
QUATERNIONIC CONTACT EINSTEIN MANIFOLDS

STEFAN IVANOV, IVAN MINCHEV, AND DIMITER VASSILEV

Abstract. The main result is that the qc-scalar curvature of a seven dimensional quaternionic contact

Einstein manifold is a constant. In addition, we characterize qc-Einstein structures with certain flat vertical

connection and develop their local structure equations. Finally, regular qc-Ricci flat structures are shown

to fiber over hyper-Kähler manifolds.

Contents

1. Introduction 1

2. Preliminaries 2

3. Proof of Theorem 1.1 5

4. A characterization based on vertical flat connection 8

5. The structure equations of a qc Einstein manifold 9

6. The related Riemannian geometry 11

6.1. The quotient space of a qc Einstein manifold with S = 0 12

6.2. The Riemannian curvature 12

References 14

1. Introduction

Following the work of Biquard [Biq1] quaternionic contact (qc) manifolds describe the Carnot-

Carathéodory geometry on the conformal boundary at infinity of quaternionic Kähler manifolds. The qc ge-

ometry also became a crucial geometric tool in finding the extremals and the best constant in the L2 Folland-

Stein Sobolev-type embedding on the quaternionic Heisenberg groups [F2, FS], see [IMV, IMV2, IMV3]. An

extensively studied class of quaternionic contact structures are provided by the 3-Sasakian manifolds. From

the point of view of qc geometry, 3-Sasakian structures are qc manifolds whose torsion endomorphism of the

Biquard connection vanishes. In turn, the latter property is equivalent to the qc structure being qc-Einstein,

i.e., the trace-free part of the qc-Ricci tensor vanishes, see [IMV]. The qc-scalar curvature of a 3-Sasakian

manifold is a non-zero constant. Conversely, it was shown in [IMV, IV2] that the Biquard torsion is the

obstruction for a given qc structure to be locally 3-Sasakian provided the qc-scalar curvature Scal is a non

zero constant. Furthermore, as a consequence of the Bianchi identities, [IMV, Theorem 4.9] shows that

the qc-scalar curvature of a qc-Einstein manifold of dimension at least eleven is constant while the seven

dimensional case was left open.

The main purpose of this paper is to show that the qc-scalar curvature of a seven dimensional qc-Einstein

manifold is constant, i.e., to prove the following

Theorem 1.1. If M is a qc-Einstein qc manifold of dimension seven, then, the qc-scalar curvature is a

constant, Scal = const.

The proof of Theorem 1.1 makes use of the qc-conformal curvature tensor [IV1], which characterizes locally

qc conformally flat structures, a result of Kulkarni [Kul] on algebraic properties of curvature tensors in four
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dimensions, and an extension of [IMV, Theorem 1.21] which describes explicitly all qc-Einstein structures

defined on open sets of the quaternionic Heisenberg group that are point-wise qc-conformal to the standard

flat qc structure on the quaternionic Heisenberg groups. The main application of Theorem 1.1 is the removal

of the a-priori assumption of constancy of the qc-scalar curvature in some previous papers concerning seven

dimensional qc-Einstein manifolds, see for example Corollaries 3.2, 3.3 and 6.1.

The remaining parts of this paper are motivated by known properties of qc-Einstein manifolds with

non-vanishing qc-scalar curvature, in that we prove corresponding results in the case of vanishing qc-scalar

curvature. With this goal in mind and because of its independent interest, in Section 4 we define a connection

on the canonical three dimensional vertical distribution of a qc manifold. We show that qc-Einstein spaces can

be characterized by the flatness of this vertical connection. This allows us to write the structure equations of

a qc-Einstein manifold in terms of the defining 1-forms, their exterior derivatives and the qc-scalar curvature,

see Theorem 5.1. The latter extends the results of [IV2] and [IV3, Section 4.4.2] to the vanishing qc-scalar

curvature case.

Recall that complete and regular 3-Sasakian and nS-spaces (called negative 3-Sasakian here) have canon-

ical fibering with fiber Sp(1) or SO(3), and base a quaternionic Kähler manifold. The shows that if S > 0

(resp. S < 0), the qc Einstein manifolds are ”essentially” SO(3) bundles over quaternionic Kähler manifolds

with positive (resp. negative) scalar curvature. In section 6 we show that in the ”regular” case, similar to the

non-zero qc-scalar curvature cases, a qc-Einstein manifold of zero scalar curvature fibers over a hyper-Kähler

manifold, see Proposition 6.3.

We conclude the paper with a brief section where we show that every qc-Einstein manifold of non-zero

scalar curvature carries two Einstein metrics. Note that the corresponding results concerning the 3-Sasakian

case is well known, see [BGN]. In the negative qc-scalar curvature case both Einstein metrics are of signature

(4n, 3) of which the first is locally (negative) 3-Sasakian, while the second ”squashed’ metric is not 3-Sasakian,

see Proposition 6.4.

Convention 1.2. Throughout the paper, unless explicitly stated otherwise, we will use the following conven-

tions.

a) The triple (i, j, k) denotes any cyclic permutation of (1, 2, 3) while s, t will denote any numbers from the

set {1, 2, 3}, s, t ∈ {1, 2, 3}.
b) For a decomposition TM = V ⊕H we let [.]V and [.]Hbe the corresponding projections to V and H.

c) A,B,C, etc. will denote sections of the tangent bundle of M , i.e., A,B,C ∈ TM .

d) X,Y, Z, U will denote horizontal vector fields, i.e., X,Y, Z, U ∈ H.

e) ξ, ξ′, ξ′′ will denote vertical vector fields, i.e., ξ, ξ′, ξ′′ ∈ V .

f) {e1, . . . , e4n} denotes an orthonormal basis of the horizontal space H;

g) The summation convention over repeated vectors from the basis {e1, . . . , e4n} is used. For example,

k = P (eb, ea, ea, eb) means k =
∑4n
a,b=1 P (eb, ea, ea, eb).
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2. Preliminaries

It is well known that the sphere at infinity of a non-compact symmetric space M of rank one carries a

natural Carnot-Carathéodory structure, see [M, P]. Quaternionic contact (qc) structure were introduced by

O. Biquard [Biq1] and are modeled on the conformal boundary at infinity of the quaternionic hyperbolic

space. Biquard showed that the infinite dimensional family [LeB91] of complete quaternionic-Kähler defor-

mations of the quaternion hyperbolic metric have conformal infinities which provide an infinite dimensional

family of examples of qc structures. Conversely, according to [Biq1] every real analytic qc structure on a

manifold M of dimension at least eleven is the conformal infinity of a unique quaternionic-Kähler metric de-

fined in a neighborhood of M . Furthermore, [Biq1] considered CR and qc structures as boundaries of infinity

of Einstein metrics rather than only as boundaries at infinity of Kähler-Einstein and quaternionic-Kähler

metrics, respectively. In fact, [Biq1] showed that in each of the three hyperbolic cases (complex, quater-

nionic, octoninoic) any small perturbation of the standard Carnot-Carathéodory structure on the boundary
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is the conformal infinity of an essentially unique Einstein metric on the unit ball, which is asymptotically

symmetric.

We refer to [Biq1], [IMV] and [IV3] for a more detailed exposition of the definitions and properties of

qc structures and the associated Biquard connection. Here, we recall briefly the relevant facts needed for

this paper. A quaternionic contact (qc) manifold is a 4n + 3-dimensional manifold M with a codimension

three distribution H equipped with an Sp(n)Sp(1) structure locally defined by an R3-valued 1-form η =

(η1, η2, η3). Thus, H = ∩3
s=1Ker ηs is equipped with a positive definite symmetric tensor g, called the

horizontal metric, and a compatible rank-three bundle Q consisting of endomorphisms of H locally generated

by three orthogonal almost complex structures Is, s = 1, 2, 3, satisfying the unit quaternion relations: (i)

I1I2 = −I2I1 = I3, I1I2I3 = −id|H ; (ii) g(Is., Is.) = g(., .); and (iii) the compatibility conditions

2g(IsX,Y ) = dηs(X,Y ), X,Y ∈ H hold true.

The transformations preserving a given quaternionic contact structure η, i.e., η̄ = µΨη for a positive

smooth function µ and an SO(3) matrix Ψ with smooth functions as entries are called quaternionic contact

conformal (qc-conformal) transformations. If the function µ is constant η̄ is called qc-homothetic to η and

in the case µ ≡ 1 we call η̄ qc-equivalent to η. Notice that in the latter case, η and η̃ define the same qc

structure. The qc conformal curvature tensor W qc, introduced in [IV1], is the obstruction for a qc structure

to be locally qc conformal to the standard 3-Sasakian structure on the (4n+3)-dimensional sphere [IV1, IV3].

Biquard showed that on a qc manifold of dimension at least eleven there is a unique connection ∇ with

torsion T and a unique supplementary to H in TM subspace V , called the vertical space, such that the

following conditions are satisfied: (i) ∇ preserves the decomposition H⊕V and the Sp(n)Sp(1) structure on

H, i.e., ∇g = 0,∇σ ∈ Γ(Q) for a section σ ∈ Γ(Q), and its torsion on H is given by T (X,Y ) = −[X,Y ]|V ;

(ii) for ξ ∈ V , the endomorphism Tξ = T (ξ, ·) : H → H of H lies in (sp(n) ⊕ sp(1))⊥ ⊂ gl(4n); (iii) the

connection on V is induced by the natural identification ϕ of V with the subspace sp(1) of the endomorphisms

of H, i.e., ∇ϕ = 0. Furthermore, [Biq1] also described the supplementary distribution V , which is (locally)

generated by the so called Reeb vector fields {ξ1, ξ2, ξ3} determined by

(2.1) ηs(ξt) = δst, (ξsydηs)|H = 0, (ξsydηt)|H = −(ξtydηs)|H ,

where y denotes the interior multiplication.

If the dimension of M is seven Duchemin showed in [D] that if we assume, in addition, the existence of

Reeb vector fields as above, then the Biquard result holds. Henceforth, by a qc structure in dimension 7 we

shall mean a qc structure satisfying (2.1). We shall call ∇ the Biquard connection.

Notice that equations (2.1) are invariant under the natural SO(3) action. Using the triple of Reeb

vector fields we extend the horizontal metric g to a metric h on M by requiring span{ξ1, ξ2, ξ3} = V ⊥
H and h(ξs, ξt) = δst,

(2.2) h|H = g, h|V = η1 ⊗ η1 + η2 ⊗ η2 + η3 ⊗ η3, h(ξs, X) = 0.

The Riemannian metric h as well as the Biquard connection do not depend on the action of SO(3) on V ,

but both change if η is multiplied by a conformal factor [IMV].

The fundamental 2-forms ωs and the fundamental 4-form Ω of the quaternionic structure Q are defined,

respectively, by

2ωs|H = dηs|H , ξyωs = 0, Ω = ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3.

2.1. The torsion of the Biquard connection. It was shown in [Biq1] that the torsion Tξ is com-

pletely trace-free, tr Tξ = tr Tξ ◦ Is = 0. Decomposing the endomorphism Tξ ∈ (sp(n) + sp(1))⊥ into

its symmetric part T 0
ξ and skew-symmetric part bξ, Tξ = T 0

ξ + bξ, we have T 0
ξi
Ii = −IiT 0

ξi
I2(T 0

ξ2
)+−− =

I1(T 0
ξ1

)−+−, I3(T 0
ξ3

)−+− = I2(T 0
ξ2

)−−+, I1(T 0
ξ1

)−−+ = I3(T 0
ξ3

)+−−, where the upper script + + + de-

notes the component commuting with all three Ii, + − − indicates the component commuting with I1 and

anti-commuting with the other two, etc. Furthermore, the symmetric part T 0
ξ satisfies the identity

(2.3) g(T 0
ξ (X), Y ) =

1

2
Lξg(X,Y ), ξ ∈ V, X, Y ∈ H,

where Lξ denotes the Lie derivative with respect to ξ. The skew-symmetric part can be represented as

bξi = Iiu, where u is a traceless symmetric (1,1)-tensor on H which commutes with I1, I2, I3. Therefore we
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have Tξi = T 0
ξi

+ Iiu. If n = 1 then the tensor u vanishes identically, u = 0, and the torsion is a symmetric

tensor, Tξ = T 0
ξ . Following [IMV] we define the Sp(n)Sp(1) components T 0 and U of the torsion tensor by

T 0(X,Y ) = g((T 0
ξ1I1 + T 0

ξ2I2 + T 0
ξ3I3)X,Y ), U(X,Y ) = − g(uX, Y ).

Then, as shown in [IMV], both T 0 and U are trace-free, symmetric and invariant under qc homothetic

transformations. Using the fixed horizontal metric g, we shall also denote by T 0 and U the corresponding

endomorphisms of H, g(T 0(X), Y ) = T 0(X,Y ) and g(U(X), Y ) = U(X,Y ). The torsion of the Biquard

connection ∇ is described by the formulas [Biq1] and [IMV]

(2.4)
T (X,Y ) = −[X,Y ]V = 2

3∑
s=1

ωs(X,Y )ξs, T (ξs, X) =
1

4
(IsT

0 − T 0Is)(X) + IsU(X),

T (ξi, ξj) = −Sξk − [ξi, ξj ]H ,

where [ξi, ξj ]H stands for the H-component of the commutator of the vector fields ξi, ξj and S is the

normalized qc-scalar curvature defined below.

2.2. The curvature of the Biquard connection. We denote by R = [∇,∇]−∇[,] the curvature tensor of

∇ and by the same letter R the curvature (0, 4)-tensor R(A,B,C,D) := h(RA,BC,D). The qc-Ricci tensor,

the qc-scalar curvature, and the three qc-Ricci 2-forms are defined as follows,

(2.5) Ric(A,B) = R(ea, A,B, ea), Scal = Ric(ea, ea), ρs(A,B) =
1

4n
R(A,B, ea, Isea).

The normalized qc-scalar curvature S is defined by 8n(n+ 2)S = Scal.

A fundamental fact, [IMV, Theorem 3.12], is that the torsion endomorphism determines the (horizontal)

qc-Ricci tensor and the (horizontal) qc-Ricci forms of the Biquard connection,

(2.6)
Ric(X,Y ) = (2n+ 2)T 0(X,Y ) + (4n+ 10)U(X,Y ) + 2(n+ 2)Sg(X,Y )

ρs(X, IsY ) = −1

2

[
T 0(X,Y ) + T 0(IsX, IsY )

]
− 2U(X,Y )− Sg(X,Y ).

We say that M is a qc-Einstein manifold if the horizontal Ricci tensor is proportional to the horizontal

metric g,

Ric(X,Y ) =
Scal

4n
g(X,Y ) = 2(n+ 2)Sg(X,Y ),

which taking into account (2.6) is equivalent to T 0 = U = 0. Furthermore, by [IMV, Theorem 4.9] if

dim(M) > 7 then any qc-Einstein structure has a constant qc-scalar curvature. It was left as an open

question whether a qc-Einsten manifold of dimension seven has constant qc-scalar curvature. The main

result of the current paper Theorem 1.1 shows that this is indeed the case.

If the covariant derivatives with respect to ∇ of the endomorphisms Is, the fundamental 2-forms ωs, and

the Reeb vector fields ξs are given by

(2.7) ∇Ii = −αj ⊗ Ik + αk ⊗ Ij , ∇ωi = −αj ⊗ ωk + αk ⊗ ωj , ∇ξi = −αj ⊗ ξk + αk ⊗ ξj ,

where α1, α2, α3 are the local connection 1-forms, then [Biq1] proved that αi(X) = dηk(ξj , X) =

−dηj(ξk, X) for all X ∈ H. On the other hand, as shown in [IMV] the vertical and the sp(1) parts

of the curvature endomorphism R(A,B) are related to the sp(1)-connection 1-forms αs by

(2.8) R(A,B, ξi, ξj) = 2ρk(A,B) = (dαk + αi ∧ αj)(A,B).

Finally, we have the following commutation relations [IMV]

(2.9) R(B,C, IiX,Y ) +R(B,C,X, IiY ) = 2
[
− ρj(B,C)ωk(X,Y ) + ρk(B,C)ωj(X,Y )

]
.

In the next section we give the proof of our main result.
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3. Proof of Theorem 1.1

The proof of Theorem 1.1 is achieved with the help of the following Lemma 3.1 where we calculate the

curvature R(Z,X, Y, V ) at points where the horizontal gradient of the qc-scalar curvature does not vanish,

∇S 6= 0. The proof of Theorem 1.1 proceeds by showing that on any open set where S is not locally constant

M is locally qc-conformally flat. In fact, on any open set where ∇S 6= 0 the qc-conformal curvature W qc

defined in [IV1] will be seen to vanish, hence by [IV1, Theorem 1.2] the qc manifold is locally qc-conformally

flat. The final step involves a generalization of [IMV, Theorem 1.1], which follows from the proof of [IMV,

Theorem 1.1], allowing the explicit description of all qc-Einstein structures defined on open sets of the

quaternionic Heisenberg group that are point-wise qc-conformal to the standard flat qc structure on the

quaternionic Heisenberg groups. It turns out that all such qc structures are of constant qc-scalar curvature,

which allows the completion of the proof of Theorem 1.1.

Lemma 3.1. On a seven dimensional qc-Einstein manifold we have the following formula for the horizontal

curvature of the Biquard connection on any open set where the qc-scalar curvature is not constant,

(3.1) R(Z,X, Y, V ) = 2S
[
g(Z, V )g(X,Y )− g(X,V )g(Z, Y )

]
.

Proof of Lemma 3.1. Our first goal is to show the next identity,

(3.2) R(Z,X, Y,∇S) = 2S
[
dS(Z)g(X,Y )− dS(X)g(Z, Y )

]
,

where ∇S is the horizontal gradient of S defined by g(X,∇S) = dS(X). For this, recall the general formula

proven in [IV1, Theorem 3.1, (3.6)],

(3.3) R(ξi, ξj , X, Y ) = (∇ξiU)(IjX,Y )− (∇ξjU)(IiX,Y )

− 1

4

[
(∇ξiT 0)(IjX,Y ) + (∇ξiT 0)(X, IjY )

]
+

1

4

[
(∇ξjT 0)(IiX,Y ) + (∇ξjT 0)(X, IiY )

]
− (∇Xρk)(IiY, ξi)−

Scal

8n(n+ 2)
T (ξk, X, Y )− T (ξj , X, ea)T (ξi, ea, Y ) + T (ξj , ea, Y )T (ξi, X, ea)

where the Ricci two forms are given by, cf. [IV1, Theorem 3.1],

(3.4)

6(2n+ 1)ρs(ξs, X) = (2n+ 1)X(S) +
1

2

[
(∇eaT 0)(ea, X)− 3(∇eaT 0)(Isea, IsX)

]
− 2(∇eaU)(ea, X),

6(2n+ 1)ρi(ξj , IkX) = −6(2n+ 1)ρi(ξk, IjX) = (2n− 1)(2n+ 1)X(S)

− 1

2

[
(4n+ 1)(∇eaT 0)(ea, X) + 3(∇eaT 0)(Iiea, IiX)

]
− 4(n+ 1)(∇eaU)(ea, X).

In our case T 0 = U = 0, hence (3.3) takes the form

(3.5) R(ξi, ξj , X, Y ) = −(∇Xρk)(IiY, ξi).

Letting n = 1 and T 0 = U = 0 in (3.4) it follows ρi(IkY, ξj) = − 1
6dS(Y ), which after a cyclic permutation

of ijk and a substitution of Y with IkY yields

(3.6) ρk(IiY, ξi) = −1

6
dS(IkY ).

Taking the covariant derivative of (3.6) with respect to the Biquard connection and applying (2.7) we

calculate

(3.7) (∇Xρk)(IiY, ξi)− αi(X)ρj(IiY, ξi) + αj(X)ρi(IiY, ξi)− αj(X)ρk(IkY, ξi) + αk(X)ρk(IjY, ξi)

− αj(X)ρk(IiY, ξk) + αk(X)ρk(IiY, ξj) = −1

6
∇2S(X, IkY ) +

1

6
αi(X)dS(IjY )− 1

6
αj(X)dS(IiY ).

Applying (3.4) with n = 1 and T 0 = U = 0 we see that the terms involving the connection 1-forms cancel

and (3.7) turns into

(3.8) (∇Xρk)(IiY, ξi) = −1

6
∇2S(X, IkY ).
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A substitution of (3.8) in (3.5) taking into account the skew-symmetry of R(ξi, ξj , X, Y ) with respect to X

and Y allows us to conclude the following identity for the horizontal Hession of S

(3.9) ∇2S(X, IsY ) +∇2S(Y, IsX) = 0.

The trace of (3.9) together with the Ricci identity yield

0 = 2∇2S(ea, Ikea) = ∇2S(ea, Ikea) − ∇2S(Ikea, ea) = −2

3∑
s=1

ωs(ea, Ikea)dS(ξs) = −8dS(ξk),

i.e., we have

(3.10) dS(ξs) = 0, ∇2S(ξs, ξt) = 0.

The equality (3.10) shows that S is constant along the vertical directions, dS(ξs) = 0, hence, in view of (2.7),

the second equation of (3.10) holds as well. In addition, we have ∇2S(X, ξs) = XdS(ξs) − dS(∇Xξs) = 0

since ∇ preserves the vertical directions due to (2.7). Moreover, the Ricci identity

∇2S(ξs, X)−∇2S(X, ξs) = dS(T (ξs, X)) = 0

together with the above equality leads to

(3.11) ∇2S(ξs, X) = ∇2S(X, ξs) = 0.

Next, we show that the horizontal Hessian of S is symmetric. Indeed, we have the identity

(3.12) ∇2S(X,Y )−∇2S(Y,X) = d2S(X,Y )− dS(T (X,Y )) = −2

3∑
s=1

ωs(X,Y )dS(ξs) = 0

where we applied (3.10) to conclude the last equality. Now, (3.9) and (3.12) imply

(3.13) ∇2S(X,Y )−∇2S(IsX, IsY ) = 0

which shows that the [−1]-component of the horizontal Hessian vanishes. Hence, the horizontal Hessian of

S is proportional to the horizontal metric since n = 1, i.e.,

(3.14) ∇2S(X,Y ) =
∇2S(ea, ea)

4
g(X,Y ) = −4S

4
g(X,Y ),

where 4S = −∇2S(ea, ea) is the sub-Laplacian of S. We have the following Ricci identity of order three

(see e.g. [IPV]

(3.15) ∇3S(X,Y, Z)−∇3S(Y,X,Z) = −R(X,Y, Z,∇S)− 2

3∑
s=1

ωs(X,Y )∇2S(ξs, Z).

Applying (3.11) we conclude from (3.15) that

(3.16) ∇3S(X,Y, Z)−∇3S(Y,X,Z) = −R(X,Y, Z,∇S).

Combining (3.16) and (3.14) we obtain the next expression for the curvature

(3.17) R(Z,X, Y,∇S) =
∇3S(X, ea, ea)

4
g(Z, Y )− ∇

3S(Z, ea, ea)

4
g(X,Y ).

The trace of (3.17) together with the first equality of (2.6) computed for n = 1, T 0 = 0 and U = 0 yield

Ric(Z,∇S) = 6SdS(Z) = −3

4
∇3S(Z, ea, ea).

Thus, we have

(3.18) ∇3S(Z, ea, ea) = −8SdS(Z).

Now, a substitution of (3.18) in (3.17) gives (3.2).

Turning to the general formula (3.1) we note that the horizontal curvature of the Biquard connection in

the qc-Einstein case satisfies the identity

(3.19) R(X,Y, Z, V ) +R(Y,Z,X, V ) +R(Z,X, Y, V ) = 0.
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This follows from the first Bianchi identity since (∇T )(X,Y ) = 0 and T (T (X,Y ), Z) =∑3
s=1 2ωs(X,Y )T (ξs, Z) = 0. Thus, the horizontal curvature has the algebraic properties of the Riemannian

curvature, namely it is skew-symmetric with respect to the first and the last pairs and satisfies the Bianchi

identity (3.19). Therefore it also has the fourth Riemannian curvature property,

(3.20) R(X,Y, Z, V ) = R(Z, V,X, Y ).

The equalities (3.2) and (3.20) imply

0 = R(Ii∇S, Ij∇S, Ik∇S,∇S) = R(Ik∇S,∇S, Ii∇S, Ij∇S),(3.21)

0 = R(Ii∇S, Ij∇S, Ij∇S,∇S) = R(Ij∇S,∇S, Ii∇S, Ij∇S).

Moreover, using (2.9) and the second equality in (2.6) with T 0 = U = 0 we calculate

(3.22) R(Ij∇S, Ii∇S, Ii∇S, Ik∇S)−R(Ij∇S, Ii∇S,∇S, Ij∇S)

= −2ρj(Ij∇S, Ii∇S)ωk(∇S, Ik∇S) + 2ρk(Ij∇S, Ii∇S)ωj(∇S, Ik∇S) = 0

The second equality of (3.21) together with (3.22) yields

(3.23) R(Ij∇S, Ii∇S, Ii∇S, Ik∇S) = 0.

Finally, (3.2), (3.21), (3.22), (3.23) together with (2.9) and (2.6) imply for any s 6= t the identities

(3.24) R(Is∇S, It∇S, It∇S, Is∇S) = R(Is∇S,∇S,∇S, Is∇S) = 2S|∇S|4.

In a neighborhood of any point where ∇S 6= 0 the quadruple { ∇S|∇S| ,
I1∇S
|∇S| ,

I2∇S
|∇S| ,

I3∇S
|∇S| } is an orthonormal

basis of H, hence after a small calculation taking into account (3.21), (3.23) and (3.24), we see that for any

orthonormal basis {Z,X, Y, V } of H we have

(3.25) R(Z,X, Y, V ) = 0, R(Z,X,Z, V )−R(Y,X, Y, V ) = 0,

where the second equation follows from the first using the orthogonal basis {Z + Y,X,Z − Y, V }. For the

”sectional curvature” K(Z,X) = R(Z,X,Z,X) we have then the identities

K(Z,X) +K(Y, V )−K(Z, V )−K(Y,X) = R(Z,X,Z,X) +R(Y, V, Y, V )−R(Z, V, Z, V )−R(Y,X, Y,X)

= R(Y,X, Y,X) +R(Y,X, Y, V )−R(Y, V, Y,X) +R(Y, V, Y, V )−R(Z,X,Z,X)−R(Z,X,Z, V )

+R(Z, V, Z,X)−R(Z, V, Z, V ) = R(Z,X + V,Z,X − V )−R(Y,X + V, Y,X − V ) = 0

using (3.20) in the second equality and (3.25) in the last equality. Now, [Kul, Theorem 3], shows that the

Riemannian conformal tensor of the horizontal curvature R vanishes. In view of Ric = 6S · g, we conclude

that the curvature restricted to the horizontal space is given by (3.1) which proves the lemma. �

Proof of Theorem 1.1. Let M be a qc-Einstein manifold of dimension seven with a local R3-valued 1-form

η = (η1, η2, η3) defining the given qc structure. Suppose the qc-scalar curvature is not a locally constant

function. We shall reach a contradiction by showing that M is locally qc conformally flat, which will be

shown to imply that the qc-scalar curvature is locally constant.

To prove the first claim we prove that if the qc-scalar curvature is not locally constant then the qc-

conformal curvature W qc of [IV1] vanishes on the open set where ∇S 6= 0. For this we recall the formula

for the qc-conformal curvature W qc given in [IV1, Prposition 4.2] which with the assumptions T 0 = U = 0

simplifies to

(3.26) W qc(Z,X, Y, V ) =
1

4

[
R(Z,X, Y, V ) +

3∑
s=1

R(IsZ, IsX,Y, V )
]

+
S

2

[
g(Z, Y )g(X,V )− g(Z, V )g(X,Y ) +

3∑
s=1

(
ωs(Z, Y )ωs(X,V )− ωs(Z, V )ωs(X,Y )

)]
.

A substitution of (3.1) in (3.26) shows W qc = 0 on ∇S 6= 0.

Now, [IV1, Theorem 1.2] shows that the open set ∇S 6= 0 is locally qc-conformaly flat, i.e., every point

p, ∇S(p) 6= 0 has an open neighborhood O and a qc-conformal transformation F : O → G (H) to the
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quaternionic Heisenberg group G (H) equipped with the standard flat qc structure Θ̃. Thus, Θ
def
= F ∗η =

1
2µ Θ̃ for some positive smooth function µ defined on the open set F (O). By its definition Θ is a qc-Einstein

structure, hence the proof of [IMV, Theorem 1.1] shows that, with a small change of the parameters in [IMV,

Theorem 1.1], µ is given by

(3.27) µ(q, ω) = c0

[(
σ + |q + q0|2

)2
+ |ω + ωo + 2 Im qo q̄|2

]
,

for some fixed (qo, ωo) ∈ G (H) and constants c0 > 0 and σ ∈ R. A small calculation using (3.27) and the

Yamabe equation [IMV, (5.8)] shows ScalΘ = 128n(n+ 2)c0σ = const. Since η is qc-conformal to Θ via the

map F , it follows that Scalη = const on O, which is a contradiction. �

An immediate consequence of Theorem 1.1 and [IMV, Theorem 4.9] is the next

Corollary 3.2. The vertical space V of a seven dimensional qc-Einstein manifold is integrable.

We note that the integrability of the vertical distribution of a 4n + 3 dimensional qc-Einstein manifold

in the case n > 1, and when S = const and n = 1 was proven earlier in [IMV, Theorem 4.9]. Thus, in any

dimension, the vertical distribution V of a qc-Einstein manifold is integrable and we have

(3.28) ρs(X,Y ) = −Sωs(X,Y ), Ric(ξs, X) = ρs(X, ξt) = 0, [ξs, ξt] ∈ V.

Another Corollary of Theorem 1.1 and the analysis of the corresponding results in the case n > 1[IV2] is

Corollary 3.3. If M is a seven dimensional qc-Einstein manifold then dΩ = 0, where Ω is the fundamental

4-form defining the quaternionic structure on the horizontal distribution.

For details, we refer to the proof of the case n > 1 in [IV3, Theorem 4.4.2. c)] which is valid in the case

n = 1, as well, due to Theorem 1.1 and Corollary 3.2. We note that the converse to Corollary 3.3 holds true

when n > 1 , see [IV2], while in the case n = 1 a counterexample for the implication was found in [CFS].

4. A characterization based on vertical flat connection

In this section we show that for any qc manifold M there is a natural linear connection ∇̃, defined on the

vertical distribution V , the latter considered as a vector bundle over M . This connection has the remarkable

property of being flat exactly when M is qc-Einstein, see Theorem 4.3, and will turn out to be a useful

technical tool for the geometry of qc Einstein manifolds in the sequel.

We start by introducing a cross-product on the vertical space V . Recall that h (2.2) is the natural extension

of the horizontal metric g to a Riemannian metric on M , which induces an inner product, denoted by 〈., .〉
here, and an orientation on the vertical distribution V . This allows us to introduce also the cross-product

operation × : Λ2(V ) → V in the standard way: ξi × ξj = ξk, ξi × ξi = 0. The cross product operation is

parallel with respect to any connection on V preserving the inner product 〈., .〉, in particular, with respect

to the restriction of the Biquard connection ∇ to V . For any ξ, ξ′, ξ′′ ∈ V , we have the standard relations

(4.1)
(ξ × ξ′)× ξ′′ = 〈ξ, ξ′′〉ξ′ − 〈ξ′, ξ′′〉ξ, ξ × (ξ′ × ξ′′) = (ξ × ξ′)× ξ′′ + ξ′ × (ξ × ξ′′),

∇A(ξ × ξ′) = (∇Aξ)× ξ′ + ξ × (∇Aξ′).

In the next lemma we collect some formulas, which will be used in the proof of Theorem 4.3.

Lemma 4.1. The curvature R and torsion T of the Biquard connection ∇ of a qc-Einstein manifold satisfy

the following identities

(4.2) T (ξ, ξ′) = −Sξ × ξ′, T (ξ,X) = 0, R(A,B)ξ = −2S

3∑
s=1

ωs(A,B)ξs × ξ.

Proof. The first two identities follow directly from (2.4) and the integrability of the vertical distribution

V , see Corollary 3.2 and the paragraph after it. The last identity follows from (3.3), (2.5) and (3.28). In

particular, the three Ricci 2-forms ρs(A,B) vanish unless A and B are both horizontal, in which case we

have (3.28). The proof is complete. �
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Definition 4.2. We define a connection ∇̃ on the vertical vector bundle V of a qc manifold M as follows

(4.3) ∇̃Xξ := ∇Xξ, ∇̃ξξ′ := ∇ξξ′ + S(ξ × ξ′).

The main result of this section is

Theorem 4.3. A qc manifold M is qc-Einstein iff the connection ∇̃ is flat, R∇̃ = 0.

Proof. We start by relating the curvature R∇̃ of the connection ∇̃, cf. (4.3), to the curvature of the Biquard

connection ∇. To this end, let L = (∇̃ −∇) ∈ Γ(M,T ∗M ⊗ V ∗ ⊗ V ) be the difference between the two

connections on V . Then (4.3) implies LAξ = L(A, ξ) = S[A]V × ξ, where [A]V is the orthogonal projection

of A on V . The curvature tensor R∇̃ of the new connection ∇̃ is given in terms of R and L by the well

known general formula

(4.4) R∇̃(A,B)ξ = R(A,B)ξ +
(
∇AL

)
(B, ξ)−

(
∇BL

)
(A, ξ) +

[
LA, LB

]
ξ + L

(
T (A,B), ξ

)
.

We proceed by considering each of the terms on the right hand side of (4.4) separately. We have, cf. (2.8),

(4.5) R(A,B)ξ =

(
3∑
s=1

2ρs(A,B)ξs

)
× ξ.

Using (4.1) and the obvious identity ∇A
(

[B]V
)

=
[
∇AB

]
V

we obtain

(4.6)
(
∇AL

)
(B, ξ) = ∇A

(
L(B, ξ)

)
− L

(
∇AB, ξ

)
− L

(
B,∇Aξ

)
= dS(A)[B]V × ξ.

From (4.1) it follows

(4.7)
[
LA, LB

]
ξ =

(
LA × LB

)
× ξ = S2

(
[A]V × [B]V

)
× ξ.

The torsion identities (2.4) imply

(4.8) L
(
T (A,B

)
, ξ) = S

[
T (A,B)

]
V
× ξ = S

(
− S[A]V × [B]V + 2

3∑
s=1

ωs(A,B)ξs

)
× ξ.

Finally, a substitution of (4.5), (4.6), (4.7) and (4.8) in the right hand side of formula (4.4) gives the

equivalent relation

R∇̃(A,B)ξ =

(
3∑
s=1

2ρs(A,B)ξs + dS(A)[B]V − dS(B)[A]V + 2S

3∑
s=1

ωs(A,B)ξs

)
× ξ.(4.9)

We are now ready to complete the proof of the theorem. Suppose first that M is a qc-Einstein manifold. By

Theorem 1.1 when n = 1 and [IMV] when n > 1 it follows that the qc-scalar curvature is constant. Lemma

4.1 implies that
3∑
s=1

ρs(A,B)ξs = −S
3∑
s=1

ωs(A,B)ξs.

Since dS = 0, (4.9) gives R∇̃ = 0, and thus ∇̃ is a flat connection on V .

Conversely, if ∇̃ is flat, then by applying (4.9) with (A,B) = (X,Y ) we obtain ρs(X,Y ) = −Sωs(X,Y ).

Applying the second formula of (2.6) we derive T 0 = 0 and U = 0 by comparing the Sp(n)Sp(1) components

of the obtained equalities. Thus, (M,η) is a qc Einstein manifold taking into account the first formula in

(2.6). �

5. The structure equations of a qc Einstein manifold

Let M be a qc manifold with normalized qc-scalar curvature S. From [IV2, Proposition 3.1] we have the

structure equations

(5.1)

dηi = 2ωi − ηj ∧ αk + ηk ∧ αj − Sηj ∧ ηk,

dωi = ωj ∧ (αk + Sηk)− ωk ∧ (αj + Sηj)− ρk ∧ ηj + ρj ∧ ηk +
1

2
dS ∧ ηj ∧ ηk,
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where (η1, η2, η3) is a local R3-valued 1-form defining the given qc-structure and αs are the corresponding

connection 1-forms. If, locally, there is an R3-valued 1-form η = (η1, η2, η3) defining the given qc-stricture,

such that, we have the structure equations dηi = 2ωi + Sηj ∧ ηk with S = const or the connection 1-forms

vanish on the horizontal space, αi|H = 0, then M is a qc-Einstein manifold of normalized qc-scalar curvature

S, see [IV2, Proposition 3.1] and [IMV, Lemma 4.18].

Conversely, on a qc-Einstein manifold of nowhere vanishing qc-scalar curvature the structure equations

(5.2) hold true by [IV2] and [IV3, Section 4.4.2], taking into account Corollary 6.1. The purpose of this

section is to give the corresponding results in the case Scal = 0. The proof of Theorem 5.1 which is based

on the connection defined in Section 4 rather than the cone over a 3-Sasakian manifold employed in [IV2]

and [IV3, Theorem 4.4.4] works also in the case Scal 6= 0, thus in the statement of the Theorem we will not

make an explicit note of the condition Scal = 0.

Theorem 5.1. Let M be a qc manifold. The following conditions are equivalent:

a) M is a qc Einstein manifold;

b) locally, the given qc-structure is defined by 1-form (η1, η2, η3) such that for some constant S we have

(5.2) dηi = 2ωi + Sηj ∧ ηk;

c) locally, the given qc-structure is defined by 1-form (η1, η2, η3) such that the corresponding connection

1-forms vanish on H, αs = −Sηs.

Proof. As explained above, the implication c) ⇒ a) is known, while b) ⇒ c) is an immediate consequence

of (5.1). Thus, only the implication a) implies b) needs to be proven, see also the paragraph preceding the

Theorem.

Assume a) holds. We will show that the structure equation in b) are satisfied. By Theorem 1.1 when n = 1

and [IMV] when n > 1 it follows M is of constant qc-scalar curvature. Let V be the vertical distribution.

Clearly, the connection ∇̃ defined in Theorem 4.3 is a flat metric connection on V with respect to the

inner product 〈., .〉. Therefore the bundle V admits a local orthonormal oriented frame K1,K2,K3 which is

∇̃-parallel, i.e., we have

(5.3) ∇AKi = −S[A]V ×Ki.

There exists a triple of local 1-forms (η1, η2, η3) on M vanishing on H, which satisfy ηs(Kt) = δst. We

rewrite (5.3) as

(5.4) ∇AKi = S
(
ηj(A)Kk − ηk(A)Kj

)
.

Since K1,K2,K3 is an orthonormal and oriented frame of V , we can complete the dual triple (η1, η2, η3) to

one defining the given qc-structure. By differentiating the equalities ηs(Ki) = δsi we obtain using (5.4) that

0 =
(
∇Aηs

)
(Ki) + ηs

(
∇AKi

)
=
(
∇Aηs

)
(Ki) + ηs

(
S
(
ηj(A)Kk − ηk(A)Kj

))
=
(
∇Aηs

)
(Ki) + S

(
ηj(A)δsk − ηk(A)δsj

)
.

Hence,
(
∇Aηi

)
(B) = Sηj∧ηk(A,B), which together with Lemma 4.1 allows the computation of the exterior

derivative of ηi,

(5.5) dηi(A,B) =
(
∇Aηi

)
(B)−

(
∇Bηi

)
(A) + ηi

(
T (A,B)

)
= Sηj ∧ ηk(A,B)− Sηj ∧ ηk(B,A)

+ ηi

(
− S[A]V × [B]V + 2

∑
s

ωs(A,B)ξs

)
=
(

2ωi + Sηj ∧ ηk
)

(A,B),

which proves (5.2). Now αs|H = 0 shows that Ks satisfy (2.1) and therefore Ks are the Reeb vector fields,

which completes the proof of the Theorem. �

We finish the section with another condition characterizing qc-Einstein manifolds, which is useful in some

calculations.
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Proposition 5.2. Let M be a qc manifold. M is qc-Einstein iff for some η compatible with the given

qc-structure

(5.6) dωs(X,Y, Z) = 0.

Proof. If (5.2) are satisfied, then we have 0 = d(dηi) = d
(

2ωi + Sηj ∧ ηk
)
, which implies (5.6).

Conversely, suppose the given qc-structure is locally defined by 1-form (η1, η2, η3) which satisfies (5.6).

By (5.1) we have
(
ωj ∧ αk − ωk ∧ αj

)
|H = 0, which after a contraction with the endomorphism Ii gives

0 = (ωj ∧ αk − ωk ∧ αj)(X, ea, Iiea) = ωj(X, ea)αk(Iiea) + ωj(ea, Iiea)αk(X) + ωj(Iiea, X)αk(ea)

− ωk(X, ea)αj(Iiea)− ωk(ea, Iiea)αj(X)− ωk(Iiea, X)αj(ea) = 2ωj(X, ea)αk(Iiea)− 2ωk(X, ea)αj(Iiea)

= 2αk(IkX) + 2αj(IjX).

Since the above calculation is valid for any even permutation (i, j, k), it follows that αs(X) = 0 which

completes the proof of the Proposition. �

6. The related Riemannian geometry

A (4n + 3)-dimensional (pseudo) Riemannian manifold (M, g) is 3-Sasakian if the cone metric is a (pseudo)

hyper-Kähler metric [BG, BGN]. We note explicitly that in this paper 3-Sasakian manifolds are to be

understood in the wider sense of positive (the usual terminology) or negative 3-Sasakian structures, cf. [IV2,

Section 2] and [IV3, Section 4.4.1] where the ”negative” 3-Sasakian term was adopted in the case when the

Riemannian cone is hyper-Kähler of signature (4n, 4). Every 3-Sasakian manifold is a qc-Einstein manifold

of constant qc-scalar curvature, [Biq1], [IMV] and [IV2]. As well known, a positive 3-Sasakian manifold

is Einstein with a positive Riemannian scalar curvature [Kas] and, if complete, it is compact with finite

fundamental group due to Myers theorem. The negative 3-Sasakian structures are Einstein with respect

to the corresponding pseudo-Riemannian metric of signature (4n, 3) [Kas, Tan]. In this case, by a simple

change of signature, we obtain a positive definite nS metric on M , [Tan, Jel, Kon].

By [IMV, Theorem 1.3] when Scal > 0, and [IV2] and [IV3, Theorem 4.4.4] when Scal < 0 a qc-Einstein

of dimension at least eleven is locally qc-homothetic to a 3-Sasakian structure. The corresponding result in

the seven dimensional case was proven with the extra assumption that the qc-scalar is constant. Thanks to

Theorem 1.1 the additional hypothesis is redundant, hence we have the following

Corollary 6.1. A seven dimensional qc-Einstein manifold of nowhere vanishing qc-scalar curvature is locally

qc-homothetic to a 3-Sasakian structure.

There are many known examples of positive 3-Sasakian manifold, see [BG] and references therein for a

nice overview of 3-Sasakian spaces. On the other hand, certian SO(3)-bundles over quaternionic Kähler

manifolds with negative scalar curvature constructed in [Kon, Tan, Jel] are examples of negative 3-Sasakian

manifolds. Other, explicit examples of negative 3-Sasakian manifolds are constructed also in [AFIV].

Complete and regular 3-Sasakian manifolds, resp. nS-structures, fiber over a quaternionic Kähler man-

ifold with positive, resp. negative, scalar curvature [Is, BGN, Tan, Jel] with fiber SO(3). Conversely, a

quaternionic Kähler manifold with positive (resp. negative) scalar curvature has a canonical SO(3) principal

bundle, the total space of which admits a natural 3-Sasakian (resp. nS-) structure [Is, Kon, Tan, BGN, Jel].

In this section we describe the properties of qc-Einstein structures of zero qc-scalar curvature, which

complement the well known results in the 3-Sasakian case. A common feature of the Scal = 0 and Scal 6= 0

cases is the existence of Killing vector fields.

Lemma 6.2. Let M be a qc-Einstein manifold with zero qc-scalar curvature. If (η1, η2, η3) is an R3-valued

local 1-form defining the qc structure as in (5.2), then the corresponding Reeb vector fields ξ1, ξ2, ξ3 are

Killing vector fields for the Riemannian metric h, cf. (2.2).

Proof. By Theorem 5.1 c) we have αi = 0, hence ∇Aξi = 0 while Lemma 4.1 yields T (ξs, ξt) = 0. Therefore,

[ξs, ξt] = ∇ξsξt − ∇ξtξs − T (ξs, ξt) = 0, which implies for any i, s, t ∈ {1, 2, 3} we have (Lξih)(ξs, ξt) =
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−h([ξi, ξs], ξt)− h(ξs, [ξi, ξt]) = 0. Furthermore, using dηj(ξi, X) = αk(X) = 0 we compute

(Lξsh)(ξt, X) = −h(ξt, [ξs, X]) = dηt(ξs, X) = 0.

Finally, (2.3) gives (Lξih)(X,Y ) = (Lξig)(X,Y ) = 2T 0
ξi

(X,Y ) = 0, which completes the proof. �

6.1. The quotient space of a qc Einstein manifold with S = 0. The total space of an R3-bundle over

a hyper-Kähler manifold with closed and locally exact Kähler forms 2ωs = dηs with connection 1-forms ηs
is a qc-structure determined by the three 1-forms ηs, which is qc-Einstein of vanishing qc-scalar curvature,

see [IV2]. In fact, we characterize qc-Einstein manifold with vanishing qc-scalar curvature as R3-bundle over

hyper-Kähler manifold.

Let M be a qc-Einstein manifold. As observed in Corollary 3.2 and the paragraph after it the vertical

distribution V is completely integrable hence defines a foliation on M . We recall, taking into account [Pal],

that the quotient space P = M/V is a manifold when the foliation is regular and the quotient topology is

Hausdorff.

If P is a manifold and all the leaves of V are compact, then by Ehresmann’s fibration theorem [Ehr, Pal]

it follows that Π : M → P is a locally trivial fibration and all the leaves are isomorphic. By [Pal], examples

of such foliations are given by regular foliations on compact manifolds. In the case of a qc-Einstein manifold

of non-vanishing qc-scalar curvature, the leaves of the foliation generated by V are Riemannian 3-manifold of

positive constant curvature. Hence, if the associated (pseudo) Riemannian metrics on M is complete, then

the leaves of the foliation are compact. On the other hand, in the case of vanishing qc-scalar curvature, the

leaves of the foliation are flat Riemannian manifolds that may not be compact as is, for example, the case

of the quaternionic Heisenberg group. We summarize the properties of the Reeb foliation on a qc-Einstein

manifold of vanishing qc-scalar curvature case in the following

Proposition 6.3. Let M be a qc-Einstein manifold with zero qc-scalar curvature.

a) If the vertical distribution V is regular and the space of leaves P = M/V with the quotient topology is

Hausdorff, then P is a locally hyper-Kähler manifold.

b) If the leaves of the foliation generated by V are compact then there exists an open dense subset Mo ⊂M
such that Po := Mo/V is a locally hyper-Kähler manifold.

Proof. We begin with the proof of a). By Theorem 5.1 we can assume, locally, the structure equations given

in Theorem 5.1. This, together with [IMV, Lemma 3.2 & Theorem 3.12] imply that the horizontal metric g,

see also (2.3), and the closed local fundamental 2-forms ωs, see (5.2) with S = 0, are projectable. The claim

of part a) follows from Hitchin’s lemma [Hit].

We turn to the proof of part b). Lemma 6.2 implies that, in particular, the Riemannian metric h on

M is bundle-like, i.e., for any two horizontal vector fields X and Y in the normalizer of V under the Lie

bracket, the equation ξh(X,Y ) = 0 holds for any vector field ξ in V. Since all the leaves of the vertical

foliation are assumed to be compact, we can apply [Mo, Proposition 3.7 ], which shows that P = M/V is

a 4n-dimensional orbifold. In particular P is a Hausdorff space. The regular points of any orbifold are an

open dens set. Thus, if we let Po to be the set of all regular points of P , then Po is an open dens subset

of P which is also a manifold. It follows that if Mo := Π−1(Po) then all the leaves of the restriction of the

vertical foliation to Mo are regular and hence the claim of b) follows. �

6.2. The Riemannian curvature. Let M be a qc-Einstein manifold. Note that, by applying an appro-

priate qc homothetic transformation, we can aways reduce a general qc-Einstein structure to one whose

normalized qc-scalar curvature S equals 0, 2 or -2. Consider the one-parameter family of (pseudo) Riemann-

ian metrics gλ, λ 6= 0 on M by letting hλ(A,B) := h(A,B) + (λ − 1)h|V . Let ∇λ be the Levi-Civita

connection of hλ. Note that hλ is a positive-definite metric when λ > 0 and has signature (4n, 3) when

λ < 0.

Let us recall that, if S = 2 and λ = 1 the Riemannian metric h = hλ is a 3-Sasakian metric on M . In

particular, it is an Einstein metric of positive Riemannian scalar curvature (4n + 2)(4n + 3) [Kas]. There

is also a second Einstein metric, the ”squashed” metric, in the family hλ when λ = 1/(2n+ 3), see [BG].

The case S = −2 is completely analogous. Here we have two distinct pseudo-Riemannian Einstein metrics
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corresponding to λ = −1 and λ = −1/(2n+ 3). The first one defines a negative 3-Sasaskian structure. On

the other hand, the metric hλ with λ = 1 (assuming S = −2) gives an nS structure on M . In [Tan], it was

shown that the Riemannian Ricci tensor of the latter has precisely two constant eigenvalues, −4n − 14 (of

multiplicity 4n) and 4n + 2 (of multiplicity 3), and that the Riemannian scalar curvature is the negative

constant −16n2 − 44n + 6. In particular, in this case, (M,hλ) is an example of an A-manifold in the

terminology of [Gr].

The following proposition addresses the case S = 0. However, the argument is valid for all values of S and

λ 6= 0. In particular, we obtain new proofs of the above mentioned results concerning the cases of positive

and negative 3-Sasakian structures.

Proposition 6.4. Let M be a qc-Einstein manifold with normalized qc-scalar curvature S. For a vector

field A, let [A]V denote the orthogonal projection of A to the vertical space V .

The (pseudo) Riemannian Ricci and scalar curvatures of hλ are given by

Ricλ(A,B) =
(

4nλ+
S2

2λ

)
hλ
(

[A]V , [B]V

)
+
(

2S(n+ 2)− 6λ
)
hλ
(

[A]H , [B]H

)
(6.1)

Scalλ =
1

λ

(
− 12nλ2 + 8n(n+ 2)Sλ+

3

2
S2
)
.(6.2)

In particular, if S = 0, the Ricci curvature of each metric in the family hλ has exactly two different constant

eigenvalues of multiplicities 4n and 3 respectively.

Proof. We start by noting that the difference L = ∇λ −∇ between the Levi-Cevita connection ∇λ and the

Biquard connection ∇ is given by

(6.3) L(A,B) ≡ ∇λAB −∇AB =
S

2
[A]V × [B]V +

3∑
s=1

{
− ωs(A,B)ξs + ληs(A)IsB + ληs(B)IsA

}
.

Indeed, if we let DAB := ∇AB + L(A,B), then hλ(L(A,B), C) is skew symmetric in B and C, hence the

connection D preserves the metric hλ. Furthermore, the torsion tensor of D vanishes since hλ(L(A,B), C)−
hλ(L(B,A), C) = −hλ(T (A,B), C). The latter follows from the formula for T in Lemma 4.1. Thus D is the

Levi-Civita connection of hλ.

The well known formula for the difference Rλ − R between the curvature tensors of two connections ∇λ
and ∇ gives

(6.4) Rλ(A,B)C − R(A,B)C = (∇AL)(B,C) − (∇BL)(A,C) + [LA, LB ]C + L(T (A,B), C).

From (6.3), it follows L is∇-parallel. Thus, in the right hand side of the above formula only the last two terms

are non-zero. Furthermore, we have that [LA, LB ]C = L(A,L(B,C)) − L(B,L(A,C)). A straightforward

computation gives

(6.5) Rλ(A,B)C = R(A,B)C + hλ
(

[B]V , [C]V

)(S2

4λ
[A]V + λ[A]H

)
− hλ

(
[A]V , [C]V

)(S2

4λ
[B]V + λ[B]H

)
+

∑
(i,j,k)−cyclic

{ (S
2
− λ
)
ηk(A)ωj(B,C) −

(S
2
− λ
)
ηk(B)ωj(A,C)

−
(S

2
− λ
)
ηj(A)ωk(B,C) +

(S
2
− λ
)
ηj(B)ωk(A,C) + (S + 2λ)ηk(C)ωj(A,B)

− (S + 2λ)ηj(C)ωk(A,B) − ληi(B)hλ
(

[A]H , [C]H

)
+ ληi(A)hλ

(
[B]H , [C]H

) }
ξi

+
∑

(i,j,k)−cyclic

{ (λS
2
− λ2

)
ηj ∧ ηk(B,C)IiA−

(λS
2
− λ2

)
ηj ∧ ηk(A,C)IiB

− (λS − 2λ2)ηj ∧ ηk(A,B)IiC − λωi(B,C)IiA + λωi(A,C)IiB + 2λωi(A,B)IiC
}
.

After taking the trace with respect to A and D in equation (6.5), we obtain

Ricλ(B,C) = Ric
(

[B]H , [C]H

)
+
(

4nλ+
S2

2λ

)
hλ
(

[B]V , [C]V

)
− 6λhλ

(
[B]H , [C]H

)
.
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Since M is assumed to be qc Einstein, we have

Ric
(

[B]H , [C]H

)
=
Scal

4n
g
(

[B]H , [C]H

)
= 2(n+ 2)Shλ

(
[B]H , [C]H

)
,(6.6)

which yields (6.1). Taking one more trace in (6.1) gives the formula for the scalar curvature. �
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