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Abstract. A complete solution to the quaternionic contact Yamabe problem on the seven dimen-
sional sphere is given. Extremals for the Sobolev inequality on the seven dimensional Heisenberg

group are explicitly described and the best constant in the L2 Folland-Stein embedding theorem
is determined.
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1. Introduction

It is well known that the sphere at infinity of a any non-compact symmetric space M of rank one
carries a natural Carnot-Carathéodory structure, see [M, P]. A quaternionic contact (qc) structure,
[Biq1, Biq2], appears naturally as the conformal boundary at infinity of the quaternionic hyperbolic
space. In this paper, following Biquard, a quaternionic contact structure (qc structure) on a real
(4n+3)-dimensional manifold M is a codimension three distribution H locally given as the kernel
of a R3-valued one-form η = (η1, η2, η3), such that, the three two-forms dηi|H are the fundamental
forms of a quaternionic structure on H. This means that there exists a Riemannian metric g on
H and three local almost complex structures Ii on H satisfying the commutation relations of the
imaginary quaternions, I1I2I3 = −1, such that, dηi|H = 2g(Ii., .) . The 1-form η is determined
up to a conformal factor and the action of SO(3) on R3, and therefore H is equipped with a
conformal class [g] of Riemannian metrics and a 2-sphere bundle of almost complex structures, the
quaternionic bundle Q. The 2-sphere bundle of one forms determines uniquely the associated metric
and a conformal change of the metric is equivalent to a conformal change of the one forms. To every
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metric in the fixed conformal class one can associate a linear connection preserving the qc structure,
see [Biq1], which we shall call the Biquard connection.

If the first Pontrijagin class of M vanishes then the 2-sphere bundle of R3-valued 1-forms is trivial
[AK], i.e. there is a globally defined 3-contact form η that anihilates H, we denote the corresponding
QC manifold (M,η). In this case the 2-sphere of associated almost complex structures is also globally
defined on H.

Examples of QC manifolds are given in [Biq1, Biq2, IMV, D1]. In particular, any totally umbilic
hypersurface of a quaternionic Kähler or hyperKähler manifold carries such a structure [IMV]. A
basic example is provided by any 3-Sasakian manifold which can be defined as a (4n+3)-dimensional
Riemannian manifold whose Riemannian cone is a hyperKähler manifold. It was shown in [IMV]
that the torsion endomorphism of the Biquard connection is the obstruction for a given qc-structure
to be locally 3-Sasakian, up to a multiplication with a constant factor and a SO(3)-matrix.

For a fixed metric in the conformal class of metrics on the horizontal space one associates the
scalar curvature of the associated Biquard connection, called the qc-scalar curvature. Guided by the
real (Riemannian) and complex (CR) cases, the quaternionic contact Yamabe problem is: given a
compact QC manifold (M,η), find a conformal 3-contact form for which the qc-scalar curvature is
constant.

In the present paper we provide a solution of this problem on the seven dimensional sphere
equipped with its natural quaternionic contact structure. The spheres are important examples of
locally quternionic conformally flat qc structures characterized locally in [IV] with the vanishing of
a curvature-type tensor invariant and from the point of view of the Yamabe problem play a role
similar to their Riemannian and CR counterparts. The question reduces to the solvability of the
Yamabe equation (3.4). Taking the conformal factor in the form η̄ = u4/(Q−2)η, Q = 4n+ 6, turns
(3.4) into the equation

Lu ≡ 4
Q+ 2
Q− 2

4u− uScal = − u2∗−1 Scal,

where4 is the horizontal sub-Laplacian,4h = trg(∇dh), Scal and Scal are the qc-scalar curvatures
correspondingly of (M, η) and (M, η̄), and 2∗ = 2Q

Q−2 , with Q = 4n+6–the homogeneous dimension.
On a compact quaternionic contact manifold M with a fixed conformal class [η] the Yamabe equation
characterizes the non-negative extremals of the Yamabe functional defined by

Υ(u) =
∫
M

(
4
Q+ 2
Q− 2

|∇u|2 + Scalu2
)
dvg,

∫
M

u2∗ dvg = 1, u > 0.

Considering M equipped with a fixed qc structure, hence, a conformal class [η], the Yamabe constant
is defined as the infimum

λ(M) ≡ λ(M, [η]) = inf{Υ(u) :
∫
M

u2∗ dvg = 1, u > 0}.

Here dvg denotes the Riemannian volume form of the Riemannian metric on M extending in a
natural way the horizontal metric associated to η.

When the Yamabe constant λ(M) is less than that of the quaternionic sphere with its standard
qc structure the existence of solutions to the quaternionic contact Yamabe problem is shown in
[W], see also [JL1]. We consider the Yamabe problem on the standard unit (4n + 3)-dimensional
quaternionic sphere. The standard 3-Sasaki structure on the sphere is a qc-Einstein structure η̃
having constant qc-scalar curvature S̃cal = 16n(n + 2). Its images under conformal quaternionic
contact automorphism have again constant qc-scalar curvature. In [IMV] we conjectured that these
are the only solutions to the Yamabe problem on the quaternionic sphere. The purpose of this paper
is to prove this conjecture when the dimension is equal to seven, i.e., n = 1.

Theorem 1.1. Let η̃ = 1
2hη be a conformal deformation of the standard qc-structure η̃ on the

quaternionic unit sphere S7. If η has constant qc-scalar curvature, then up to a multiplicative
constant η is obtained from η̃ by a conformal quaternionic contact automorphism. In particular,
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λ(S7) = 48 (4π)1/5 and this minimum value is achieved only by η̃ and its images under conformal
quaternionic contact automorphisms.

In [IMV] a weaker result was shown, namely the conclusion holds (in all dimensions) provided
the vertical space of η is integrable. We recall the definition of conformal quaternionic contact
automorphism in Definition 2.1.

Another motivation for studying the Yamabe equation comes from its connection with the de-
termination of the norm and extremals in a relevant Sobolev-type embedding on the quaternionic
Heisenberg group G (H), [GV1] and [Va1] and [Va]. As it is well known, the Yamabe equation is
essentially the Euler-Lagrange equation of the extremals for the L2 case of such embedding results.
In the considered setting we have the following Theorem due to Folland and Stein [FSt].

Theorem 1.2 (Folland and Stein). Let Ω ⊂ G be an open set in a Carnot group G of homogeneous
dimension Q and Haar measure dH. For any 1 < p < Q there exists Sp = Sp(G) > 0 such that for
u ∈ C∞o (Ω)

(1.1)
(∫

Ω

|u|p
∗
dH(g)

)1/p∗

≤ Sp

(∫
Ω

|Xu|p dH(g)
)1/p

,

where |Xu| =
∑m
j=1 |Xju|2 with X1, . . . , Xm denoting a basis of the first layer of G and p∗ = pQ

Q−p .

Let Sp be the best constant in the Folland-Stein inequality, i.e., the smallest constant for which (1.1)
holds. The second result of this paper is the following Theorem, which determines the extremals
and the best constant in Theorem 1.2 when p = 2 for the case of the seven dimensional quaternionic
Heisenberg group G (H). As a manifold G (H) = H× Im H with the group law given by

(q′, ω′) = (qo, ωo) ◦ (q, ω) = (qo + q, ω + ωo + 2 Im qo q̄),

where q, qo ∈ H and ω, ωo ∈ Im H. The standard quaternionic contact(qc) structure is defined by
the left-invariant quaternionic contact form Θ̃ = (Θ̃1, Θ̃2, Θ̃3) = 1

2 (dω − q′ · dq̄′ + dq′ · q̄′),
where . denotes the quaternion multiplication.

Theorem 1.3. Let G (H) = H × Im H be the seven dimensional quaternionic Heisenberg group.
The best constant in the L2 Folland-Stein embedding theorem is

S2 =
2
√

3
π3/5

An extremal is given by the function

v =
211
√

3
π3/5

[(1 + |q|2)2 + |ω|2]−2, (q, ω) ∈ G (H)

Any other non-negative extremal is obtained from v by translations (5.10) and dilations (5.11).

Our result confirms the Conjecture made after [GV1, Theorem 1.1]. In [GV1, Theorem 1.6] the
above Theorem is proved in all dimensions, but with the assumption of partial-symmetry. Here with
a completely different method from [GV1] we show that the symmetry assumption is superfluous
in the case of the first quaternionic Heisenberg group. On the other hand, in [IMV] we proved
Theorem 1.1 in all dimensions, but with the ’extra’ assumption of the integrability of the vertical
distribution. In the present paper we remove the ’extra’ integrability assumption in dimension
seven. A key step in present result is the establishment of a suitable divergence formula, Theorem
4.4, see [JL2] for the CR case and [Ob], [LP] for the Riemannian case. With the help of this
divergence formula we show that the ’new’ structure is also qc-Einstein, thus we reduce the Yamabe
problem on the 7-sphere from solving the non-linear Yamabe equation to a geometrical system of
differential equations describing the qc-Einstein structures conformal to the standard one. Invoking
the (quaternionic) Cayley transform, which is a contact conformal diffeomorphism, [IMV], we turn
the question to the corresponding system on the quaternionic Heisenberg group. On the latter all
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global solutions are explicitly described in [IMV] and this allows us to conclude the proof of our
results.

Remark 1.4. With the left invariant basis of Theorem 1.3 the Heisenberg group G (H) is not a
group of Heisenberg type. If we consider G (H) as a group of Heisenberg type then the best constant
in the L2 Folland-Stein embedding theorem is, cf. [GV1, Theorem 1.6],

S2 =
151/10

π2/5 2
√

2
.

and an extremal is given by the function

F (q, ω) = γ
[
(1 + |q|2)2 + 16|ω|2)

]−2
, (q, ω) ∈ G (H)

where
γ = 32π−17/50 21/5 152/5.

Organization of the paper. The paper uses some results from [IMV]. In order to make the
present paper self-contained, in Section 2 we give a review of the notion of a quaternionic contact
structure and collect formulas and results from [IMV] that will be used in the subsequent sections.

Section 3 and 4 are of technical nature. In the former we find some transformations formulas for
relevant tensors, while in the latter we prove certain divergence formulas. The key result is Theorem
4.4, with the help of which in the last Section we prove the main Theorems.

Convention 1.5. We use the following conventions:
• {e1, . . . , e4n} denotes an orthonormal basis of the horizontal space H.
• The summation convention over repeated vectors from the basis {e1, . . . , e4n} will be used.

For example, for a (0,4)-tensor P , the formula k = P (eb, ea, ea, eb) means

k =
4n∑

a,b=1

P (eb, ea, ea, eb).

• The triple (i, j, k) denotes any cyclic permutation of (1, 2, 3).

Acknowledgements S.Ivanov is visiting Max-Plank-Institut für Mathematics, Bonn. S.I. thanks
MPIM, Bonn for providing the support and an excellent research environment during the final stages
of the paper. S.I. is a Senior Associate to the Abdus Salam ICTP. I.Minchev is a member of the
Junior Research Group ”Special Geometries in Mathematical Physics” founded by the Volkswagen
Foundation. The authors would like to thank The National Academies for the financial support and
University of California, Riverside and University of Sofia for hosting the respective visits of the
authors.

The authors would like to thank the referee for remarks making the exposition clearer and
spotting several typos in the paper.

2. Quaternionic contact manifolds

In this section we will briefly review the basic notions of quaternionic contact geometry and recall
some results from [Biq1] and [IMV].

For the purposes of this paper, a quaternionic contact (QC) manifold (M, g,Q) is a 4n + 3
dimensional manifold M with a codimension three distribution H equipped with a metric g and an
Sp(n)Sp(1) structure, i.e., we have

i) a 2-sphere bundle Q overM of almost complex structures, such that, we have Q = {aI1+bI2+
cI3 : a2+b2+c2 = 1}, where the almost complex structures Is : H → H, I2

s = −1, s =
1, 2, 3, satisfy the commutation relations of the imaginary quaternions I1I2 = −I2I1 = I3;

ii) H is the kernel of a 1-form η = (η1, η2, η3) with values in R3 and the following compatibility
condition holds

2g(IsX,Y ) = dηs(X,Y ), s = 1, 2, 3, X, Y ∈ H.
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Correspondingly, given a quaternionic contact manifold we shall denote with η any associated
contact form. The associated contact form is determined up to an SO(3)-action, namely if Ψ ∈ SO(3)
with smooth functions as entries then Ψη is again a contact form satisfying the above compatibility
condition (rotating also the almost complex structures) . On the other hand, if we consider the
conformal class [g], the associated contact forms are determined up to a multiplication with a positive
function µ and an SO(3)-action, namely if Ψ ∈ SO(3) then µΨη is a contact form associated with
a metric in the conformal class [g].

We shall denote with (M,η) a QC manifold with a fixed globally defined contact form. A special
phenomena here, noted in [Biq1], is that the 3-contact form η determines the quaternionic structure
and the metric on the horizontal bundle in a unique way.

A QC manifold (M, ḡ,Q) is called conformal to (M, g,Q) if ḡ ∈ [g]. In that case, if η̄ is a
corresponding associated one-form with complex structures Īs, s = 1, 2, 3, we have η̄ = µΨ η for
some Ψ ∈ SO(3) with smooth functions as entries and a positive function µ. In particular, starting
with a QC manifold (M,η) and defining η̄ = µ η we obtain a QC manifold (M, η̄) conformal to the
original one.

Definition 2.1. A diffeomorphism φ of a QC manifold (M, [g],Q) is called a conformal quaternionic
contact automorphism (conformal qc-automorphism) if φ preserves the QC structure, i.e.

φ∗η = µΨ · η,
for some positive smooth function µ and some matrix Ψ ∈ SO(3) with smooth functions as entries
and η = (η1, η2, η3)t is a local 1-form considered as a column vector of three one forms as entries.

Any endomorphism Ψ of H can be decomposed with respect to the quaternionic structure (Q, g)
uniquely into Sp(n)-invariant parts as follows Ψ = Ψ+++ + Ψ+−− + Ψ−+− + Ψ−−+, where
Ψ+++ commutes with all three Ii, Ψ+−− commutes with I1 and anti-commutes with the other two
and etc. The two Sp(n)Sp(1)-invariant components are given by

(2.1) Ψ[3] = Ψ+++, Ψ[−1] = Ψ+−− + Ψ−+− + Ψ−−+.

Denoting the corresponding (0,2) tensor via g by the same letter one sees that the Sp(n)Sp(1)-
invariant components are the projections on the eigenspaces of the Casimir operator

(2.2) † = I1 ⊗ I1 + I2 ⊗ I2 + I3 ⊗ I3
corresponding, respectively, to the eigenvalues 3 and −1, see [CSal]. If n = 1 then the space of
symmetric endomorphisms commuting with all Ii, i = 1, 2, 3 is 1-dimensional, i.e. the [3]-component
of any symmetric endomorphism Ψ on H is proportional to the identity, Ψ[3] = tr (Ψ)

4 Id|H .
On a quaternionic contact manifold there exists a canonical connection defined in [Biq1] when

the dimension (4n+ 3) > 7, and in [D] in the 7-dimensional case.

Theorem 2.2. [Biq1] Let (M, g,Q) be a quaternionic contact manifold of dimension 4n + 3 > 7
and a fixed metric g on H in the conformal class [g]. Then there exists a unique connection ∇ with
torsion T on M4n+3 and a unique supplementary subspace V to H in TM , such that:

i) ∇ preserves the decomposition H ⊕ V and the metric g;
ii) for X,Y ∈ H, one has T (X,Y ) = −[X,Y ]|V ;

iii) ∇ preserves the Sp(n)Sp(1)-structure on H, i.e., ∇g = 0 and ∇Q ⊂ Q;
iv) for ξ ∈ V , the endomorphism T (ξ, .)|H of H lies in (sp(n)⊕ sp(1))⊥ ⊂ gl(4n);
v) the connection on V is induced by the natural identification ϕ of V with the subspace sp(1) of

the endomorphisms of H, i.e. ∇ϕ = 0.

We shall call the above connection the Biquard connection. Biquard [Biq1] also described the
supplementary subspace V explicitly, namely, locally V is generated by vector fields {ξ1, ξ2, ξ3},
such that

(2.3)
ηs(ξk) = δsk, (ξsydηs)|H = 0,

(ξsydηk)|H = −(ξkydηs)|H .
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The vector fields ξ1, ξ2, ξ3 are called Reeb vector fields or fundamental vector fields.
If the dimension of M is seven, the conditions (2.3) do not always hold. Duchemin shows in

[D] that if we assume, in addition, the existence of Reeb vector fields as in (2.3), then Theorem 2.2
holds. Henceforth, by a qc structure in dimension 7 we shall mean a qc structure satisfying (2.3).

Notice that equations (2.3) are invariant under the natural SO(3) action. Using the triple of Reeb
vector fields we extend g to a metric on M by requiring span{ξ1, ξ2, ξ3} = V ⊥ H and g(ξs, ξk) = δsk.
The extended metric does not depend on the action of SO(3) on V , but it changes in an obvious
manner if η is multiplied by a conformal factor. Clearly, the Biquard connection preserves the
extended metric on TM,∇g = 0. We shall also extend the quaternionic structure by setting Is|V = 0.
The fundamental 2-forms ωi, i = 1, 2, 3 of the quaternionic structure Q are defined by

(2.4) 2ωi|H = dηi|H , ξyωi = 0, ξ ∈ V.

Due to (2.4), the torsion restricted to H has the form

(2.5) T (X,Y ) = −[X,Y ]|V = 2
3∑
s=1

ωs(X,Y )ξs, X, Y ∈ H.

The properties of the Biquard connection are encoded in the properties of the torsion endomor-
phism Tξ = T (ξ, .) : H → H, ξ ∈ V . Decomposing the endomorphism Tξ ∈ (sp(n) + sp(1))⊥ into
its symmetric part T 0

ξ and skew-symmetric part bξ, Tξ = T 0
ξ + bξ, we summarize the description of

the torsion due to O. Biquard in the following Proposition.

Proposition 2.3. [Biq1] The torsion Tξ is completely trace-free,

tr Tξ = g (Tξ(ea), ea) = 0, tr Tξ ◦ I = g (Tξ(ea), Iea) = 0, I ∈ Q,

where e1 . . . e4n is an orthonormal basis of H. Decomposing the torsion into symmetric and anti-
symmetric parts, Tξi

= T 0
ξi

+ bξi
, i = 1, 2, 3, we have: the symmetric part of the torsion has the

properties

T 0
ξi
Ii = −IiT 0

ξi

I2(T 0
ξ2)+−− = I1(T 0

ξ1)−+−, I3(T 0
ξ3)−+− = I2(T 0

ξ2)−−+, I1(T 0
ξ1)−−+ = I3(T 0

ξ3)+−−;

the skew-symmetric part can be represented in the following way

bξi
= Iiu,

where u is a traceless symmetric (1,1)-tensor on H which commutes with I1, I2, I3.
If n = 1 then the tensor u vanishes identically, u = 0 and the torsion is a symmetric tensor,

Tξ = T 0
ξ .

The covariant derivative of the quaternionic contact structure with respect to the Biquard con-
nection and the covariant derivative of the distribution V are given by

(2.6) ∇Ii = −αj ⊗ Ik + αk ⊗ Ij , ∇ξi = −αj ⊗ ξk + αk ⊗ ξj ,

where the sp(1)-connection 1-forms αs on H are given by [Biq1]

αi(X) = dηk(ξj , X) = −dηj(ξk, X), X ∈ H, ξi ∈ V,(2.7)

while the sp(1)-connection 1-forms αs on the vertical space V are calculated in [IMV]

(2.8) αi(ξs) = dηs(ξj , ξk)− δis

(
Scal

16n(n+ 2)
+

1
2

( dη1(ξ2, ξ3) + dη2(ξ3, ξ1) + dη3(ξ1, ξ2))
)
,

where s ∈ {1, 2, 3}. The vanishing of the sp(1)-connection 1-forms on H is equivalent to the vanishing
of the torsion endomorphism of the Biquard connection, see [IMV].
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2.1. The qc-Einstein condition and Bianchi identities. We explain briefly the consequences
of the Bianchi identities and the notion of qc-Einstein manifold introduced in [IMV] since it plays a
crucial role in solving the Yamabe equation in the quaternionic seven dimensional sphere. For more
details see [IMV].

Let R = [∇,∇]−∇[ , ] be the curvature tensor of ∇. The Ricci tensor and the scalar curvature
Scal of the Biquard connection, called qc-Ricci tensor and qc-scalar curvature, respectively, are
defined by

Ric(X,Y ) = g(R(ea, X)Y, ea), X, Y ∈ H, Scal = Ric(ea, ea) = g(R(eb, ea)ea, eb).

According to [Biq1] the Ricci tensor restricted to H is a symmetric tensor. If the trace-free part of the
qc-Ricci tensor is zero we call the quaternionic structure a qc-Einstein manifold [IMV]. It is shown
in [IMV] that the qc-Ricci tensor is completely determined by the components of the torsion. First,
recall the notion of the Sp(n)Sp(1)-invariant trace-free symmetric 2-tensors T 0, U on H introduced
in [IMV] by

T 0(X,Y )
def
= g((T 0

ξ1I1 + T 0
ξ2I2 + T 0

ξ3I3)X,Y ), U(X,Y )
def
= g(uX, Y ), X, Y ∈ H.

The tensor T 0 belongs to [−1]-eigenspace while U is in the [3]-eigenspace of the operator † given by
(2.2), i.e., they have the properties:

T 0(X,Y ) + T 0(I1X, I1Y ) + T 0(I2X, I2Y ) + T 0(I3X, I3Y ) = 0,(2.9)

3U(X,Y )− U(I1X, I1Y )− U(I2X, I2Y )− U(I3X, I3Y ) = 0.(2.10)

Theorem 1.3, Theorem 3.12 and Corollary 3.14 in [IMV] imply:

Theorem 2.4. [IMV] Let (M4n+3, g,Q) be a quaternionic contact (4n + 3)-dimensional manifold,
n > 1 . For any X,Y ∈ H the qc-Ricci tensor and the qc-scalar curvature satisfy

Ric(X,Y ) = (2n+ 2)T 0(X,Y ) + (4n+ 10)U(X,Y ) +
Scal

4n
g(X,Y )

Scal = −8n(n+ 2)g(T (ξ1, ξ2), ξ3)

For n = 1 the above formulas hold with U = 0.
In particular, the qc-Einstein condition is equivalent to the vanishing of the torsion endomorphism

of the Biquard connection. If Scal 6= 0 the latter holds exactly when the qc-structure is 3-Sasakian
up to a multiplication by a constant and an SO(3)-matrix with smooth entries.

For the last part of the above Theorem, we remind that a (4n+3)-dimensional Riemannian man-
ifold (M, g) is called 3-Sasakian if the cone metric gN = t2g + dt2 on N = M ×R+ is a hyperkähler
metric, namely, it has holonomy contained in Sp(n+ 1).

The Ricci 2-forms ρs, s = 1, 2, 3 of a quaternionic contact structure are defined by

4n ρs(B,C) = g(R(B,C)ea, Isea), B, C ∈ Γ(TM).

For ease of reference, in the following Theorem we summarize the properties of the Ricci 2-forms,
the scalar curvature and the torsion evaluated on the vertical space established in Lemma 3.11,
Corollary 3.14 Proposition 4.3 and Proposition 4.4 of [IMV] .

Theorem 2.5. [IMV] The Ricci 2-forms satisfy

ρ1(X,Y ) = 2g((T 0
ξ2)−−+I3X,Y )− 2g(I1uX, Y )− Scal

8n(n+ 2)
ω1(X,Y ),

ρ2(X,Y ) = 2g((T 0
ξ3)+−−I1X,Y )− 2g(I2uX, Y )− Scal

8n(n+ 2)
ω2(X,Y ),(2.11)

ρ3(X,Y ) = 2g((T 0
ξ1)−+−I2X,Y )− 2g(I3uX, Y )− Scal

8n(n+ 2)
ω3(X,Y ).
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ρi(X, ξi) = − X(Scal)
32n(n+ 2)

+
1
2

(ωi([ξj , ξk], X)− ωj([ξk, ξi], X)− ωk([ξi, ξj ], X)),

ρi(X, ξj) = ωj([ξj , ξk], X), ρi(X, ξk) = ωk([ξj , ξk], X),(2.12)

ρi(IkX, ξj) = −ρi(IjX, ξk) = g(T (ξj , ξk), IiX) = ωi([ξj , ξk], X),

ρi(ξi, ξj) + ρk(ξk, ξj) =
1

8n(n+ 2)
ξj(Scal).(2.13)

The torsion of the Biquard connection restricted to V satisfies the equality

(2.14) T (ξi, ξj) = − Scal

8n(n+ 2)
ξk − [ξi, ξj ]H ,

where [ξi, ξj ]H denotes the projection on H parallel to the vertical space V .

We also recall the definition of the Sp(n)Sp(1)-invariant vector field A, which appeared naturally
in the Bianchi identities investigated in [IMV]

A = I1[ξ2, ξ3] + I2[ξ3, ξ1] + I3[ξ1, ξ2].

We shall denote with the same letter the corresponding horizontal one-form, i.e.,

A(X) = g(I1[ξ2, ξ3] + I2[ξ3, ξ1] + I3[ξ1, ξ2], X).

The horizontal divergence ∇∗P of a (0,2)-tensor field P on M with respect to Biquard connection
is defined to be the (0,1)-tensor field

∇∗P (.) = (∇ea
P )(ea, .).

Then we conclude from [IMV, Theorem 4.8], that

Theorem 2.6. [IMV] On a (4n+3)-dimensional QC manifold with constant qc-scalar curvature we
have the formulas

(2.15) ∇∗T 0 = (n+ 2)A, ∇∗U =
1− n

2
A.

3. Conformal transformations

Note that a conformal quaternionic contact transformation between two quaternionic contact
manifold is a diffeomorphism Φ which satisfies

Φ∗η = µ Ψ · η,

for some positive smooth function µ and some matrix Ψ ∈ SO(3) with smooth functions as entries
and η is an R3-valued one form, η = (η1, η2, η3)t is a column vector with entries one-forms. The
Biquard connection does not change under rotations, i.e., the Biquard connection of Ψ · η and η
coincide. Hence, studying conformal transformations we may consider only transformations Φ∗η =
µ η.

Let h be a positive smooth function on a QC manifold (M,η). Let η̄ = 1
2hη be a conformal

deformation of the QC structure η. We will denote the objects related to η̄ by over-lining the same
object corresponding to η. Thus, dη̄ = − 1

2h2 dh∧η + 1
2h dη and ḡ = 1

2hg. The new triple {ξ̄1, ξ̄2, ξ̄3}
is determined by the conditions defining the Reeb vector fields. We have

(3.1) ξ̄s = 2h ξs + Is∇h, s = 1, 2, 3,

where ∇h is the horizontal gradient defined by g(∇h,X) = dh(X), X ∈ H.
The components of the torsion tensor transform according to the following formulas from [IMV,
Section 5]

T
0
(X,Y ) = T 0(X,Y ) + h−1 [∇dh][sym][−1](X,Y ),(3.2)

Ū(X,Y ) = U(X,Y ) + (2h)−1[ ∇dh− 2h−1dh⊗ dh][3][0](X,Y ),(3.3)
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where the symmetric part is given by, cf. (3.9),

[ ∇dh][sym](X,Y ) = ∇dh(X,Y ) +
3∑
s=1

dh(ξs)ωs(X,Y )

and [3][0] indicates the trace free part of the [3]-component of the corresponding tensor. In addition,
the qc-scalar curvature changes according to the formula [Biq1]

(3.4) Scal = 2h (Scal) − 8(n+ 2)2 h−1|∇h|2 + 8(n+ 2)4h.

The following vectors will be important for our considerations,

(3.5) Ai = Ii[ξj , ξk], hence A = A1 + A2 + A3.

Lemma 3.1. Let h be a positive smooth function on a QC manifold (M, g,Q) with constant qc-
scalar curvature Scal = 16n(n+ 2) and η̄ = 1

2h η a conformal deformation of the qc structure η. If
η̄ is a 3-Sasakian structure, then we have the formulas

(3.6) A1(X) = −1
2
h−2dh(X) − 1

2
h−3|∇h|2dh(X)

− 1
2
h−1

(
∇dh(I2X, ξ2) + ∇dh(I3X, ξ3)

)
+

1
2
h−2

(
dh(ξ2) dh(I2X) + dh(ξ3) dh(I3X)

)
+

1
4
h−2

(
∇dh(I2X, I2∇h) + ∇dh(I3X, I3∇h)

)
.

The expressions for A2 and A3 can be obtained from the above formula by a cyclic permutation of
(1, 2, 3). Thus, we have also

A(X) = −3
2
h−2dh(X) − 3

2
h−3|∇h|2dh(X)

− h−1
3∑
s=1

∇dh(IsX, ξs) + h−2
3∑
s=1

dh(ξs) dh(IsX) +
1
2
h−2

3∑
s=1

∇dh(IsX, Is∇h).

Proof. First we calculate the sp (1)-connection 1-forms of the Biquard connection ∇. For a 3-
Sasaki structure we have dη̄i(ξ̄j , ξ̄k) = 2, ξ̄iydη̄i = 0, the non-zero sp(1)-connection 1-forms are
ᾱi(ξ̄i) = −2, i = 1, 2, 3, and the qc-scalar curvature Scal = 16n(n + 2) (see [Example 4.12,[IMV]]).
Then (3.1), (2.7), and (2.8) yield

(3.7)
2dηi(ξj , ξk) = 2h−1 + h−2‖dh‖2, αi(X) = −h−1dh(IiX),

αi(ξj) = −h−1dh(ξk) = −αj(ξi), 4αi(ξi) = −4 − 2h−1 − h−2‖dh‖2.

From the 3-Sasakian assumption the commutators are [ξ̄i, ξ̄j ] = −2ξ̄k. Thus, for X ∈ H taking
also into account (3.1) we have

g([ξ̄1, ξ̄2], I3X) = −2 g(ξ̄3, I3X) = −2 g(2h ξ3 + I3∇h, I3X) = −2 dh (X).

Therefore, using again (3.1), we obtain

(3.8) − 2 dh(X) = g([ξ̄1, ξ̄2], I3X) = g
(

[2hξ1 + I1∇h, 2hξ2 + I2∇h], I3X
)

= −4h2A3(X) + 2hg( [ξ1, I2∇h], I3X) + 2hg( [I1∇h, ξ2], I3X)

+ g( [I1∇h, I2∇h], I3X).

The last three terms are transformed as follows. The first equals

g ( [ξ1, I2∇h], I3X) = g ( (∇ξ1 I2)∇h + I2∇ξ1 ∇h, I3X) − g (T (ξ1, I2∇h), I3X)

= −α3(ξ1) dh(I2X) + α1(ξ1) dh(X) − ∇dh (ξ1, I1X) − g (T (ξ1, I2∇h), I3X),
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where we use (2.6) and the fact that ∇ preserves the splitting H ⊕ V . The second term is

g ( [I1∇h, ξ2], I3X) = α2(ξ2) dh(X) + α3(ξ2) dh(I1X) − ∇dh (ξ2, I2X)

− g (T (I1∇h, ξ2), I3X),

and finally

g ( [I1∇h, I2∇h], I3X) = −α3(I1∇h) dh(I2X) + α1(I1∇h) dh(X) − ∇dh (I1∇h, I1X)

+ α2(I2∇h) dh(X) + α3(I2∇h) dh(I1X) − ∇dh (I2∇h, I2X).

Next we apply (3.7) to the last three equalities, then substitute their sum into (3.8), after which we
use the commutation relations

(3.9)
∇dh (X,Y )−∇dh (Y,X) = −dh(T (X,Y )) = −2

3∑
s=1

ωs(X,Y ) dh(ξs),

∇dh (X, ξ)−∇dh (ξ,X) = −dh(T (X, ξ)), X, Y ∈ H, ξ ∈ V.

The result is the following identity

(3.10) 4h2A3(X) = (−4h + h−1‖∇h‖2) dh(X)

− 2h
[
∇dh (I1X, ξ1) + ∇dh (I2X, ξ2)

]
−
[
∇dh (I1X, I1∇h)) + ∇dh (I2X, I2∇h)

]
+ 2

[
dh(ξ1) dh(I1X) + dh(ξ2) dh(I2X) + 2 dh(ξ3) dh(I3X)

]
+ 2h

[
T (ξ1, I1X,∇h) + T (ξ2, I2X,∇h) − T (ξ1, I2X, I3∇h) + T (ξ2, I1X, I3∇h)

]
,

where T (ξ,X, Y ) = g(TξX,Y ) for a vertical vector ξ and horizontal vectors X and Y . With the help
of Proposition 2.3 we decompose the torsions into symmetric and anti-symmetric part Tξi

= T 0
ξi

+IiU ,
i = 1, 2, 3, and then express the symmetric parts of the torsion terms in the form T 0

ξ1
= (T 0

ξ1
)−−+ +

(T 0
ξ1

)−+−, T 0
ξ2

= (T 0
ξ2

)−−+ + (T 0
ξ2

)+−−. Hence, using T 0−−+
= 2(T 0

ξ2
)+−−I2 = 2(T 0

ξ1
)−+−I1 etc.,

which follows again from Proposition 2.3, the sum of the torsion terms in (3.10) can be seen to equal
2T 0−−+

(X, ∇h) − 4U(X,∇h). This allows us to rewrite (3.10) in the form

(3.11) 4A3(X) = (−4h−1 + h−3‖∇h‖2) dh(X)− 2h−1
[
∇dh (I1X, ξ1) + ∇dh (I2X, ξ2)

]
+ 2h−2

[
dh(ξ1) dh(I1X) + dh(ξ2) dh(I2X) + 2 dh(ξ3) dh(I3X)

]
− h−2

[
∇dh (I1X, I1∇h) + ∇dh (I2X, I2∇h)

]
+ 4h−1

[
(T 0−−+

(∇h,X) − 2U(∇h,X)
]
.

Using (3.2) the T 0−−+
component of the torsion can be expressed by h as follows, see (2.1) and (2.9),

4T 0−−+
(∇h,X) = T 0(∇h,X) − T 0(I1∇h, I1X) − T 0(I2∇h, I2X) + T 0(I3∇h, I3X)

= −h−1
{

[∇dh][−1](∇h,X)−[∇dh][−1](I1∇h, I1X)−[∇dh][−1](I2∇h, I2X)+[∇dh][−1](I3∇h, I3X)
}

− h−1
3∑
s=1

{
dh(ξs)

[
g(Is∇h,X) − g(IsI1∇h, I1X)− g(IsI2∇h, I2X) + g(IsI3∇h, I3X)

]}
= −h−1

{
∇dh (∇h,X) − ∇dh (I1∇h, I1X) − ∇dh (I2∇h, I2X) + ∇dh (I3∇h, I3X)

}
+ 4h−1 dh(ξ3) dh(I3X).

Invoking equation (3.9) we can put ∇h in second place in the Hessian terms, thus, proving the
formula

(3.12) 4T 0−−+
(∇h,X) = − 4h−1 dh(ξ3) dh(I3X)

− h−1
{
∇dh (X,∇h) − ∇dh (I1X, I1∇h) − ∇dh (I2X, I2∇h) + ∇dh (I3X, I3∇h)

}
.
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On the other hand, (2.10), (3.3) and the Yamabe equation (3.4) give

(3.13) 8U(∇h,X) = −h−1
{
∇dh (∇h,X) +

3∑
s=1

∇dh (Is∇h, IsX)

− 2h−1‖∇h‖2 dh(X) − 4h
n

dh(X) + 2h−1 ‖∇h‖2

n
dh(X)

}
= −h−1

{
∇dh (∇h,X) +

3∑
s=1

∇dh (Is∇h, IsX)
}

− h−1
{
−2h−1‖∇h‖2 dh(X) − 2n− 4nh+ (n+ 2)h−1‖∇h‖2

n
dh(X) + 2h−1 ‖∇h‖2

n
dh(X)

}
= −h−1

{
∇dh (X,∇h) +

3∑
s=1

∇dh (IsX, Is∇h)
}
− h−1

(
−3h−1‖∇h‖2 − 2 + 4h

)
dh(X).

Substituting the last two formulas in (3.11) gives A3 in the form of (3.6) written for A1, cf. the
paragraph after (3.6). �

4. Divergence formulas

We shall need the divergences of various vector/forms through the almost complex structures,
so we start with a general formula valid for any horizontal vector/form A. Let {e1, . . . , e4n} be an
orthonormal basis of H. The divergence of I1A is

∇∗(I1A) ≡ (∇ea
(I1A))(ea) = −(∇ea

A)(I1ea) − A((∇ea
I1)ea),

recalling I1A(X) = −A(I1X).
We say that an orthonormal frame

{e1, e2 = I1e1, e3 = I2e1, e4 = I3e1, . . . , e4n = I3e4n−3, ξ1, ξ2, ξ3}
is a qc-normal frame (at a point) if the connection 1-forms of the Biquard connection vanish (at that
point). Lemma 4.5 in [IMV] asserts that a qc-normal frame exists at each point of a QC manifold.
With respect to a qc-normal frame the above divergence reduces to

∇∗(I1A) = −(∇ea
A)(I1ea).

Lemma 4.1. Suppose (M,η,Q) is a quaternionic contact manifold with constant qc-scalar curvature.
For any function h we have the following formulas

∇∗
( 3∑
s=1

dh(ξs)IsAs
)

=
3∑
s=1

∇dh (Isea, ξs)As(ea)

∇∗
( 3∑
s=1

dh(ξs)IsA
)

=
3∑
s=1

∇dh (Isea, ξs)A(ea).

Proof. Using the identification of the 3-dimensional vector spaces spanned by {ξ1, ξ2, ξ3} and {I1, I2, I3}
with R3, the restriction of the action of Sp(n)Sp(1) to this spaces can be identified with the action
of the group SO(3), i.e., ξi =

∑3
t=1 Ψitξ̄t and Ii =

∑3
t=1 ΨitĪt, i = 1, 2, 3 with Ψ ∈ SO(3). One

verifies easily that the vectors A,
∑3
s=1 dh(ξs)IsAs = −

∑3
i=1 dh(ξi)[ξj , ξk] and

∑3
s=1 dh(ξs)IsA are

Sp(n)Sp(1) invariant on H, for example Ā = (detΨ)A. Thus, it is sufficient to compute their di-
vergences in a qc-normal frame. To avoid the introduction of new variables, in this proof, we shall
assume that {e1, . . . , e4n, ξ1, ξ2, ξ3} is a qc-normal frame.

We apply (2.14). Using that the Biquard connection preserves the splitting of TM , we find

∇∗[ξ1, ξ2] = −g(∇ea

(
T (ξ1, ξ2)

)
, ea)

= −g( (∇eaT ) (ξ1, ξ2), ea) − g(T (∇eaξ1, ξ2), ea) − g(T (ξ1,∇eaξ2), ea).



12 STEFAN IVANOV, IVAN MINCHEV, AND DIMITER VASSILEV

From Bianchi’s identity we have (σA,B,C means a cyclic sum over (A,B,C))

g((∇ea
T )(ξ1, ξ2), ea) = −g((∇ξ1T )(ξ2, ea), ea) − g((∇ξ2T )(ea, ξ1), ea)

− g(σea,ξ1,ξ2

{
T (T (ea, ξ1), ξ2)

}
, ea) + g(σea,ξ1,ξ2

{
R(ea, ξ1)ξ2

}
, ea)

= −g(T (T (ea, ξ1), ξ2), ea) − g(T (T (ξ1, ξ2), ea), ea) − g(T (T (ξ2, ea), ξ1), ea)

= g(T (T (ξ1, ea), ξ2), ea) − g(T (T (ξ2, ea), ξ1), ea) − g(T (T (ξ1, ξ2), ea), ea),

taking into account that as mappings on H the torsion tensors T (ξi, X) and the curvature tensor
R(ξ1, ξ2) are traceless, so g((∇ξ1T )(ξ2, ea), ea) and g(R(ξ1, ξ2)ea, ea) = 0, while the connection
preserves the splitting, to obtain the next to last line. The last term is equal to zero as

g(T (T (ξ1, ξ2), ea), ea) = g
(
T (− Scal

8n(n+ 2)
ξ3 − [ξ1, ξ2]H , ea), ea

)
= − Scal

8n(n+ 2)
g(T (ξ3, ea), ea) = 0,

taking into account that the torsion Tξ3 is traceless and T ([ξ1, ξ2]H , ea) is a vertical vector. On the
other hand,

g (T (Tξ1ea, ξ2), ea) − g (T (Tξ2ea, ξ1), ea)

= −
[
g(T (eb, ξ2), ea) g(T (ξ1, ea), eb) − g(T (eb, ξ1), ea) g(T (ξ2, ea), eb)

]
=
[
g(T (ξ2, eb), ea) g(T (ξ1, ea), eb) − g(T (ξ1, eb), ea) g(T (ξ2, ea), eb)

]
= 0.

The equalities ∇∗(I1A1) = ∇∗(I2A2) = 0 with respect to a qc-normal frame can be obtained
similarly. Hence, the first formula in Lemma 4.1 follows.

We are left with proving the second divergence formula. Since the scalar curvature is constant
(2.12) implies

(4.1) A(X) = −2
3∑
s=1

ρs(X, ξs).

Fix an s ∈ {1, 2, 3}. Working again in a qc-normal frame we have

(∇ea
A)(Isea) = −2

3∑
t=1

(∇ea
ρt)(Isea, ξt).

A calculation involving the expressions (2.11) and the properties of the torsion shows that

(4.2) tr (ρt ◦ Is) = − 1
2(n+ 2)

δst Scal.

The second Bianchi identity

0 = g((∇eaR)(Isea, ξt)eb, Iteb) + g((∇IseaR)(ξt, ea)eb, Iteb) + g((∇ξtR)(ea, Isea)eb, Iteb)

+ g(R(T (ea, Isea), ξt)eb, Iteb) + g(R(T (Isea, ξt), ea)eb, Iteb) + g(R(T (ξt, ea), Isea)eb, Iteb),

together with the constancy of the qc-scalar curvature and (4.2) show that the third term on the
right is zero and thus

3∑
t=1

{
2 (∇ea

ρt)(Isea, ξt) − 2 ρt(T (ξt, Isea), ea) + ρt(T (ea, Isea), ξt)
}

= 0.

Substituting (2.5) in the above equality we come to the equation

(4.3)
3∑
t=1

(∇eaρt)(Isea, ξt) =
3∑
t=1

ρt(T (ξt, Isea), ea)− 4n
3∑
t=1

ρt(ξs, ξt) = 0,
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where the vanishing of the second term follows from (2.13), while the vanishing of the first term is
seen as follows. Using the standard inner product on End(H)

g(C,B) = tr(B∗C) =
4n∑
a=1

g(C(ea), B(ea)),

where C,B ∈ End(H), {e1, ..., e4n} is a g-orthonormal basis of H, the definition of T 0
ξs

, the formulas
in Theorem 2.5 and Proposition 2.3 imply

3∑
s=1

ρs(T (ξs, I1ea), ea)

= g(ρ1, T
0
ξ1I1) + g(ρ2, T

0
ξ2I1) + g(ρ3, T

0
ξ3I1) − g(ρ1, u) − g(ρ2, I3u) + g(ρ3, I2u)

= g(ρ1, T
0
ξ1I1) + g(ρ2, T

0
ξ2I1) + g(ρ3, T

0
ξ3I1)

= g(2(T 0
ξ2)−−+I3 − 2I1u −

Scal

8n(n+ 2)
I1, T

0
ξ1I1)

+ g(2(T 0
ξ3)+−−I1 − 2I2u −

Scal

8n(n+ 2)
I2, T

0
ξ2I1)+ g(2(T 0

ξ1)−+−I2 − 2I3u −
Scal

8n(n+ 2)
I3, T

0
ξ3I1)

= −2g((T 0
ξ2)−−+I2, T

0
ξ1) + 2g((T 0

ξ3)+−−, T 0
ξ2) + 2g((T 0

ξ1)−+−I3, T
0
ξ3)

= 2g((T 0
ξ3)+−−, (T 0

ξ2)+−−) + 2g((T 0
ξ1)−+−, I3(T 0

ξ3)+−−)

= 2g(I2(T 0
ξ3)+−−, I2(T 0

ξ2)+−−) − 2g(I1(T 0
ξ1)−+−, I2(T 0

ξ3)+−−) = 0.

Renaming the almost complex structures shows that the same conclusion is true when we replace I1
with I2 or I3 in the above calculation.

Finally, the second formula in Lemma 4.1 follows from (4.1) and (4.3). �

We shall also need the following one-forms

(4.4)

D1(X) = −h−1T 0+−−
(X,∇h)

D2(X) = −h−1T 0−+−
(X,∇h)

D3(X) = −h−1T 0−−+
(X,∇h)

For simplicity, using the musical isomorphism, we will denote with D1, D2, D3 the corresponding
(horizontal) vector fields, for example g(D1, X) = D1(X) ∀X ∈ H. Finally, we set

(4.5) D = D1 + D2 + D3 = −h−1 T 0(X,∇h).

Lemma 4.2. Suppose (M,η) is a quaternionic contact manifold with constant qc-scalar curvature
Scal = 16n(n+ 2). Suppose η̄ = 1

2hη has vanishing [−1]-torsion component T
0

= 0. We have

D(X) =
1
4
h−2

(
3 ∇dh(X,∇h) −

3∑
s=1

∇dh(IsX, Is∇h)
)

+ h−2
3∑
s=1

dh(ξs) dh(IsX).

and the divergence of D satisfies

∇∗D = |T 0|2 − h−1g(dh,D) − h−1(n+ 2) g(dh,A).

Proof. a) The formula for D follows immediately from (3.2).
b) We work in a qc-normal frame. Since the scalar curvature is assumed to be constant we use

(2.15) to find

∇∗D = −h−1 dh(ea)D(ea) − h−1∇∗T 0(∇h) − h−1T 0(ea, eb) ∇dh(ea, eb)

= −h−1 dh(ea)D(ea) − h−1(n+ 2) dh(ea)A(ea) − g(T 0, h−1 ∇dh)

= |T 0|2 − h−1dh(ea)D(ea) − h−1(n+ 2) dh(ea)A(ea),
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using (3.2) in the last equality. �

Let us also consider the following one-forms (and corresponding vectors)

Fs(X) = −h−1 T 0(X, Is∇h), X ∈ H s = 1, 2, 3.

From the definition of F1 and (4.4) we find

F1(X) = −h−1T 0(X, I1∇h)

= −h−1T 0+−−
(X, I1∇h) − h−1T 0−+−

(X, I1∇h) − h−1T 0−−+
(X, I1∇h)

= h−1T 0+−−
(I1X,∇h) − h−1T 0−+−

(I1X,∇h) − h−1T 0−−+
(I1X,∇h)

= −D1(I1X) + D2(I1X) + D3(I1X).

Thus, the forms Fs can be expressed by the forms Ds as follows

(4.6)

F1(X) = −D1(I1X) + D2(I1X) + D3(I1X)

F2(X) = D1(I2X) − D2(I2X) + D3(I2X)

F3(X) = D1(I3X) + D2(I3X) − D3(I3X).

Lemma 4.3. Suppose (M,η) is a quaternionic contact manifold with constant qc-scalar curvature
Scal = 16n(n+ 2). Suppose η̄ = 1

2hη has vanishing [−1]-torsion component, T
0

= 0. We have

∇∗
( 3∑
s=1

dh(ξs)Fs
)

=
3∑
s=1

[
∇dh (Isea, ξs)Fs(Isea)

]
+ h−1

3∑
s=1

[
dh(ξs)dh(Isea)D(ea) + (n+ 2) dh(ξs)dh(Isea)A(ea)

]
.

Proof. We note that the vector
∑3
s=1 dh(ξs)Fs is an Sp(n)Sp(1) invariant vector, hence, we may

assume that {e1, . . . , e4n, ξ1, ξ2, ξ3} is a qc-normal frame. Since the scalar curvature is assumed to
be constant we can apply Theorem 2.6, thus ∇∗T 0 = (n + 2)A. Turning to the divergence, we
compute

(4.7) ∇∗
( 3∑
s=1

dh(ξs)Fs
)

=
3∑
s=1

[
∇dh (ea, ξs)Fs(ea)

]
−

3∑
s=1

h−1 dh(ξs)∇∗T 0(Is∇h)

+
3∑
s=1

[
h−2 dh(ξs) dh(ea)T 0(ea, Iseb) dh(eb) − h−1 dh(ξs)T 0(ea, Iseb) ∇dh (ea, eb)

]
=

3∑
s=1

[
∇dh (ea, ξs)Fs(ea)

]
−

3∑
s=1

h−1 dh(ξs)∇∗T 0(Is∇h)

+
3∑
s=1

[
h−1 dh(ξs) dh(Isea)D(ea)

]
=

3∑
s=1

[
∇dh (ea, ξs)Fs(ea) + h−1 dh(ξs) dh(Isea)D(ea) + h−1(n+ 2) dh(ξs) dh(Isea)A(ea)

]
,

using the symmetry of T 0 in the next to last equality and the fact T 0(ea, I1eb) ∇dh (ea, eb) = 0.
The latter can be seen, for example, by first using (3.2) and the formula for the symmetric part of
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∇dh given after (3.3) from which we have

T 0(ea, I1eb) ∇dh (ea, eb) = − h−1∇dh[sym][−1](ea, I1eb)
[
∇dh[sym](ea, eb)−

3∑
s=1

dh(ξs)ωs(ea, eb)
]

= − h−1∇dh[sym][−1](ea, I1eb)∇dh[sym][−1](ea, eb)− h−1∇dh[sym][−1](ea, I1eb)∇dh[sym][3](ea, eb)

+ h−1∇dh[sym][−1](ea, I1eb)
3∑
s=1

dh(ξs)ωs(ea, eb) = 0,

using the zero traces of the [-1]-component to justify the vanishing of the third term in the last
equality. Switching to the basis {Isea : a = 1, . . . , 4n} in the first term of the right-hand-side of
(4.7) completes the proof. �

At this point we restrict our considerations to the 7-dimensional case, i.e. n = 1. Following is
our main technical result. As mentioned in the introduction, we were motivated to seek a divergence
formula of this type based on the Riemannian and CR cases of the considered problem. The main
difficulty was to find a suitable vector field with non-negative divergence containing the norm of
the torsion. The fulfilment of this task was facilitated by the results of [IMV], which in particular
showed that similarly to the CR case, but unlike the Riemannian case, we were not able to achieve
a proof based purely on the Bianchi identities, see [IMV, Theorem 4.8].

Theorem 4.4. Suppose (M7, η) is a quaternionic contact structure conformal to a 3-Sasakian
structure (M7, η̄), η̃ = 1

2h η. If Scalη = Scalη̃ = 16n(n+ 2), then with f given by

f =
1
2

+ h +
1
4
h−1|∇h|2,

the following identity holds

∇∗
(
fD +

3∑
s=1

dh(ξs)Fs + 4
3∑
s=1

dh(ξs)IsAs −
10
3

3∑
s=1

dh(ξs) IsA
)

= f |T 0|2 + h 〈QV, V 〉.

Here, Q is a positive semi-definite matrix and V = (D1, D2, D3, A1, A2, A3) with As, Ds defined,
correspondingly, in (3.5) and (4.4).
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Proof. Using the formulas for the divergences ofD,
∑3
s=1 dh(ξs)Fs,

∑3
s=1 dh(ξs)IsAs and

∑3
s=1 dh(ξs) IsA

given correspondingly in Lemmas 4.2, 4.3 and 4.1 we have the identity (n = 1 here)

(4.8) ∇∗
(
fD +

3∑
s=1

dh(ξs)Fs + 4
3∑
s=1

dh(ξs)IsAs −
10
3

3∑
s=1

dh(ξs) IsA
)

=
(
dh(ea) − 1

4
h−2dh(ea)|∇h|2 +

1
2
h−1 ∇dh(ea,∇h)

)
D(ea)

+ f
(
|T 0|2 − h−1dh(ea)D(ea) − h−1(n+ 2) dh(ea)A(ea)

)
+

3∑
s=1

∇dh(Isea, ξs)Fs(Isea) + h−1
3∑
s=1

[
dh(ξs) dh(Isea)D(ea) + (n+ 2) dh(ξs) dh(Isea)A(ea)

]
+ 4

3∑
s=1

∇dh(Isea, ξs)As(ea) − 10
3

3∑
s=1

∇dh(Isea, ξs)A(ea)

=
(
dh(ea) − 1

4
h−2dh(ea)|∇h|2 +

1
2
h−1 ∇dh(ea,∇h)

) 3∑
t=1

Dt(ea)

+ f
(
|T 0|2 − h−1dh(ea)

)( 3∑
t=1

Dt(ea)
)
− fh−1(n+ 2) dh(ea)

( 3∑
t=1

At(ea)
)

+ ∇dh(I1ea, ξ1) (D1(ea) − D2(ea) − D3(ea)) + ∇dh(I2ea, ξ2) (−D1(ea) +D2(ea) − D3(ea))

+ ∇dh(I3ea, ξ3) (−D1(ea) − D2(ea) +D3(ea))

+ h−1
( 3∑
s=1

dh(ξs) dh(Isea)
) ( 3∑

t=1

Dt(ea)
)

+ h−1(n+ 2)
( 3∑
s=1

dh(ξs) dh(Isea)
) ( 3∑

t=1

At(ea)
)

+ 4
3∑
s=1

∇dh(Isea, ξs)As(ea) − 10
3
( 3∑
s=1

∇dh(Isea, ξs)
) ( 3∑

t=1

At(ea)
)
,

where the last equality uses (4.6) to express the vectors Fs by Ds, and the expansions of the vectors
A and D according to (3.5) and (4.5). Since the dimension of M is seven it follows U = Ū =
[ ∇dh− 2h−1dh⊗ dh][3][0] = 0. This, together with the Yamabe equation (3.4) , which when n = 1
becomes 4h = 2− 4h+ 3h−1|∇h|2, yield the formula, cf. (3.13),

(4.9) ∇dh (X,∇h) +
3∑
s=1

∇dh (IsX, Is∇h) −
(

2 − 4h + 3h−1|∇h|2
)
dh(X) = 0.

From equations (4.4) and (3.12) we have

D1(X) = h−2 dh(ξ1) dh(I1X) +
1
4
h−2

[
∇dh (X,∇h) + ∇dh (I1X, I1∇h)

− ∇dh (I2X, I2∇h) − ∇dh (I3X, I3∇h)
]
,

D2(X) = h−2 dh(ξ2) dh(I2X) +
1
4
h−2

[
∇dh (X,∇h) − ∇dh (I1X, I1∇h)

+ ∇dh (I2X, I2∇h) − ∇dh (I3X, I3∇h)
]
,

D3(X) = h−2 dh(ξ3) dh(I3X) +
1
4
h−2

[
∇dh(X,∇h)− ∇dh (I1X, I1∇h)

− ∇dh (I2X, I2∇h) + ∇dh (I3X, I3∇h)
]
.
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Expressing the first term in (4.9) by the rest and substituting with the result in the above equations
we come to

(4.10) Di(ea) =
1
4
h−2

(
2 − 4h + 3h−1|∇h|2

)
dh(ea) + h−2 dh(ξi) dh(Iiea)+

1
2
h−2 [− ∇dh (Ijea, Ij∇h) −∇dh (Ikea, Ik∇h)] .

At this point, by a purely algebraic calculation, using Lemma 3.1 and (4.10) we find:

22
3
A1 −

2
3
A2 −

2
3
A3 +

11
3
D1 −

1
3
D2 −

1
3
D3

= −3h−1

(
1 +

1
2
h−1dh(ea) +

1
4
h−2|∇h|2

)
dh(ea) + 3h−2

(
3∑
s=1

dh(ξs) dh(Isea)

)

+
2
3
h−1∇dh(I1ea, ξ1)− 10

3
h−1∇dh(I2ea, ξ2)− 10

3
h−1∇dh(I3ea, ξ3).

Similarly,

3A1 −A2 −A3 + 2D1 =
(
−2h−1 +

1
2
h−2 + h−3|∇h|2

)
dh(ea)− 1

2
h−2

3∑
s=1

∇dh(Isea, Is∇h)

+ h−1 ∇dh(I1ea, ξ1)− h−1 ∇dh(I2ea, ξ2)− h−1 ∇dh(I3ea, ξ3) + h−2
3∑
s=1

dh(ξs) dh(Isea).

On the other hand, the coefficient of A1(ea) in (4.8) is found to be, after setting n = 1,

h
[
− 3

(
1 +

1
2
h−1 +

1
4
h−2|∇h|2

)
h−1 dh(ea) + 3h−2

(
3∑
s=1

dh(ξs) dh(Isea)

)

+
2
3
h−1∇dh(I1ea, ξ1)− 10

3
h−1∇dh(I2ea, ξ2)− 10

3
h−1∇dh(I3ea, ξ3)

]
,

while the coefficient of D1(ea) in (4.8) is

(4.11) dh(ea) − 1
4
h−2dh(ea)|∇h|2 +

1
2
h−1 ∇dh(ea,∇h)− f h−1dh(ea)

+ ∇dh(I1ea, ξ1) − ∇dh(I2ea, ξ2)− ∇dh(I3ea, ξ3)D1(ea)

+ h−1
( 3∑
s=1

dh(ξs) dh(Isea)
)
.

Substituting ∇dh(ea,∇h) according to (4.9), i.e., ∇dh (ea,∇h) = −
∑3
s=1∇dh (Isea, Is∇h) +(

2 − 4h + 3h−1|∇h|2
)
dh(ea) and using the definition of f transforms the above expression into

dh(ea) − 1
4
h−2dh(ea)|∇h|2 −

(
1
2

+ h +
1
4
h−1|∇h|2

)
h−1dh(ea)

+
1
2
h−1

(
−

3∑
s=1

∇dh (Isea, Is∇h) +
(

2 − 4h + 3h−1|∇h|2
)
dh(ea)

)

+ ∇dh(I1ea, ξ1) − ∇dh(I2ea, ξ2)− ∇dh(I3ea, ξ3)D1(ea) + h−1

(
3∑
s=1

dh(ξs) dh(Isea)

)
.
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Simplifying the above expression shows that the coefficient of D1(ea) in (4.8) is(
−2 +

1
2
h−1 + h−2|∇h|2

)
dh(ea)− 1

2
h−1

(
3∑
s=1

∇dh (Isea, Is∇h)

)

+ ∇dh(I1ea, ξ1) − ∇dh(I2ea, ξ2)− ∇dh(I3ea, ξ3) + h−1

(
3∑
s=1

dh(ξs) dh(Isea)

)
Hence, we proved that the coefficient of D1(ea) in (4.8) is h (3A1 −A2 −A3 + 2D1) (ea), while

those of A1(ea) is h
(

22
3 A1 − 2

3 A2 − 2
3 A3 + 11

3 D1 − 1
3 D2 − 1

3 D3

)
(ea). A cyclic permutation

gives the rest of the coefficients in (4.8). With this, the divergence (4.8) can be written in the form

∇∗
(
fD +

3∑
s=1

dh(ξs)Fs + 4
3∑
s=1

dh(ξs)IsAs −
10
3

3∑
s=1

dh(ξs) IsA
)

= f |T 0|2 + hσ1,2,3

{
g
(
D1, 3A1 − A2 − A3 + 2D1

)
+ g

(
A1,

22
3
A1 −

2
3
A2 −

2
3
A3 +

11
3
D1 −

1
3
D2 −

1
3
D3

)}
,

where σ1,2,3 denotes the sum over all positive permutations of (1, 2, 3). Let Q be equal to

Q :=



2 0 0
10
3

−2
3
−2

3

0 2 0 −2
3

10
3

−2
3

0 0 2 −2
3
−2

3
10
3

10
3

−2
3
−2

3
22
3

−2
3
−2

3

−2
3

10
3

−2
3
−2

3
22
3

−2
3

−2
3
−2

3
10
3

−2
3
−2

3
22
3


so that

∇∗
(
fD +

3∑
s=1

dh(ξs)Fs + 4dh(ξs) IsAs −
10
3

3∑
s=1

dh(ξs) IsA
)

= f |T 0|2 + h 〈QV, V 〉,

with V = (D1, D2, D3, A1, A2, A3). It is not hard to see that the eigenvalues of Q are given by

{0, 0, 2 (2 +
√

2), 2 (2−
√

2), 10, 10},
which shows that Q is a non-negative matrix. �

5. Proofs of the main theorems

The proofs rely on Theorem 4.4 and the following characterization of all qc-Einstein structures
conformal to the standard qc structures on the Heisenberg group.

Theorem 5.1. [IMV, Theorem 1.2] Let Θ = 1
2h Θ̃ be a conformal deformation of the standard qc-

structure Θ̃ on the quaternionic Heisenberg group G (H). Then Θ is qc-Einstein if and only if, up
to a left translation the function h is given by

(5.1) h = c
[(

1 + ν |q|2
)2 + ν2 (x2 + y2 + z2)

]
,

where c and ν are any positive constants.

Consider first the case of the (seven dimensional) sphere.
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5.1. Proof of Theorem 1.1. Integrating the divergence formula of Theorem 4.4 we see that ac-
cording to the divergence theorem established in [IMV, Proposition 8.1] the integral of the left-hand
side is zero. Thus, the right-hand side vanishes as well, which shows that the quaternionic contact
structure η has vanishing torsion, i.e., it is also qc-Einstein according to Theorem 2.4.

Next we bring into consideration the 7-dimensional quaternionic Heisenberg group and the quater-
nionic Cayley transform as described in [IMV, Section 5.2]. The quaternionic Heisenberg group of
dimension 7 is G (H) = H × Im H. The group law is given by (q′, ω′) = (qo, ωo) ◦ (q, ω) =
(qo + q, ω + ωo + 2 Im qo q̄), where q, qo ∈ H and ω, ωo ∈ Im H. The left-invariant orthonormal
basis of the horizontal space is

T1 =
∂

∂t1
+ 2x1 ∂

∂x
+ 2y1 ∂

∂y
+ 2z1 ∂

∂z
, X1 =

∂

∂x1
− 2t1

∂

∂x
− 2z1 ∂

∂y
+ 2y1 ∂

∂z

Y1 =
∂

∂y1
+ 2z1 ∂

∂x
− 2t1

∂

∂y
− 2x1 ∂

∂z
, Z1 =

∂

∂z1
− 2y1 ∂

∂x
+ 2x1 ∂

∂y
− 2t1

∂

∂z

using q = t1 + i x1 + j y1 + k z1 and ω = i x + j y + k z. The central (vertical) orthonormal
vector fields ξ1, ξ2, ξ3 are described as follows

ξ1 = 2
∂

∂x
ξ2 = 2

∂

∂y
ξ3 = 2

∂

∂z
.

Let us identify the (seven dimensional) group G (H) with the boundary Σ of a Siegel domain in
H×H,

Σ = {(q′, p′) ∈ H×H : < p′ = |q′2}.
Σ carries a natural group structure and the map (q, ω) 7→ (q, |q|2 − ω) ∈ Σ is an isomorphism
between G (H) and Σ.

The standard contact form, written as a purely imaginary quaternion valued form, on G (H)
is given by 2Θ̃ = (dω − q · dq̄ + dq · q̄), where · denotes the quaternion multiplication.
Since dp = q · dq̄ + dq · q̄ − dω, under the identification of G (H) with Σ we also have
2Θ̃ = −dp′ + 2dq′ · q̄′. Taking into account that Θ̃ is purely imaginary, the last equation can be
written also in the following form

4 Θ̃ = (dp̄′ − dp′) + 2dq′ · q̄′ − 2q′ · dq̄′.
The (quaternionic) Cayley transform is the map C : S \ {(−1, 0)} 7→ Σ from the sphere S =
{(q, p) ∈ H×H : |q|2 + |p|2 = 1} ⊂ H×H minus a point to the Heisenberg group Σ = {(q1, p1) ∈
H×H : < p1 = |q1|2}, with C defined by

(5.2) (q1, p1) = C
(

(q, p)
)
, q1 = (1 + p)−1 q, p1 = (1 + p)−1 (1− p).

with an inverse (q, p) = C−1
(

(q1, p1)
)

given by

(5.3) q = 2 (1 + p1)−1 q1, p = (1− p1) (1 + p1)−1.

The Cayley transform is a conformal quaternionic contact diffeomorphism between the quaternionic
Heisenberg group with its standard quaternionic contact structure Θ̃ and S \ {(−1, 0)} with its
standard structure η̃, see [IMV],

(5.4) λ · (C∗ η̃) · λ̄ =
8

|1 + p1 |2
Θ̃,

where λ = 1+p1
|1+p1 | is a unit quaternion and η̃ is the standard quaternionic contact form on the

sphere, η̃ = dq · q̄ + dp · p̄ − q · dq̄− p · dp̄. Hence, up to a constant multiplicative factor and
a quaternionic contact automorphism the forms C∗η̃ and Θ̃ are conformal to each other. It follows
that the same is true for C∗η and Θ̃. In addition, Θ̃ is qc-Einstein by definition, while η and hence
also C∗η are qc-Einstein as we observed at the beginning of the proof. According to Theorem 5.1, up
to a multiplicative constant factor, the forms C∗η̃ and C∗η are related by a translation or dilation on
the Heisenberg group. Hence, we conclude that up to a multiplicative constant, η is obtained from



20 STEFAN IVANOV, IVAN MINCHEV, AND DIMITER VASSILEV

η̃ by a conformal quaternionic contact automorpism which proves the first claim of Theorem 1.1.
From the conformal properties of the Cayley transform and [Va1, Va] it follows that the minimum
λ(S4n+3) is achieved by a smooth 3-contact form, which due to the Yamabe equation is of constant
qc-scalar curvature. This shows the second claim of Theorem 1.1.

5.2. Proof of Theorem 1.3. Let D1,2 be the space of functions u ∈ L2∗(G (H)) having distribu-
tional horizontal gradient |∇u|2 = |T1u|2 + |X1u|2 + |Y1u|2 + |Z1u|2 ∈ L2(G (H)) with respect to the
Lebesgue measure dH on R7, which is the Haar measure on the group. Let us define the constant
(2∗ = 5/2 here)

Λ
def
= inf


∫

G (H)

|∇v|2 dH : v ∈ D1,2, v ≥ 0,
∫

G (H)

|v|2
∗
dH = 1

 .

Let v be a function for which the infimum is achieved. Note that such function exists by [Va1] or
[Va]. Furthermore, Λ = S−2

2 , where S2 is the best constant in the L2 Folland-Stein inequality (1.1),
since v ∈ D1,2 implies |v| ∈ D1,2 and the gradient is the same a.e.. From the choice of v we have

Λ =
∫

G (H)

|∇v|2 dH,
∫

G (H)

v2∗ dH = 1.

Writing the Euler-Lagrange equation of the constrained problem we see that v is a non-negative
entire solution of

(
T 2

1 + X2
1 + Y 2

1 + Z2
1

)
v = −Λ v3/2. By [GV2, Lemma 10.2] ( see [Va] or [Va1,

Theorem 10.3] for further details) v is a bounded function. Similarly to [FSt, Theorem 16.7] it follows
v is a Lipschits continuous function in the sense of non-isotropic Lipschits spaces [F]. Iterating this
argument and using [F, Theorem 5.25] we see that v is a C∞ smooth function on the set where it is
positive, while being of class Γ2,β

loc , the non-isotropic Lipschits space, for some β > 0. In particular
v is continuously differentiable function by [F, Theorem 5.25]. Applying the Hopf lemma [GV1,
Theorem 2.13] on the set where v is positive shows that v cannot vanish, i.e., it is a positive entire
solution to the Yamabe equation. The positivity can also be seen by the Harnack inequality, see [W]

for example. Let u
def
= Λ

1
2*−2 v, then u is a positive entire solution of the Yamabe equation

(5.5)
(
T 2

1 + X2
1 + Y 2

1 + Z2
1

)
u = −u3/2

¿From the definition of u, we have

Λ =
( ∫

G (H)

|∇u|2 dH
) 1

5
=
( ∫

G (H)

u5/2 dH
) 1

5
.

We shall compute the last integral by determining u with the help of the divergence formula.
As before, let Θ̃ be the standard contact form on G (H) identified with Σ. Using the inversion

and the Kelvin transform on G (H), cf. [GV2, Sections 8 and 9], we can see that if Θ = 1
2h Θ̃ has

constant scalar curvature, then the Cayley transform lifts the qc structure defined by Θ to a qc
structure of constant qc-scalar curvature on the sphere, which is conformal to the standard. The
details are as follows. Let us define two contact forms Θ1 and Θ2 on Σ setting

Θ1 = u4/(Q−2)Θ̃, and Θ2 = (Ku)4/(Q−2) p̄′

|p′|
Θ̃

p′

|p′|
,

where u is as in (5.5), Ku is its Kelvin transform, see (5.8) for the exact formula, and Q is the
homogeneous dimension of the group. Notice that p̄′

|p′| Θ̃ p′

|p′| defines the same qc structure on the

Heisenberg group as Θ̃ and Ku is a smooth function on the whole group according to [GV2, Theorem
9.2]. We are going to see that using the Cayley transform these two contact forms define a contact
form on the sphere, which is conformal to the standard and has constant qc-scalar curvature.
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Let P1 = (−1, 0) and P2 = (1, 0) be correspondingly the ’south’ and ’north’ poles of the unit
sphere S = {|q|2 + |p|2 = 1}. Let C1 and C2 be the corresponding Cayley transforms defined,
respectively, on S \ {P1} and S \ {P2}. Note that C1 was defined in (5.2), while C2 is given by

(5.6) (q2, p2) = C2

(
(q, p)

)
, q2 = −(1− p)−1 q, p2 = (1− p)−1 (1 + p).

In order that Θ1 and Θ2 define a contact form η on the sphere it is enough to see that

(5.7) Θ1(p, q) = Θ2 ◦ C2 ◦ C−1
1 (p, q), i.e., Θ1 = (C2 ◦ C−1

1 )∗Θ2.

A calculation shows that C2 ◦ C−1
1 : Σ→ Σ is given by

q2 = −p−1
1 q1, p2 = p−1

1 ,

or, equivalently, in the model G (H)

q2 = −(|q1|2 − ω1)−1 q1, ω2 = − ω1

|q1|4 + |ω1|2
.

Hence, σ = C2 ◦C−1
1 is an involution on the group. Furthermore, with the help of (5.4) we calculate

C1∗ ◦ C2
∗ Θ =

1
|p1|2

µ̄Θµ, µ =
p1

|p1|
,

which proves the identity (5.7). Using the properties of the Kelvin transform, [GV2, Sections 8 and
9],

(5.8) (Ku) (q′, p′)
def
= |p′−(Q−2)/2 u

(
σ(q′, p′)

)
,

we see that u and Ku are solutions of the Yamabe equation (5.5). This implies that the contact
form η has constant qc-scalar curvature, equal to 4(Q+2)

Q−2 .

Notice that η is conformal to the standard form η̃ and the arguments in the preceding proof imply
then that η is qc-Einstein. A small calculation shows that this is equivalent to the fact that if we
set

(5.9) ū = 210 [(1 + |q|2)2 + |ω|2]−2,

then ū satisfies the Yamabe equation (5.5) and all other nonnegative solutions of (5.5) in the space
D1,2 are obtained from ū by translations and dilations,

τ(qo,ωo)ū (q, ω)
def
= ū(qo + q, ω + ωo),(5.10)

ūλ (q)
def
= λ4ū(λq, λ2ω), λ > 0.(5.11)

Thus, u which was defined in the beginning of the proof is given by equation (5.9) up to transla-
tions and dilations. This allows the calculation of the best constant in the Folland-Stein inequality,
see [GV1, (4.52)],

Λ5 =
∫

G (H)
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[(1 + |q|2)2 + |ω|2)]5
dH = 225 π7/2 Γ( 7

2 )
Γ(7)

=
π12/10

12
,

where Γ is the Gamma function. Hence

S2 = Λ−1/2 =
2
√

3
π3/5

.

Recalling the relation between u and v we find that the extremals in the Folland-Stein embedding
are given by

v =
211
√

3
π3/5

[(1 + |q|2)2 + |ω|2]−2

and its translations and dilations. The proof of Theorem 1.3 is complete.
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