classical Obata theorem it follows that

(M,h) is isometric to the unit sphere in Euclidean space, i.e., there is a diffeomorphism i : M → S4n+3 such

that h = i∗dx2, where dx2 denotes the round metric on S4n+3 which we take to be of constant Riemannian

scalar curvature Scalh = (4n+ 3)(4n+ 2). Thus, the curvature tensor Rh of the Levi-Civita connection ∇h
of h is given by

(3.82) Rh(A,B,C,D) = h(B,C)h(A,D)− h(B,D)h(A,C).

The relation between the curvature tensors of the Levi-Civita and the Biquard connection [32, Corollary 4.13]

or [41, Theorem 4.4.3] together with (3.82) yield

(3.83) R(X,Y, Z, V ) = g(Y,Z)g(X,V )− g(Y, V )g(X,Z)

+

3∑
s=1

[
ωs(Y,Z)ωs(X,V )− ωs(X,Z)ωs(Y, V )− 2ωs(X,Y )ωs(Z, V )

]
.

In the case T 0 = U = 0, S = 2, the formula for the qc-conformal curvature tensor given in [39, Proposition 4.2]

reads

(3.84) W qc(X,Y, Z, V ) =
1

4

[
R(X,Y, Z, V ) +

3∑
s=1

R(IsX, IsY, Z, V )
]

+ g(X,Z)g(Y, V )− g(Y, Z)g(X,V )

+

3∑
s=1

[
ωs(X,Z)ωs(Y, V )− ωs(Y, Z)ωs(X,V )

]
.

With a small calculation we see from (3.84), taking into account (3.83), that the qc-conformal curvature

tensor vanishes, W qc = 0 and (M, g, η,Q) is locally qc-conformal to the sphere due to [39, Theorem 1.3].

At this point we invoke the Liouville type result showing that a local qc conformal map on the qc 3-

Sasakian sphere is the restriction of a global one. A general version of the Liouville theorem in the setting of

Cartan geometries was given in [10, Proposition 1.5.2 & Section 4.3.3] and another general result on Carnot

groups in [20]; for results in particular geometric settings, see in the Riemannian case [56], [57], [30], [59], [7],

[46], [45], [25], in the CR case [64], [3], [61], [12, 13], [18], an alternative proof in the qc setting [38]. Hence,

taking into account that M is the round sphere, it follows (M, g, η,Q) is qc-conformal to S4n+3, i.e., we have

η = κΨF ∗η̃ for some diffeomorphism F : M → S4n+3, positive smooth function κ and a matrix Ψ ∈ SO(3)

with smooth functions as entries, where η = (η1, η2, η3)t is a local 1-form considered as an element of R3.

Comparing the metrics we obtain κ = 1 which shows that M is qc-homothetic to the 3-Sasakian unit sphere

in the (n+ 1)-dimensional quaternion space. This completes the proof of Theorem 1.3.

The proof of Theorem 1.2 follows as already noted after the statement of Theorem 1.3.

4. Appendix

4.1. The P−form. Let (M, g,Q) be a compact quaternionic contact manifold of dimension 4n+ 3 and f a

smooth function on M . We recall the notion of a P -function introduced in [37]

Definition 4.1. [[37]]

a) For a fixed smooth function f we define a one form P ≡ Pf ≡ P [f ] on M , which we call the P−form of

f , by the following equation

Pf (X) = ∇3f(X, eb, eb) +

3∑
t=1

∇3f(ItX, eb, Iteb) − 4nSdf(X) + 4nT 0(X,∇f) − 8n(n− 2)

n− 1
U(X,∇f).

b) The P−function of f is the function Pf (∇f).
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c) The C−operator is the fourth-order differential operator on M (independent of f !) defined by

Cf = −∇∗Pf = (∇eaPf ) (ea).

d) We say that the P−function of f is non-negative if its integral exists and is non-positive

(4.1)

∫
M

f · Cf V olη = −
∫
M

Pf (∇f)V olη ≥ 0.

If (4.1) holds for any smooth function of compact support we say that the C−operator is non-negative.

The Sp(n)Sp(1)-invariant decomposition of the horizontal Hessian ∇2f are given by

(4.2)

(∇2f)[3](X,Y ) =
1

4

[
∇2f(X,Y ) +

3∑
s=1

∇2f(IsX, IsY )
]

(∇2f)[−1](X,Y ) =
1

4

[
3∇2f(X,Y )−

3∑
s=1

∇2f(IsX, IsY )
]
.

Let (∇2f)[3][0] be the trace-free part of the 3-component of the horizontal Hessian,

(4.3) (∇2f)[3][0](X,Y ) = (∇2f)[3](X,Y ) +
1

4n
4fg(X,Y ).

The next local formula, established in [37],

(4.4) (∇ea(∇2f)[3][0])(ea, X) =
n− 1

4n
Pf (X).

implies the non-negativity of the C−operator on a compact qc manifold of dimension at least eleven [37,

Theorem 3.3]. Indeed, using (4.4) we have

(4.5)
n− 1

4n

∫
M

f.Cf V olη = −n− 1

4n

∫
M

Pf (∇f)V olη =

∫
M

|(∇2f)[3][0]|2 V olη,

after using an integration by parts and the orthogonality of the components of the horizontal Hessian.

4.2. A new proof of Theorem 1.1. Here we use the non-negativity of the P -function P (∇f) of a smooth

function f established in [37, Theorem 3.3] to give a new proof of Theorem 1.1.

Proof. Let f be an eigenfunction of the sub-Laplacian with eigenvalue λ, i.e., we assume that (2.14) holds.

An integration by parts gives

(4.6)

∫
M

(4f)2 V olη = λ

∫
M

f4f V olη = λ

∫
M

|∇f |2 V olη.

We recall the qc-Bochner identity [36, (4.1)]. Applying the first equality in (2.10), (2.9) and the properties

of the torsion, (2.8), we can write the qc-Bochner formula [36, (4.1)] in the form

1

2
4|∇f |2 = |∇2f |2 − g (∇(4f),∇f) + 2(n+ 2)S|∇f |2 + 2(n+ 2)T 0(∇f,∇f)(4.7)

+2(2n+ 2)U(∇f,∇f) + 4

3∑
s=1

∇2f(ξs, Is∇f).

One of the key identities which relates the P-function and the qc-Bochner formula (4.7) is given by the

following equation [37, Lemma 3.2]

(4.8)

∫
M

3∑
s=1

∇2f(ξs, Is∇f)V olη =

∫
M

[
− 1

4n
Pn(∇f)− 1

4n
(4f)2 − S|∇f |2 +

(n+ 1)

n− 1
U(∇f,∇f)

]
V olη.
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An integration of (4.7) over the compact M , followed by a substitution of (2.14) and (4.8) in the obtained

integral equality, and then a use of the divergence formula (2.16) give

0 =

∫
M

[
|∇2f |2 − λ|∇f |2 + 2nS|∇f |2 + 2(n+ 2)T 0(∇f,∇f) +

4n(n+ 1)

n− 1
U(∇f,∇f)(4.9)

− 1

n
Pn(∇f)− 1

n
(4f)2

]
V olη.

The latter formula can be written in the form

0 =

∫
M

{
|∇2f |2 − λ|∇f |2 − S|∇f |2 + T 0(∇f,∇f)− 2(n− 2)

n− 1
U(∇f,∇f)

+
2n+ 1

2(n+ 2)

[
2(n+ 2)S|∇f |2 +

4n2 + 14n+ 12

2n+ 1
T 0(∇f,∇f) +

4(n+ 2)2(2n− 1)

(n− 1)(2n+ 1)
U(∇f,∇f)

]
(4.10)

− 1

n
Pn(∇f)− 1

n
(4f)2

}
V olη.

Now we invoke the next integral identity proved in [36, Lemma 3.4]

(4.11)

∫
M

3∑
s=1

∇2f(ξs, Is∇f)V olη = −
∫
M

[
4n

3∑
s=1

(df(ξs))
2 +

3∑
s=1

T (ξs, Is∇f,∇f)
]
V olη.

From (4.11) and (4.8) it follows the equality∫
M

[
− S|∇f |2 + T 0(∇f,∇f)− 2(n− 2)

n− 1
U(∇f,∇f)

]
V olη =

∫
M

{ 1

4n
Pn(∇f) +

1

4n
(4f)2(4.12)

− 1

4n

3∑
s=1

[g(∇2f, ωs)]
2
}
V olη.

A substitution of (4.12) in (4.10) yields

(4.13) 0 =

∫
M

{
|∇2f |2 − 1

4n

[
(4f)2 +

3∑
s=1

[g(∇2f, ωs)]
2
]
− 3

4n
Pn(∇f)

+
2n+ 1

2

[
2S|∇f |2 +

4n2 + 14n+ 12

(2n+ 1)(n+ 2)
T 0(∇f,∇f) +

4(n+ 2)(2n− 1)

(n− 1)(2n+ 1)
U(∇f,∇f)− λ

n
|∇f |2

]}
V olη.

The equality (4.13), the Lichnerowicz type assumption (3.4) and (4.6) imply the inequality

(4.14) 0 ≥
∫
M

{
|∇2f |2− 1

4n

[
(4f)2 +

3∑
s=1

[g(∇2f, ωs)]
2
]
− 3

4n
Pn(∇f)+

2n+ 1

2

( k0

n+ 2
− λ
n

)
|∇f |2

}
V olη.

Note that in the proof of (4.14) we supposed implicitly that n > 1. But it works also for n = 1, when U = 0

trivially, we have only to remove the torsion tensor U (cf. [37]).

Using that
{

1
2
√
n
ωs

}
is an orthonormal set in Ψ[−1] we have

(4.15) |(∇2f)[−1]|2 ≥
1

4n

3∑
s=1

[
g
(
∇2f, ωs

)]2
while a projection on

{
1

2
√
n
g
}

gives

(4.16) |(∇2f)[3]|2 ≥
1

4n
(4f)2.

Next, using the Sp(n)Sp(1)-invariant orthogonal decomposition (4.2) of horizontal Hessian and the estimates

(4.15) and (4.16), we obtain the inequality

(4.17) |∇2f |2 ≥ 1

4n

[
(4f)2 +

3∑
s=1

[g(∇2f, ωs)]
2
]
.
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Finally, using (4.17) and the non-negativity of the P -function for n > 1, see (4.5), we obtain from (4.14) the

desired estimate

λ ≥ n

n+ 2
k0.

�

Corollary 4.2. If the case of equality in Theorem 1.2 holds, i.e., we have

λ =
n

n+ 2
k0, 4f =

n

n+ 2
k0f,

then the horizontal Hessian of the eigenfunction f is given by (1.4).

Proof. The result follows from (4.13), (3.4) and (4.17) which asserts that the equalities in (4.15) and (4.16)

must hold, which imply (1.4) . �
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