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Abstract. A complete solution to the quaternionic contact Yamabe equation on the qc sphere of
dimension 4n + 3 as well as on the quaternionic Heisenberg group is given. A uniqueness theorem

for the qc Yamabe problem in a compact locally 3-Sasakian manifold is shown.
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1. Introduction

It is well known that the solution of the Yamabe problem on a compact Riemannian manifold is
unique in the case of negative or vanishing scalar curvature. The proof of these results, which rely on
the maximum principle, extend readily to sub-Riemannian settings such as the CR and quaternionic
contact (abbr. qc) Yamabe problems due to the sub-ellipticity of the involved operators. The positive
(scalar curvature) case is of continued interest since it presents considerable difficulties due to the
possible non-uniqueness. The most important positive case in each of these geometries is given by the
corresponding round sphere due to its role in the general existence theorem and also because of its
connection with the corresponding L2 Sobolev type embedding inequality. Through the corresponding
Cayley transforms, the sphere cases are equivalent to the problems of finding all solutions to the
respective Yamabe equation on the flat models given by Euclidean space or Heisenberg groups. The
Riemannian and CR sphere cases were settled in [23] and [21]. It should be noted that the Euclidean
case can be handled alternatively by a reduction to a radially symmetric solution [11] and [25].
Furthermore, [23] established a uniqueness result in every conformal class of an Einstein metric. In
this paper we solve the qc Yamabe problem on the 4n+ 3 dimensional round sphere and quaternionic
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Heisenberg group and establish a uniqueness result in every qc-conformal class containing a 3-Sasakain
metric.

We continue by giving a brief background and the statements of our results. It is well known
that the sphere at infinity of a any non-compact symmetric space M of rank one carries a natural
Carnot-Carathéodory structure, see [22, 24]. A quaternionic contact (qc) structure, [2, 3], appears
naturally as the conformal boundary at infinity of the quaternionic hyperbolic space. Following
Biquard, a quaternionic contact structure (qc structure) on a real (4n+3)-dimensional manifold M
is a codimension three distribution H (the horizontal distribution) locally given as the kernel of a
R3-valued one-form η = (η1, η2, η3), such that, the three two-forms dηi|H are the fundamental forms
of a quaternionic Hermitian structure on H. The 1-form η is determined up to a conformal factor
and the action of SO(3) on R3, and therefore H is equipped with a conformal class [g] of quaternionic
Hermitian metrics. To every metric in the fixed conformal class one can associate a linear connection
with torsion preserving the qc structure, see [2], which is called the Biquard connection. For a fixed
metric in the conformal class of metrics on the horizontal space one associates the horizontal Ricci-
type tensor of the Biquard connection, which is called the qc Ricci tensor. This is a symmetric tensor
[2] whose trace-free part is determined by the torsion endomorphism of the Biquard connection [12]
while the trace part is determined by the scalar curvature of the qc-Ricci tensor, called the qc-scalar
curvature. It was shown in [12] that the torsion endomorphism of the Biquard connection is completely
determined by the trace-free part of the horizontal Ricci tensor whose vanishing defines the class of
qc-Einstein manifolds. A basic example of a qc manifold is a 3-Sasakian space which can be defined
as a (4n + 3)-dimensional Riemannian manifold whose Riemannian cone is a hyperKähler manifold
and the qc structure is induced from that hyperKähler structure. It was shown in [12, 15] that the qc-
Einstein manifolds of positive qc-scalar curvature are exactly the locally 3-Sasakian manifolds, up to
a multiplication with a constant factor and a SO(3)-matrix. In particular, every 3-Sasakian manifold
has vanishing torsion endomorphism and is a qc-Einstein manifold.

The quaternionic contact Yamabe problem on a compact qc manifold M is the problem of finding a
metric ḡ ∈ [g] on H for which the qc-scalar curvature is constant. A natural question is to determine
the possible uniqueness or non-uniqueness of such qc-Yamabe metrics.

The question reduces to the solvability of the quaternionic contact (qc) Yamabe equation (2.7).
Taking the conformal factor in the form η̄ = u4/(Q−2)η, Q = 4n+ 6, turns (2.7) into the equation

Lu ≡ 4
Q+ 2

Q− 2
4u− uScal = − u2∗−1 Scal,

where 4 is the horizontal sub-Laplacian, 4h = trg(∇2h), Scal and Scal are the qc-scalar curvatures

correspondingly of (M, η) and (M, η̄), and 2∗ = 2Q
Q−2 , with Q = 4n+ 6–the homogeneous dimension.

Another motivation for studying the qc Yamabe equation comes from its connection with the
determination of the norm and extremals in the L2 Folland-Stein [8] Sobolev-type embedding on the
quaternionic Heisenberg group G (H), [10], [27], [26] and completed in [14]. The qc Yamabe equation is
essentially the Euler-Lagrange equation of the extremals for the L2 case of the Folland-Stein inequality
[8] on the quaternionic Heisenberg group G (H).

On a compact quaternionic contact manifold M with a fixed conformal class [η] the qc Yamabe
equation characterizes the non-negative extremals of the qc Yamabe functional defined by

Υ(u) =

∫
M

(
4
Q+ 2

Q− 2
|∇u|2 + Scal u2

)
dvg,

∫
M

u2∗
dvg = 1, u > 0.

Here dvg denotes the Riemannian volume form of the Riemannian metric on M extending in a natural
way the horizontal metric associated to η. Considering M equipped with a fixed qc structure, hence,



SOLUTION OF THE QC YAMABE EQUATION ON THE 3-SASAKIAN SPHERE 3

a conformal class [η], the Yamabe constant is defined as the infimum

λ(M) ≡ λ(M, [η]) = inf{Υ(u) :

∫
M

u2∗
dvg = 1, u > 0}.

The main result of [28] is that the qc Yamabe equation has a solution on a compact qc manifold
provided λ(M) < λ(S4n+3), where S4n+3 is the standard unit sphere in the quaternionic space Hn.

In this paper we consider the qc Yamabe problem on the unit (4n+ 3)-dimensional sphere in Hn.

The standard 3-Sasaki structure on the sphere η̃ has a constant qc-scalar curvature S̃cal = 16n(n+ 2)
and vanishing trace-free part of its qc-Ricci tensor, i.e., it is a qc-Einstein space. The images under
conformal quaternionic contact automorphisms are again qc-Einstein structures and, in particular,
have constant qc-scalar curvature. In [12] we conjectured that these are the only solutions to the
Yamabe problem on the quaternionic sphere and proved it in dimension seven in [13]. One of the
main goals of this paper is to prove this conjecture in full generality.

Theorem 1.1. Let η̃ = 1
2hη be a qc conformal transformation of the standard qc-structure η̃ on a 3-

Sasakian sphere of dimension 4n+3. If η has constant qc-scalar curvature, then up to a multiplicative
constant η is obtained from η̃ by a conformal quaternionic contact automorphism.

We note that Theorem 1.1 together with the results of [12] allows the determination of all solutions
of the qc Yamabe problem on the sphere and on the quaternionic Heisenberg group G (H). In fact, as
a consequence of Theorem 1.1, we obtain here that all solutions to the qc Yamabe equation are given
by the functions which realize the equality case of the L2 Folland-Stein inequality found in [14] with
the help of the center of mass technique developed for the CR case in [9] and [5].

Recall that the quaternionic Heisenberg group G (H) of homogeneous dimension Q = 4n + 6 is
given by G (H) = Hn × ImH, (q = (ta, xa, ya, za) ∈ Hn, ω = (x, y, z) ∈ ImH) with the group low

(qo, ωo) ◦ (q, ω) = (qo + q, ω + ωo + 2 Im qo q̄).

The ”standard” qc contact form in quaternion variables is Θ̃ = (Θ̃1, Θ̃2, Θ̃3) = 1
2 (dω − q · dq̄ + dq ·

q̄). The corresponding sub-Laplacian 4Θ̃u =
∑n
a=1

(
T 2
αu+X2

αu+ Y 2
αu+ Z2

αu
)
, where Ta, Xa, Ya, Za

denote the left-invariant horizontal vector fields on G (H). Theorem 1.1 shows, in particular, the
following

Corollary 1.2. If Φ satisfies the qc Yamabe equation on the quaternionic Heisenberg group G (H),

4(Q+ 2)

Q− 2
4Θ̃Φ = −SΘ Φ2∗−1,

for some constant SΘ, then up to a left translation the function Φ = (2h)−(Q−2)/4 and h is given by

(1.1) h(q, ω) = c0

[(
σ + |q + q0|2

)2
+ |ω + ωo + 2 Im qo q̄|2

]
,

for some fixed (qo, ωo) ∈ G (H) and constants c0 > 0 and σ > 0. Furthermore, the qc-scalar curvature
of Θ is SΘ = 128n(n+ 2)c0σ.

This confirms the Conjecture made after [10, Theorem 1.1]. In [10, Theorem 1.6] the above result
is proved on all groups of Iwasawa type, but with the assumption of partial-symmetry of the solution.
Here with a completely different method from [10] we show that the symmetry assumption is super-
fluous. The corresponding solutions on the 3-Sasakain sphere are obtained via the Cayley transform,
see for example [12, 13, 14], [19, Sections 2.3 & 5.2.1] for an account and history. Finally, it should be
observed that the functions (1.1) with c0 ∈ R give all conformal factors for which Θ is also qc-Einstein.

We derive Theorem 1.1 from a more general result in which we solve the qc Yamabe problem on
a locally 3-Sasakian compact manifolds. By the results of [12] and [15] a qc-Einstein manifold is of
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constant qc-scalar curvature, hence as far as the qc Yamabe equation is concerned only the uniqueness
of solutions needs to be addressed. As mentioned earlier, the interesting case is when the qc-scalar
curvature is a positive constant, hence we focus exclusively on the locally 3-Sasakian case.

Theorem 1.3. Let (M, η̄) be a compact locally 3-Sasakian qc manifold of qc-scalar curvature 16n(n+
2). If η = 2hη̄ is qc-conformal to η̄ structure which is also of constant qc-scalar curvature, then up
to a homothety (M,η) is locally 3-Sasakian manifold. Furthermore, the function h is constant unless
(M, η̄) is the unit 3-Sasakian sphere.

The proof of Theorem 1.3 consists of two steps. The first step is a divergence formula Theorem 4.1
which shows that if η̄ is of constant qc-curvature and is qc-conformal to a locally 3-Sasakian manifold,
then η̄ is also a locally 3-Sasakian manifold. The general idea to search for such a divergence formula
goes back to Obata [23] where the corresponding result on a Riemannian manifold was proved for
a conformal transformation of an Einstein space. However, our result is motivated by the (sub-
Riemannian) CR case where a formula of this type was introduced in the ground-breaking paper of
Jerison and Lee [21]. As far as the qc case is concerned in [12, Theorem 1.2] a weaker results was shown,
namely Theorem 1.3 holds provided the vertical space of η is integrable. In dimension seven, the n = 1
case, this assumption was removed in [13, Theorem 1.2] where the result was established with the help
of a suitable divergence formula. The general case n > 1 treated here presents new difficulties due to
the extra non-zero torsion terms that appear in the higher dimensions, which complicate considerably
the search of a suitable divergence formula. In the seven dimensional case the [3]-component of the
traceless qc-Ricci tensor vanishes which decreases the number of torsion components.

The proof of the second part of Theorem 1.3 builds on ideas of Obata in the Riemannian case,
who used that the gradient of the (suitably taken) conformal factor is a conformal vector field and
the characterization of the unit sphere through its first eigenvalue of the Laplacian among all Einstein
manifolds. We show a similar, although a more complicated relation between the conformal factor
and the existence of an infinitesimal qc automorphism (qc vector field). Our divergence formula found
in Theorem 4.1 involves a smooth function f , c.f. (4.7), expressed in terms of the conformal factor
and its horizontal gradient. Remarkably, we found that the horizontal gradient of f is precisely the
horizontal part of the qc vector field mentioned above and the sub-Laplacian of f is an eigenfuction
of the sub-Laplacian with the smallest possible eigenvalue −4n thus showing a geometric nature of f
(cf Remark 5.3). Then we use the characterization of the 3-Sasakian sphere by its first eigenvalue of
the sub-Laplacian among all locally 3-Sasakian manfolds established in [17, Theorem 1.2] for (n > 1)
and in [16, Corollary 1.2] for n = 1.

Remark 1.4. Remarkably, a similar arguments also work in the CR case describing the geomet-
ric nature of the mysterious function in the Jerison-Lee’s divergence formula in [21]. Indeed, the
CR-Laplacian of the real part of the function f defined in [21, Proposition 3.1] turns out to be an
eigenfuction of the CR-Laplacian with the smallest possible eigenvalue −2n thus showing a geometric
nature of the real part of f .

Convention 1.5. We use the following

1. {e1, . . . , e4n} denotes an orthonormal basis of the horizontal space H;
2. The capital letters X,Y,Z... denote horizontal vectors, X,Y, Z... ∈ H.
3. The summation convention over repeated vectors from the basis {e1, . . . , e4n} will be used. For

example, for a (0,4)-tensor P , k = P (eb, ea, ea, eb) means k =
∑4n
a,b=1 P (eb, ea, ea, eb).

4. The triple (i, j, k) denotes any cyclic permutation of (1, 2, 3).
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2. Quaternionic contact manifolds

In this section we will briefly review the basic notions of quaternionic contact geometry and recall
some results from [2] and [12], see [19] for a more leisurely exposition.

A quaternionic contact (qc) manifold (M,η, g,Q) is a 4n + 3-dimensional manifold M with a
codimension three distribution H locally given as the kernel of a 1-form η = (η1, η2, η3) with values
in R3. In addition H has an Sp(n)Sp(1) structure, that is, it is equipped with a Riemannian metric
g and a rank-three bundle Q consisting of endomorphisms of H locally generated by three almost
complex structures I1, I2, I3 on H satisfying the identities of the imaginary unit quaternions, I1I2 =
−I2I1 = I3, I1I2I3 = −id|H which are hermitian compatible with the metric g(Is., Is.) = g(., .) and
the following contact condition holds

2g(IsX,Y ) = dηs(X,Y ).

A special phenomena, noted in [2], is that the contact form η determines the quaternionic structure
and the metric on the horizontal distribution in a unique way.

The transformations preserving a given quaternionic contact structure η, i.e., η̄ = µΨη for a
positive smooth function µ and an SO(3) matrix Ψ with smooth functions as entries are called
quaternionic contact conformal (qc-conformal) transformations. If the function µ is constant η̄ is called
qc-homothetic to η. The qc conformal curvature tensor W qc, introduced in [18], is the obstruction
for a qc structure to be locally qc conformal to the standard 3-Sasakian structure on the (4n + 3)-
dimensional sphere [12, 18].

Definition 2.1. A diffeomorphism φ of a QC manifold (M, [g],Q) is called a conformal quaternionic
contact automorphism (conformal qc-automorphism) if φ preserves the QC structure, i.e.

φ∗η = µΦ · η,

for some positive smooth function µ and some matrix Φ ∈ SO(3) with smooth functions as entries
and η = (η1, η2, η3)t is a local 1-form considered as a column vector of three one forms as entries.

On a qc manifold with a fixed metric g on H there exists a canonical connection defined first by
O. Biquard in [2] when the dimension (4n + 3) > 7, and in [7] for the 7-dimensional case. Biquard
showed that there is a unique connection ∇ with torsion T and a unique supplementary subspace V
to H in TM , such that:

(i) ∇ preserves the decomposition H ⊕ V and the Sp(n)Sp(1) structure on H, i.e. ∇g = 0,∇σ ∈
Γ(Q) for a section σ ∈ Γ(Q), and its torsion on H is given by T (X,Y ) = −[X,Y ]|V ;

(ii) for ξ ∈ V , the endomorphism T (ξ, .)|H of H lies in (sp(n)⊕ sp(1))⊥ ⊂ gl(4n);
(iii) the connection on V is induced by the natural identification ϕ of V with the subspace sp(1) of

the endomorphisms of H, i.e. ∇ϕ = 0.

1This article reflects only the author’s views and the EU is not liable for any use that may be made of the information
contained therein.
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This canonical connection is also known as the Biquard connection. When the dimension of M is at
least eleven [2] also described the supplementary distribution V , which is (locally) generated by the
so called Reeb vector fields {ξ1, ξ2, ξ3} determined by

(2.1) ηs(ξk) = δsk, (ξsydηs)|H = 0, (ξsydηk)|H = −(ξkydηs)|H ,

where y denotes the interior multiplication. If the dimension of M is seven Duchemin shows in [7]
that if we assume, in addition, the existence of Reeb vector fields as in (2.1), then the Biquard result
holds. Henceforth, by a qc structure in dimension 7 we shall mean a qc structure satisfying (2.1).

The fundamental 2-forms ωs of the quaternionic contact structure Q are defined by

2ωs|H = dηs|H , ξyωs = 0, ξ ∈ V.

Notice that equations (2.1) are invariant under the natural SO(3) action. Using the triple of Reeb
vector fields we extend the metric g on H to a metric h on TM by requiring span{ξ1, ξ2, ξ3} = V ⊥
H and h(ξs, ξk) = δsk. The Riemannian metric h as well as the Biquard connection do not depend on
the action of SO(3) on V , but both change if η is multiplied by a conformal factor [12]. Clearly, the
Biquard connection preserves the Riemannian metric on TM,∇h = 0.

The properties of the Biquard connection are encoded in the torsion endomorphism Tξ ∈ (sp(n) +
sp(1))⊥. We recall the Sp(n)Sp(1) invariant decomposition. An endomorphism Ψ of H can be
decomposed with respect to the quaternionic structure (Q, g) uniquely into four Sp(n)-invariant parts
Ψ = Ψ+++ + Ψ+−− + Ψ−+− + Ψ−−+, where the superscript + + + means commuting with all three
Ii, + − − indicates commuting with I1 and anti-commuting with the other two and etc. The two
Sp(n)Sp(1)-invariant components Ψ[3] = Ψ+++, Ψ[−1] = Ψ+−−+ Ψ−+−+ Ψ−−+ are determined by

Ψ = Ψ[3] ⇐⇒ 3Ψ + I1ΨI1 + I2ΨI2 + I3ΨI3 = 0,

Ψ = Ψ[−1] ⇐⇒ Ψ− I1ΨI1 − I2ΨI2 − I3ΨI3 = 0.

With a short calculation one sees that the Sp(n)Sp(1)-invariant components are the projections on
the eigenspaces of the Casimir operator Υ = I1⊗ I1 + I2⊗ I2 + I3⊗ I3 corresponding, respectively,
to the eigenvalues 3 and −1, see [6]. If n = 1 then the space of symmetric endomorphisms commuting
with all Is is 1-dimensional, i.e. the [3]-component of any symmetric endomorphism Ψ on H is
proportional to the identity, Ψ[3] = − trΨ4 Id|H . Note here that each of the three 2-forms ωs belongs
to its [-1]-component, ωs = ωs[−1] and constitute a basis of the Lie algebra sp(1).

2.1. The torsion tensor. Decomposing the endomorphism Tξ ∈ (sp(n) + sp(1))⊥ into its symmet-
ric part T 0

ξ and skew-symmetric part bξ, Tξ = T 0
ξ + bξ, O. Biquard shows in [2] that the torsion

Tξ is completely trace-free, tr Tξ = tr Tξ ◦ Is = 0, its symmetric part has the properties T 0
ξi
Ii =

−IiT 0
ξi

I2(T 0
ξ2

)+−− = I1(T 0
ξ1

)−+−, I3(T 0
ξ3

)−+− = I2(T 0
ξ2

)−−+, I1(T 0
ξ1

)−−+ = I3(T 0
ξ3

)+−−. The

skew-symmetric part can be represented as bξi = Iiu, where u is a traceless symmetric (1,1)-tensor
on H which commutes with I1, I2, I3. Therefore we have Tξi = T 0

ξi
+ Iiu. If n = 1 then the tensor u

vanishes identically, u = 0, and the torsion is a symmetric tensor, Tξ = T 0
ξ .

The two Sp(n)Sp(1)-invariant trace-free symmetric 2-tensors T 0(X,Y ) = g((T 0
ξ1
I1+T 0

ξ2
I2+T 0

ξ3
I3)X,Y ),

U(X,Y ) = g(uX, Y ) on H, introduced in [12], have the properties:

(2.2)
T 0(X,Y ) + T 0(I1X, I1Y ) + T 0(I2X, I2Y ) + T 0(I3X, I3Y ) = 0,

U(X,Y ) = U(I1X, I1Y ) = U(I2X, I2Y ) = U(I3X, I3Y ).

In dimension seven (n = 1), the tensor U vanishes identically, U = 0.
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These tensors determine completely the torsion endomorphism of the Biquard connection due to the
following identity [18, Proposition 2.3] 4T 0(ξs, IsX,Y ) = T 0(X,Y )− T 0(IsX, IsY ) which implies

4T (ξs, IsX,Y ) = 4T 0(ξs, IsX,Y ) + 4g(IsuIsX,Y ) = T 0(X,Y )− T 0(IsX, IsY )− 4U(X,Y ).

2.2. The qc-Einstein condition and Bianchi identities. We explain briefly the consequences of
the Bianchi identities and the notion of qc-Einstein manifold introduced in [12] since it plays a crucial
role in solving the Yamabe equation in the quaternionic sphere (see [13] for dimension seven). For
more details see [12].

Let R = [∇,∇] − ∇[ , ] be the curvature of the Biquard connection ∇. The Ricci tensor and the
scalar curvature, called qc-Ricci tensor and qc-scalar curvature, respectively, are defined by

Ric(X,Y ) = g(R(ea, X)Y, ea), Scal = Ric(ea, ea) = g(R(eb, ea)ea, eb).

According to [2] the Ricci tensor restricted to H is a symmetric tensor. If the trace-free part of the
qc-Ricci tensor is zero we call the quaternionic structure a qc-Einstein manifold [12]. It is shown in
[12] that the qc-Ricci tensor is completely determined by the components of the torsion. Theorem 1.3,
Theorem 3.12 and Corollary 3.14 in [12] imply that on a qc manifold (M4n+3, g,Q) the qc-Ricci tensor
and the qc-scalar curvature satisfy

Ric(X,Y ) = (2n+ 2)T 0(X,Y ) + (4n+ 10)U(X,Y ) +
Scal

4n
g(X,Y )

Scal = −8n(n+ 2)g(T (ξ1, ξ2), ξ3)

Hence, the qc-Einstein condition is equivalent to the vanishing of the torsion endomorphism of the
Biquard connection and in this case the qc scalar curvature is constant [12, 15]. If Scal > 0 the latter
holds exactly when the qc-structure is locally 3-Sasakian up to a multiplication by a constant and
an SO(3)-matrix with smooth entries. We remind that a (4n+3)-dimensional Riemannian manifold
(M, g) is called 3-Sasakian if the cone metric gN = t2g+ dt2 on N = M ×R+ is a hyperkähler metric,
namely, it has holonomy contained in Sp(n+ 1). The 3-Sasakian manifolds are Einstein with positive
Riemannian scalar curvature.

The following vectors will be important for our considerations,

(2.3) Ai = Ii[ξj , ξk], A = A1 + A2 + A3.

We denote with the same letter the corresponding horizontal 1-form and recall the action of Is on it,

A(X) = g(I1[ξ2, ξ3] + I2[ξ3, ξ1] + I3[ξ1, ξ2], X), IsA(X) = −A(IsX).

The horizontal divergence ∇∗P of a (0,2)-tensor field P on M with respect to Biquard connection is
defined to be the (0,1)-tensor field ∇∗P (.) = (∇eaP )(ea, .). We have from [12, Theorem 4.8] that on
a (4n+ 3)-dimensional QC manifold with constant qc-scalar curvature the next identities hold

(2.4) ∇∗T 0 = (n+ 2)A, ∇∗U =
1− n

2
A.

For any smooth function h on a qc manifold with constant qc scalar curvature the following formulas
are valid [13, Lemma 4.1 ]

(2.5)

∇∗
( 3∑
s=1

dh(ξs)IsAs

)
=

3∑
s=1

∇dh (Isea, ξs)As(ea);

∇∗
( 3∑
s=1

dh(ξs)IsA
)

=

3∑
s=1

∇dh (Isea, ξs)A(ea).
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2.3. Qc conformal transformations. Let h be a positive smooth function on a qc manifold (M,η).
Let η̄ = 1

2hη be a conformal deformation of the qc structure η. We will denote the objects related to

η̄ by over-lining the same object corresponding to η. Thus, dη̄ = − 1
2h2 dh ∧ η + 1

2h dη and ḡ = 1
2hg.

The new triple {ξ̄1, ξ̄2, ξ̄3} is determined by the conditions defining the Reeb vector fields as follows
ξ̄s = 2h ξs + Is∇h, where ∇h is the horizontal gradient defined by g(∇h,X) = dh(X). The
components of the torsion tensor transform according to the following formulas from [12, Section 5]

T
0
(X,Y ) = T 0(X,Y ) + h−1 [∇dh][sym][−1](X,Y ),

Ū(X,Y ) = U(X,Y ) + (2h)−1[ ∇dh− 2h−1dh⊗ dh][3][0](X,Y ),
(2.6)

where the symmetric part is given by

[ ∇dh][sym](X,Y ) = ∇dh(X,Y ) +

3∑
s=1

dh(ξs)ωs(X,Y )

and [3][0] indicates the trace free part of the [3]-component of the corresponding tensor.
In addition, the qc-scalar curvature changes according to the formula [2]

(2.7) Scal = 2h (Scal) − 8(n+ 2)2 h−1|∇h|2 + 8(n+ 2)4h.

3. Qc conformal transformations on qc Einstein manifolds

Throughout this section h is a positive smooth function on a qc manifold (M, g,Q) with constant
qc-scalar curvature Scal = 16n(n+ 2) and η̄ = 1

2h η is a qc Einstein structure which is a conformal
deformation of the qc structure η. We recall some formulas from [13] which we need here.

First we write the expressions of the 1-forms As, A in terms of h (see [13, Lemma ])

(3.1) Ai(X) = −1

2
h−2dh(X) − 1

2
h−3|∇h|2dh(X)− 1

2
h−1

(
∇dh(IjX, ξj) + ∇dh(IkX, ξk)

)
+

1

2
h−2

(
dh(ξj) dh(IjX) + dh(ξk) dh(IkX)

)
+

1

4
h−2

(
∇dh(IjX, Ij∇h) + ∇dh(IkX, Ik∇h)

)
.

Thus, we have also

(3.2) A(X) = −3

2
h−2dh(X) − 3

2
h−3|∇h|2dh(X)

− h−1
3∑
s=1

∇dh(IsX, ξs) + h−2
3∑
s=1

dh(ξs) dh(IsX) +
1

2
h−2

3∑
s=1

∇dh(IsX, Is∇h)

Second we consider the following one-forms

(3.3) Ds(X) = − 1

2h

[
T 0(X,∇h) + T 0(IsX, Is∇h)

]
For simplicity, using the musical isomorphism, we will denote with D1, D2, D3 the corresponding
(horizontal) vector fields, for example g(D1, X) = D1(X). Using (2.2), we set

(3.4) D = D1 + D2 + D3 = −h−1 T 0(X,∇h).

Setting T̄ 0 = 0 in (2.6), we obtain from equations (3.3) the expressions (cf. [13] or [18])

(3.5)
Di(X) = h−2 dh(ξi) dh(IiX) +

1

4
h−2

[
∇dh (X,∇h) + ∇dh (IiX, Ii∇h)

− ∇dh (IjX, Ij∇h) − ∇dh (IkX, Ik∇h)
]
.
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The equalities (3.4) together with (3.5) yield [13, Lemma 4.2]

(3.6) D(X) =
1

4
h−2

(
3 ∇dh(X,∇h) −

3∑
s=1

∇dh(IsX, Is∇h)
)

+ h−2
3∑
s=1

dh(ξs) dh(IsX).

Third, we consider the following one-forms (and corresponding vectors)

Fs(X) = −h−1 T 0(X, Is∇h).

From the definition of Fi and (3.3) we find

(3.7) Fi(X) = −h−1T 0(X, Ii∇h) = −Di(IiX) + Dj(IiX) + Dk(IiX).

We recall the next divergence formulas established in [13, Lemma 4.2, Lemma 4.3] with the help of
the contracted second Bianchi identity (2.4).

(3.8) ∇∗D = |T 0|2 − h−1g(dh,D) − h−1(n+ 2) g(dh,A).

(3.9) ∇∗
( 3∑
s=1

dh(ξs)Fs

)
=

3∑
s=1

[
∇dh (Isea, ξs)Fs(Isea)

]
+ h−1

3∑
s=1

[
dh(ξs)dh(Isea)D(ea) + (n+ 2) dh(ξs)dh(Isea)A(ea)

]
.

4. The divergence formula

Following is our main technical result. As mentioned in the introduction, we were motivated to
seek a divergence formula of this type based on the Riemannian, CR and seven dimensional qc cases
of the considered problem. The main difficulty was to find a suitable vector field with non-negative
divergence containing the norm of the torsion. The fulfilment of this task was facilitated by the results
of [12]. In particular, similarly to the CR case, but unlike the Riemannian case, we were not able to
achieve a proof based purely on the Bianchi identities, see [12, Theorem 4.8].

Using Scal = Scal = 16n(n+ 2) in the Yamabe equation (2.7) we have

(4.1) 4h = 2n− 4nh+ h−1(n+ 2)|∇h|2.

The equation (2.6) in the case T̄ 0 = Ū = 0 and (4.1) motivate the definition of the following symmetric
(0,2) tensors

(4.2) D(X,Y ) = −T 0(X,Y ) =
h−1

4

[
3∇2h(X,Y ) −

3∑
s=1

∇2h(IsX, IsY ) + 4

3∑
s=1

dh(ξs)ωs(X,Y )
]

(4.3) E(X,Y ) = −2U(X,Y ) =
h−1

4

[
∇2h(X,Y ) +

3∑
s=1

∇2h(IsX, IsY )
]

− 2h−2

4

[
dh(X)dh(Y ) +

3∑
s=1

dh(IsX)dh(IsY )
]
− h−1

4

(
2− 4h+ h−1|∇h|2

)
g(X,Y ).

The one form D defined in (3.4) and expressed in terms of h in (3.6) satisfies D(X) = h−1D(X,∇h).
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Consider the 1-form E(X) = h−1E(X,∇h). We obtain from (4.2) and (4.3) the expression

(4.4) E(X) =
h−2

4

[
∇2h(X,∇h) +

3∑
s=1

∇2h(IsX, Is∇h) +
(
− 2 + 4h− 3h−1|∇h|2

)
dh(X)

]
.

We also define the (0,3)-tensors D and E by

(4.5) D(X,Y, Z) = −h
−1

8

[
dh(X)T 0(Y,Z) + dh(Y )T 0(X,Z)

+

3∑
s=1

dh(IsX)T 0(IsY, Z) +

3∑
s=1

dh(IsY )T 0(IsX,Z)
]

(4.6) E(X,Y, Z) =
h−1

8

{
dh(X)E(Y, Z) + dh(Y )E(X,Z)

+

3∑
s=1

dh(IsX)E(IsY, Z) +

3∑
s=1

dh(IsY )E(IsX,Z)
}
.

After this preparations we are ready to state the main result.

Theorem 4.1. Suppose (M4n+3, η) is a quaternionic contact structure conformal to a 3-Sasakian
structure (M4n+3, η̄), η̃ = 1

2h η. If Scalη = Scalη̃ = 16n(n+ 2), then with f given by

(4.7) f =
1

2
+ h +

1

4
h−1|∇h|2,

the following identity holds

(4.8) ∇∗
(
f(D + E) +

3∑
s=1

dh(ξs)IsE +

3∑
s=1

dh(ξs)Fs + 4

3∑
s=1

dh(ξs)IsAs −
10

3

3∑
s=1

dh(ξs) IsA
)

=
(1

2
+ h
)(
|T 0|2 + |E|2

)
+ 2h|D + E|2 + h 〈QV, V 〉.

where Q is equal to

Q :=



5

2
−1

2
−1

2
−1

2
−2 −2 −2

−1

2

5

2
−1

2
−1

2

10

3
−2

3
−2

3

−1

2
−1

2

5

2
−1

2
−2

3

10

3
−2

3

−1

2
−1

2
−1

2

5

2
−2

3
−2

3

10

3

−2
10

3
−2

3
−2

3

22

3
−2

3
−2

3

−2 −2

3

10

3
−2

3
−2

3

22

3
−2

3

−2 −2

3
−2

3

10

3
−2

3
−2

3

22

3


Here, Q is a positive definite matrix with eigenvalues 1, 9

2 ±
√

73
2 and 11

2 ±
√

89
2 and

V = (E,D1, D2, D3, A1, A2, A3) with E, Ds, As defined, correspondingly, in (4.4) (3.3) and (2.3).
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Proof. For the sake of making some formulas more compact, in the proof we will use sometimes the
notation XY = g(X,Y ) for the product of two horizontal vector fields X and Y and the similar
abbreviation for horizontal 1-forms.

We begin by recalling (3.6), (4.4) and (3.2), which imply

(4.9) A(X) =
3E(X)−D(X)

2
− h−1

3∑
s=1

∇2h(IsX, ξs)

+
3

2
h−2

3∑
s=1

dh(ξs)dh(IsX)− 3

2
h−2

(1

2
+ h+

1

4
h−1|∇h|2

)
dh(X).

Using the function f defined in (4.7), we write (4.9) in the form

(4.10) 2

3∑
s=1

∇2h(IsX, ξs) = h(3E(X)−D(X)− 2A(X)) + 3h−1
3∑
s=1

dh(ξs)dh(IsX)− 3h−1fdh(X).

The sum of (3.6) and (4.4) yields

(4.11) (E+D)(X) = h−2∇2h(X,∇h)+h−2
3∑
s=1

dh(ξs)dh(IsX)+
h−2

4

(
−2+4h−3h−1|∇h|2

)
dh(X)

]
.

Using (4.7) and (4.11), we obtain

(4.12) 2∇Xf = h(E +D)(X)− h−1
3∑
s=1

dh(ξs)dh(IsX) + h−1fdh(X).

We calculate the divergences of E using (2.4) as follows

(4.13) ∇∗E = 2h−2dh(ea)U(ea,∇h)− 2h−1(∇eaU)(ea,∇h)− 2h−1U(ea, eb)∇2h(ea, eb)

= −h−1(1− n)A(∇h) + U(ea, eb)(−2h−1)
[
∇2h(ea, eb)− 2dh(ea)dh(eb)

]
+ h−1E(∇h)

= |E|2 + h−1dh(ea)E(ea)− h−1(1− n)dh(ea)A(ea).

Similarly, we have

(4.14) −∇∗IsE = 2h−2dh(ea)U(Isea,∇h) + 2h−1(∇eaU)(ea, Is∇h)− 2h−1U(Isea, eb)∇2h(ea, eb)

= h−1(1− n)A(Is∇h) + U(Isea, eb)(−2h−1)
[
∇2h(ea, eb)− 2dh(ea)dh(eb)

]
+ h−1E(Is∇h)

= U(Isea, eb)U(ea, eb)− h−1(1− n)dh(Isea)A(ea) = −h−1(1− n)dh(Isea)A(ea),

since U(Isea, eb)U(ea, eb) = E(Is∇h) = 0 due to (2.2).
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Now we are prepared to calculate the divergence of the first four terms. Using (3.8), (3.9), (4.13),
(4.12), (4.14) and (4.10), we have

(4.15) ∇ea
[
f(D + E)(ea)−

3∑
s=1

dh(ξs)E(Isea) +

3∑
s=1

dh(ξs)Fs(ea)
]

=
(h

2
(E +D)(ea)− h−1

2

3∑
s=1

dh(ξs)dh(Isea) +
h−1

2
fdh(ea)

)
(D + E)(ea)

+ f
[
− h−1D(∇h)− h−1(n+ 2)A(∇h) + |T 0|2 + |E|2 + h−1dh(ea)E(ea)− h−1(1− n)dh(ea)A(ea)

]
+ h−1(1− n)

3∑
s=1

dh(ξs)dh(Isea)A(ea) +

3∑
s=1

∇2h(Isea, ξs)E(ea)

+

3∑
s=1

∇2h (Isea, ξs)Fs(Isea) + h−1
3∑
s=1

dh(ξs)dh(Isea)D(ea) + (n+ 2)

3∑
s=1

dh(ξs)dh(Isea)A(ea)

= f(|T 0|2 + |E|2) +
h

2
|D + E|2 +

h

2
(3E −D − 2A)(ea)E(ea)

+ h−1
[ 3∑
s=1

dh(ξs)dh(Isea)− fdh(ea)
](1

2
D(ea) + 3A(ea)

)
+

3∑
s=1

∇2h (Isea, ξs)Fs(Isea).

Applying (2.5) and (4.10) we obtain

(4.16) ∇ea
[
f(D + E)(ea)−

3∑
s=1

dh(ξs)E(Isea) +

3∑
s=1

dh(ξs)Fs(ea)− 2

3∑
s=1

dh(ξs)IsA(ea)
]

= f(|T 0|2 + |E|2) +
h

2
|D + E|2 +

h

2
(3E −D − 2A)E − h(3E −D − 2A)A

+
h−1

2

[ 3∑
s=1

dh(ξs)dh(Isea)− fdh(ea)
]
D(ea) +

3∑
s=1

∇2h (Isea, ξs)Fs(Isea)

According to (3.7), the last term in (4.16) reads

(4.17)

3∑
s=1

∇2h (Isea, ξs)Fs(Isea) = D1(ea)
[
∇2h(I1ea, ξ1)−∇2h(I2ea, ξ2)−∇2h(I3ea, ξ3)

]
+D2(ea)

[
−∇2h(I1ea, ξ1) +∇2h(I2ea, ξ2)−∇2h(I3ea, ξ3)

]
+D3(ea)

[
−∇2h(I1ea, ξ1)−∇2h(I2ea, ξ2) +∇2h(I3ea, ξ3)

]
.
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Using (4.17) we rewrite the last line in (4.16) as follows

(4.18)
[h−1

2

3∑
s=1

dh(ξs)dh(Isea)− h−1

2
fdh(ea)

]
D(ea) +

3∑
s=1

∇2h (Isea, ξs)Fs(Isea)

= D1(ea)
[
∇2h(I1ea, ξ1)−∇2h(I2ea, ξ2)−∇2h(I3ea, ξ3) +

h−1

2

3∑
s=1

dh(ξs)dh(Isea)− h−1

2
fdh(ea)

]
+D2(ea)

[
−∇2h(I1ea, ξ1) +∇2h(I2ea, ξ2)−∇2h(I3ea, ξ3) +

h−1

2

3∑
s=1

dh(ξs)dh(Isea)− h−1

2
fdh(ea)

]
+D3(ea)

[
−∇2h(I1ea, ξ1)−∇2h(I2ea, ξ2)+∇2h(I3ea, ξ3)+

h−1

2

3∑
s=1

dh(ξs)dh(Isea)− h
−1

2
fdh(ea)

]
.

The equalities (4.4), (3.5) and (3.1) imply

(4.19) ∇2h(I2X, ξ2) +∇2h(I3X, ξ3)

= h(E −D1 − 2A1)(X) + h−1
3∑
s=1

dh(ξs)dh(IsX)− h−1fdh(X),

Subtracting two times (4.19) from (4.10) we obtain

(4.20) ∇2h(I1ea, ξ1)−∇2h(I2ea, ξ2)−∇2h(I3ea, ξ3) +
h−1

2

3∑
s=1

dh(ξs)dh(Isea)− h−1

2
fdh(ea)

=
h

2

[
− E −D + 4D1 − 2A+ 8A1

]
(ea)

The left-hand side of the above identity is the second line in (4.18). The other two lines are evaluated
similarly and the formulas are obtained from the above by a cyclic rotation of {1, 2, 3}. A substitution
of the resulting new form of (4.18) in (4.16) give

(4.21) ∇ea
[
f(D + E)(ea)−

3∑
s=1

dh(ξs)E(Isea) +

3∑
s=1

dh(ξs)Fs(ea)− 2

3∑
s=1

dh(ξs)IsA(ea)
]

= f
(
|T 0|2 + |E|2

)
+

4h

2

[
E2 +A2 +D2

1 +D2
2 +D2

3 − 2AE + 2A1D1 + 2A2D2 + 2A3D3

]
.

In view of (2.5) for any non-zero constant c we calculate the following divergences as follows

(4.22) ∇ea
(
c

3∑
s=1

dh(ξs)IsAs(ea)− c

3

3∑
s=1

dh(ξs)IsA(ea)
)

=
c

3

[
2∇2h(I1ea, ξ1)−∇2h(I2ea, ξ2)−∇2h(I3ea, ξ3)

]
A1(ea)

+
c

3

[
2∇2h(I2ea, ξ2)−∇2h(I1ea, ξ1)−∇2h(I3ea, ξ3)

]
A2(ea)

+
c

3

[
2∇2h(I3ea, ξ3)−∇2h(I2ea, ξ2)−∇2h(I1ea, ξ1)

]
A3(ea)
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subtracting (4.19) from twice (4.10) yields

(4.23) 2∇2h(I1ea, ξ1)−∇2h(I2ea, ξ2)−∇2h(I3ea, ξ3)

= h
[
2D1 −D2 −D3 + 4A1 − 2A2 − 2A3

]
(ea)

Now, taking into account (4.23), (4.22) and (4.21) we obtain

(4.24) ∇∗
[
f(D + E)(X)−

3∑
s=1

dh(ξs)E(IsX) +

3∑
s=1

dh(ξs)Fs(X)− 2

3∑
s=1

dh(ξs)IsA(X)
]

+∇∗
[
c

3∑
s=1

dh(ξs)IsAs(X)− c

3

3∑
s=1

dh(ξs)IsA(X)
]

= f
(
|T 0|2 + |E|2

)
+

4h

2

[
E2 +A2 +D2

1 +D2
2 +D2

3 − 2AE + 2A1D1 + 2A2D2 + 2A3D3

]
+ h

c

3

[
(2D1 −D2 −D3 + 4A1 − 2A2 − 2A3)A1

]
+ h

c

3

[
(2D2 −D1 −D3 + 4A2 − 2A1 − 2A3)A2

]
+ h

c

3

[
(2D3 −D2 −D1 + 4A3 − 2A2 − 2A1)A3

]
In the next Lemma, as in the proof of Theorem 4.1, we shall use again the notation XY = g(X,Y )

for the product of two horizontal vector fields X and Y and the similar abbreviation for horizontal
1-forms.

Lemma 4.2. For the (0,3)-tensors D and E defined by (4.5) and (4.6) we have

(4.25)

|D|2 =
1

8
h−2|∇h|2|T 0|2 − 1

4

3∑
s=1

|Ds|2 +
1

2
(D1D2 +D1D3 +D2D3),

|E|2 =
1

8
h−2|∇h|2|E|2 − 1

4
|E|2, DE =

1

4

3∑
s=1

EDs.

Consequently,

(4.26)
1

4
h−2|∇h|2(|T 0|2 + |E|2) = 2|D + E|2 −

3∑
s=1

EDs

+
1

2
|E|2 +

1

2

3∑
s=1

|Ds|2 − (D1D2 +D1D3 +D2D3)

Proof. We shall repeatedly apply (2.2), the defining equations (4.5), (4.6), (2.3) and (3.4). We have

(4.27) |D|2 =
h−2

8
|∇h|2|T 0|2 +

h−2

82

(
2T 0(∇h, ec)T 0(∇h, ec)

− 4

3∑
s=1

T 0(Is∇h, ec)T 0(Is∇h, ec) + 2

3∑
s,t=1

T 0(IsIt∇h, ec)T 0(ItIs∇h, ec)
)

=
h−2

8
|∇h|2|T 0|2 +

1

4

(
−

3∑
s=1

D2
s + 2(D1D2 +D1D3 +D2D3)

)
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which is the first line of (4.25). For example, the third term in (4.27) is calculated as follows

3∑
s,t=1

T 0(IsIt∇h, ec)T 0(ItIs∇h, ec) =

3∑
s=1

[
T 0(∇h, ec)T 0(∇h, ec)− 2T 0(Is∇h, ec)T 0(Is∇h, ec)

]

= 6|D|2 − 12

3∑
s=1

D2
s + 8(D1D2 +D1D3 +D2D3) = −6

3∑
s=1

D2
s + 20(D1D2 +D1D3 +D2D3).

Similarly, we obtain the second line of (4.25). The equality (4.26) follows from (4.25) which
completes the proof of Lemma 4.2. �

Finally, the proof of Theorem 4.1 follows by letting c = 4 in (4.24)and using (4.26) and (2.3). �

5. Proof of Theorem[1.3] and Theorem[1.1]

We begin with the proof of Theorem 1.3. The first step of the proof relies on Theorem 4.1. By
a homothety we can suppose that both qc-scalar curvatures are equal to 16n(n + 2). Integrating
the divergence formula of Theorem 4.1 and then using the divergence theorem established in [12,
Proposition 8.1] shows that the integral of the left-hand side is zero. Thus, the right-hand side
vanishes as well, which shows that the quaternionic contact structure η̄ has vanishing torsion, i.e., it
is also qc-Einstein according to [12, Proposition 4.2]. This proves the first part of Theorem 1.3.

To prove the second part, we develop a sub-Riemannian extension of the result of [23], see also [4]
and the review [20, Theorem 2.6], on the relation between the Yamabe equation and the Lichnerowicz-
Obata first eigenvalue estimate. We begin by recalling some results from [12, Section 7.2]. A vector
field Q on a qc manifold (M,η) is a qc vector field if its flow preserves the horizontal distribution
H = ker η. Since the conformal class of the qc structure on span{η1, η2, η3} is uniquely determined by
H (cf. [2]), we have that

LQ η = (νI +O) · η,
where ν is a smooth function and O ∈ so(3) is a matrix valued function with smooth entries. Since
the exterior derivative d commutes with the Lie derivative LQ , any qc vector field Q satisfies

LQ g = νg, LQ I = O · I, I = (I1, I2, I3)t,

which is equivalent to saying that the flow of Q preserves the conformal class [g] of the horizontal
metric and the quaternionic structure Q on H. The function ν can be easily expressed in terms of
the divergence (with respect to g) of the horizontal part QH of the vector field Q. Indeed, from [12,
Lemma 7.12] we have

g(∇XQH , Y ) + g(∇YQH , X) + 2ηs(Q)g(T 0
ξsX,Y ) = ν g(X,Y ),

hence

ν =
1

2n
∇∗QH .

This gives a geometric interpretation for the quantity (∇∗QH), namely, the flow of a qc vector field
Q preserves a fixed metric g ∈ [g] if and only if ∇∗QH = 0.

As an infinitesimal version of the qc Yamabe equation we obtain the following general fact con-
cerning the divergence of a QC vector field.

Lemma 5.1. Let (M,η) be a qc manifold. For any qc vector field Q on M we have

∆(∇∗QH) = − n

2(n+ 2)
Q(Scal) − Scal

4(n+ 2)
∇∗QH ,
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where Scal, ∇∗, ∆ and the projection QH correspond to the contact form η.

Proof. Suppose Q is a qc vector field and let φt be the corresponding (local) 1-parameter group of
diffeomorphisms generated by its flow. Then

φ∗t (η) =
1

2ht
η and φ∗t (g) =

1

2ht
g

for some positive function ht, depending smoothly on the parameter t. The qc scalar curvature Scalt
of the pull back contact form φ∗t (η) is given by Scalt = Scal ◦ φt. Then, formula (2.7) yields

(5.1) Scal ◦ φt = 2ht (Scal) − 8(n+ 2)2 h−1
t |∇ht|2 + 8(n+ 2)4ht.

Clearly, we have h0 = 1
2 , and from

1

2n
(∇∗QH) g = LQ g =

d

dt
|t=0

(
1

2ht
g

)
= − h′0

2h0
g = − 2h′0 g

we obtain that h′0 = − 1
4n∇

∗QH , where h′0 denotes the derivative of ht at t = 0. A differentiation at
t = 0 in (5.1) gives the lemma. �

Lemma 5.2. Let (M,η) and (M, η̄) be qc-Einsten manifolds with equal qc-scalar curvatures 16n(n+2).
If η and η̄ are qc conformal to each other, η = 1

2hη for some smooth positive function h, then

(5.2) Q =
1

2
∇f +

3∑
s=1

dh(ξs)ξs

is a qc vector field on M , where the function f is defined in (4.12).

Proof. The assumption of the lemma implies that E = D = Ds = As = 0. Using (4.19), (4.20) and
(4.12) we obtain ∇2h(IsX, ξs) = −df(X) and thus ∇2h(X, ξs) = df(IsX). It follows that

3∑
s=1

∇X(dh(ξs)ξs) =

3∑
s=1

df(IsX)ξs.

To show that the flow of the vector field Q, defined by (5.2), preserves the horizontal distribution
H, for any X ∈ H, we have

LQ(X) =
1

2
[∇f,X] +

3∑
s=1

[dh(ξs)ξs, X] =
1

2
∇∇fX − 1

2
∇X(∇f) −

3∑
s=1

ωs(∇f,X)ξs

+

3∑
s=1

[dh(ξs)∇ξsX −∇X(dh(ξs)ξs)− dh(ξs)Tξs(X)] =
1

2
∇∇fX −

1

2
∇X(∇f)+

3∑
s=1

dh(ξs)∇ξsX ∈ H.

�

At this point we are ready to complete the proof of Theorem 1.3. Consider the qc vector field
Q defined in Lemma 5.2. By Lemma 5.1, the function φ = 1

24f is either an eigenfunction of the
sub-Laplacian with eigenvalue −4n, 4φ = −4nφ, or it vanishes identically. In the first case, using the
quaternionic contact version of the Lichnerowicz-Obata eigenfunction sphere theorem [16, Theorem
1.2] and [17, Corollary 1.2] (see also [1]), we conclude that (M,η) is the 3-Sasakain sphere. In the other
case, we have that ∆f = 0, hence the function f = 1

2 + h+ 1
4h
−1|∇h|2 = const since M is compact.

It follows that h = 1/2 by considering the points where h achieves its minimum and maximum and
taking into account the qc Yamabe equation (4.1). The proof of Theorem 1.3 is complete.
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Remark 5.3. Lemma 5.2 provides also a certain geometric insight for the mysterious function f in
(4.7). In fact, up to an additive constant, f is the unique function on M for which QH = 1

2∇f is
the horizontal part of a qc vector field Q with vertical part QV = dh(ξs)ξs, Q = QH + QV . This
assertion is an easy consequence of the computation given in the proof of Lemma 5.2. Moreover, it
implies that on the 3-Sasakain sphere φ = 4f is an eigenfuction of the sub-Laplacian realizing the
smallest possible eigenvalue −4n on a compact locally 3-Sasakian manifold.

Theorem 1.1 is a direct corollary from Theorem 1.3. Alternatively, as in the proof of Theorem 1.3,
we can use in the first step Theorem 4.1 which shows that the ”new” structure is also qc-Einstein. The
second step of the proof of Theorem 1.1 follows then also by taking into account [12, Theorem 1.2]
where all locally 3-Sasakian structures of positive constant qc-scalar curvature which are qc-conformal
to the standard 3-Sasakian structure on the sphere were classified (we note that this classification
extends easily to the case when no sign condition of the ”new” qc-structure is assumed, see [20]).
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