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Lp ESTIMATES AND ASYMPTOTIC BEHAVIOR

FOR FINITE ENERGY SOLUTIONS OF EXTREMALS

TO HARDY-SOBOLEV INEQUALITIES

DIMITER VASSILEV

Abstract. Motivated by the equation satisfied by the extremals of certain
Hardy-Sobolev type inequalities, we show sharp Lq regularity for finite en-
ergy solutions of p-Laplace equations involving critical exponents and possible
singularity on a sub-space of Rn, which imply asymptotic behavior of the so-
lutions at infinity. In addition, we find the best constant and extremals in the
case of the considered L2 Hardy-Sobolev inequality.

1. Introduction

This paper has three goals - prove sharp Lq regularity for solutions of non-linear
p-Laplacian equations involving critical exponents and a singularity on a lower
dimensional subspace, establish sharp rate of decay in the case p = 2, and finally
determine the extremals in a related L2 Hardy-Sobolev inequality. We indicate some
other possible applications concerning stationary cylindrical states of the Vlasov-
Poisson system and non-completeness of metrics with finite volume on some non-
compact manifolds.

The organization of the paper is as follows. In Section 2 we shall study the
Lp regularity and asymptotic behavior at infinity of non-linear equations involving
critical growth. In its simplest form, our result is the following. For 1 < p < n, we
let p′ = p

p−1 and p∗ = np
n−p be correspondingly the Hölder conjugate and the Sobolev

conjugate exponents. Suppose V ∈ L
p∗

p∗−p (Rn), and if p �= 2 assume further that
V ≥ 0. Let u be a weak non-negative solution in R

n (i.e. u is of finite energy; cf.
(2.6)) of the inequality

(1.1) −div (|∇u|p−2∇u) ≤ V up−1.

Under these conditions, we prove that u ∈ Lq(Rn) for any p∗

p′ < q ≤ ∞, which in

general cannot be improved further, and for any 0 < θ < 1 there exists a positive
constant Cθ such that

(1.2) u(z) ≤ Cθ

1 + |z|θ
n−p
p−1

, z ∈ R
n.

We shall actually consider inequalities with a possible singularity on a subspace of
R

n in the right-hand side, which arise naturally in the study of the extremals of
certain Hardy-Sobolev inequalities; see further below and (2.5) for the exact setting.
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Our results are contained in Theorems 2.1, 2.5, 2.9 and 2.10. The proof of the main
Theorem 2.5 uses an additional result on the uniqueness/comparison principle for
the considered p-Laplacian equations. The asymptotic behavior of solutions to
elliptic equations with critical non-linearity has been studied extensively. Generally
speaking, the results and the analysis depend on whether one assumes a priori that
the solution has finite energy or one is given a smooth solution; see [S1], [S2], [SW],
[E], [GS] and [Li], to name a few. We work under the assumption of finite energy.
The paper extends the results of Egnell [E], which correspond to Theorems 2.1 and
2.9 without the possible singularity on a submanifold of Rn.

In Section 3 we consider the case p = 2. The main result here is that, under
some natural additional assumption, u has the same asymptotic as the fundamental
solution of the Laplacian at infinity; see Theorem 3.1. The proof exploits the fact
that Rn has a positive Yamabe invariant, and thus the method will be applicable to
cases when the ambient space does not have a conformal transformation with the
properties of the Kelvin transform. Furthermore, we work in the setting in which
V could have a singularity on a subspace, which renders results based on radial
symmetry inapplicable.

In Section 4 we construct explicit solutions of the Euler-Lagrange equation of
certain Hardy-Sobolev inequalities. In the subsequent section we show that these
solutions are extremals for which the best constant in the considered Hardy-Sobolev
inequalities is achieved.

In Section 5 we determine the best constant in the Hardy-Sobolev embedding
theorem involving the distance to a subspace of Rn. In order to explain the consid-
ered inequality we need a few notation which shall be used throughout the paper.
For p ≥ 1 we define the space D 1,p(Rn) as the closure of C∞

o (Rn) with respect to
the norm

(1.3) ‖u‖D 1,p(Rn) =

(∫
Rn

|∇u|pdz
)1/p

.

Let n ≥ 3 and 2 ≤ k ≤ n. For a point z in R
n = R

k×R
n−k we shall write z = (x, y),

where x ∈ R
k and y ∈ R

n−k. The following Hardy-Sobolev inequality was proven
in Theorem 2.1 of [BT].

Theorem 1.1 ([BT]). Let n ≥ 3, 2 ≤ k ≤ n, and p, s be real numbers satisfying
1 < p < n, 0 ≤ s ≤ p, and s < k. There exists a positive constant Sp,s = S(s, p, n, k)
such that for all u ∈ D1, p (Rn) we have

(1.4)
(∫

Rn

|u|
p(n−s)
n−p

|x|s dz
) n−p

p(n−s) ≤ Sp,s

(∫
Rn

|∇u|p dz
) 1

p

.

When k = n the above inequality becomes the Caffarelli-Kohn-Nirenberg in-
equality (see [CKN]) for which the optimal constant Sp,s was found in [GY]. The
case p = 2 was considered earlier in [O] and [GMGT], where the inequality is
written in an equivalent, but slightly different form. If we introduce the numbers

σ = s(n−p)
p(n−s) , hence 0 ≤ σ < 1, and pσ = p(n−s)

n−p , the above inequality becomes

(1.5)
(∫

Rn

|u|pσ

|x|σpσ
dz

)1/pσ

≤ C
(∫

Rn

|∇u|p dz
)1/p

,

where C is a positive constant. In the case p = 2 and k = n the sharp constant was
computed in [GMGT]. When σ < 1 the extremals were found by Lieb in [L], while
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when σ = 1 we have the classical Hardy inequality, which does not have extremal
functions.

The main result of Section 5 is the proof of the following theorem.

Theorem 1.2. Suppose n ≥ 3 and 2 ≤ k ≤ n. There exists a positive constant
K = Kn,k,2 such that for all u ∈ D1, 2 (Rn) we have

(1.6)
( ∫

Rn−k

∫
Rk

|u|
2(n−1)
n−2

|x| dxdy
) n−2

2(n−1) ≤ K
( ∫

Rn

|∇u|2 dz
) 1

2

.

Furthermore, K is given in (5.6) and the positive extremals are the functions

(1.7) v = λ−(n−2)
( 4

(n− 2)2

)−n−2
2

K−(n−1)
(
(|x|+ n− 2

4aλ2
)2 + |y − yo|2

)−n−2
2

,

where λ > 0, yo ∈ R
n−k.

In their preprint G. Mancinia, I. Fabbria and K. Sandeep [MFS] obtain inde-
pendently the above theorem proving identities following the lines of [GV2]. In our
proof, we show the result as a direct consequence of [GV2], also using Section 4,
which relates extremals on the Heisenberg groups to extremals in the Euclidean
setting. Note that the results of Section 2 can be applied to the non-negative
extremals of the general Hardy-Sobolev inequality of Theorem 1.1.

Finally, Section 6 contains some further simple applications which indicate the
direction of some future investigations.

The author would like to thank Luca Capogna, Scott Pauls and Jeremy Tyson
for organizing the Workshop on Minimal Surfaces, Sub-Elliptic PDE’s and Geomet-
ric Analysis, Dartmouth College, March, 2005. The current paper grew out of a
conversation with Richard Beals and Yilong Ni on an unrelated question of the au-
thor concerning certain equations on Carnot groups, [BY], which led to Section 4 of
this paper. Thanks are also due to Galia Dafni, Nicola Garofalo and Congming Li
for their interest and valuable comments which improved the presentation. Lastly,
it is a pleasure to acknowledge the Department of Mathematics of UC Riverside
where the paper was completed and the many conversations with Qi Zhang, which
led in particular to a correction in the original proof of Theorem 2.5.

2. Regularity and asymptotic of weak solutions

The goal of this section is to prove sharp Lq regularity for solutions of the
considered equations, which would then lead to bounds on the rate of decay at
infinity.

We start with two definitions. Let p and s be as in Theorem 1.1 and denote by
p*(s) the Hardy-Sobolev conjugate

(2.1) p*(s) =
p(n− s)

n− p

and by p′ the Hölder conjugate p′ =
p

p− 1
. There is another exponent which will

play an important role. For any s as above we define the exponent r = r(s) to be
the Hölder conjugate of the exponent r′ = r′(s) defined by

(2.2) r′ =
p∗

p∗(s)− p
; thus r =

n

n− p+ s
.
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Notice that 1 ≤ r, 0 ≤ rs ≤ p, and furthermore we have the identity

(2.3) rp = p∗(rs).

However, in general rs could be larger than k, and thus due to the restriction s < k
in the Hardy-Sobolev inequality we shall consider only the case

(2.4) s(n− k) < k(n− p),

which implies rs < k.

Theorem 2.1. Let Ω be an open subset of Rn, which is not necessarily bounded,
1 < p < n, 0 ≤ s ≤ p, s < k and s(n − k) < k(n − p). Let u ∈ D 1,p(Ω) be a
non-negative weak solution of the inequality

(2.5) − div (|∇u|p−2∇u) ≤ V
|u|p−2

|x|s u in Ω,

i.e.,

(2.6)

∫
Ω

|∇u| p−2〈∇u,∇φ〉 dz ≤
∫
Ω

V
|u|p−2

|x|s uφ dz,

for every 0 ≤ φ ∈ C∞
o (Ω).

a) If V ∈ Lr′(Ω), then u ∈ Lq ( dz
|x|t ) for any 0 ≤ t < min{p, s} and q ≥ p∗(s). In

particular u ∈ Lq(Ω) for every p∗ ≤ q < ∞.

b) If V ∈ Lto(Ω) ∩ Lr′(Ω) for some to > r′, then u ∈ L∞(Ω).

Remark 2.2. a) As usual, if we have equality instead of inequality in the above
theorem, the conclusion holds for any weak-solution, without a sign condition. The
proof below works with very minor changes. This is the reason we use |u| rather
than u when we are dealing with a non-negative function.

b) The use of the weighted Lq spaces in part a) of the theorem is essential.

Proof. The assumption V ∈ Lr′(Ω), together with the Hardy-Sobolev inequality,
shows that (2.6) holds true for any φ ∈ D 1,p(Ω). This can be seen by approximating
in the space D 1,p(Ω) by a sequence of test functions φn ∈ C∞

o (Ω), which will allow

us to put the limit function in the left-hand side of (2.6) as |∇u|p−1 ∈ Lp′
. On the

other hand, for φ ∈ C∞
o (Ω), using the Hölder and Hardy-Sobolev inequalities we

have the estimate∫
Ω

|V | |u|
p−1

|x|s φ dz ≤
(∫

Ω

|V |r′
)1/r′ (∫

Ω

|u|r(p−1)

|x|rs φr
)1/r

(2.7)

≤
(∫

Ω

|V |r′
)1/r′ [(∫

Ω

|u|rp′(p−1)

|x|rs
) 1

rp′
(∫

Ω

φpr

|x|rs
)1/p]1/r

(2.8)

≤ Sp ‖V ‖Lr′

(∫
Ω

|u|rp′(p−1)

|x|rs
) 1

rp′ ‖∇φ‖Lp (using (2.3))(2.9)

≤ SpS
p−1
p,rs‖V ‖Lr′ ‖∇u‖p−1

Lp ‖∇φ‖Lp ,(2.10)

which allows us to pass to the limit in the right-hand side of (2.6). We turn to the
proofs of a) and b).

a) Let G(x) be a piecewise smooth, globally Lipschitz function, on the real line,
and set

(2.11) F (u) =

∫ u

0

|G′(t)|p dt.
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Clearly, F is a non-negative differentiable function with bounded and continuous
derivative. From the chain rule, G(u), F (u) ∈ D 1,p(Ω). In particular, F (u) is a
legitimate test function in (2.6). We are going to show that if q is a number q ≥ p∗(s)
and 0 ≤ t < min{p, s}, then u ∈ Lq ( dz

|x|s ) implies u ∈ D 1,p(Ω) ∩ Lκtq ( dz
|x|t ), where

κt =
p∗(t)
p , and for some positive constant C depending on q we have

(2.12) ‖u‖Lκtq ( dz
|x|t )

≤ C ‖u‖Lq ( dz
|x|s ).

Notice that we can apply the Hardy-Sobolev inequality replacing the exponent s
with the exponent t. Furthermore, we require t < p, as then we have

(2.13) κt =
p∗(t)

p
> 1.

With φ = F (u), taking into account F ′(u) = |G′(u)|p, the left-hand side of
(2.5) can be rewritten as

(2.14)

∫
Ω

|∇u| p−2〈∇u,∇F (u)〉 dz =

∫
Ω

|∇G(u)|p.

For q ≥ p∗(s), hence q ≥ p∗(p) = p, we define the function G(t) on the real line in
the following way:

(2.15) G(t) =

{
sign (t) |t|

q
p if 0 ≤ |t| ≤ l,

l
q
p−1t if l < |t|.

From the power growth ofG, besides the above properties, this function also satisfies

(2.16) |u|p−1|F (u)| ≤ C(q)|G(u)|p ≤ C(q)|u|q.
The constant C(q) also depends on p, but this is a fixed quantity for us. At this
moment the value of C(q) is not important, but an easy calculation shows that
C(q) ≤ C qp−1 with C depending on p. We will use this in part b). For M > 0
to be fixed in a moment we estimate the integral in the right-hand side of (2.6) as
follows:

(2.17)∫
Ω

|V | |u|
p−1

|x|s F (u) dz =

∫
(|V |≤M)

|V | |u|
p−1

|x|s F (u) dz +

∫
(|V |>M)

|V | |u|
p−1

|x|s F (u) dH

≤ C(q)

∫
(|V |≤M)

|V | |G(u)|p
|x|s dz + C(q)

(∫
(|V |>M)

|V |r′
) 1

r′ (∫
Ω

|G(u)|pr
|x|sr dz

) 1
r

≤ C(q)

∫
(|V |≤M)

|V | |u|
q

|x|s dz + C(q)Sp
p,rs

(∫
(|V |>M)

|V |r′
) 1

r′ (∫
Ω

|∇G(u)|p dz
)

≤ C(q)M ‖u‖q
Lq ( dz

|x|s )
+ C(q)Sp

p,rs‖V ‖Lr′ (|V |>M) ‖∇G(u)‖pLp .

At this point we fix once and for all the constant M , so that

C(q)Sp
p,rs

(∫
(|V |>M)

|V |r′ dH
) 1

r′

≤ 1

2
,

which can be done because V ∈ Lr′ . Putting together (2.14) and (2.17), and using
the Hardy-Sobolev inequality, we come to

(2.18) ‖G(u)‖p
Lp∗(t)( dz

|x|t )
≤ C(q)M ‖u‖q

Lq ( dz
|x|s )

.
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By Fatou’s theorem we can let l in the definition of G to infinity and obtain

‖u‖q
Lκtq( dz

|x|t )
≤ C(q)M ‖u‖q

Lq ( dz
|x|s )

.

The proof of a) is finished.
b) Let us observe that the assumption to > r′ implies that t′o < r, and thus

0 < t′os < rs. Therefore, for any q ≥ p∗(s) the norm ‖u‖
Lqt′o ( dz

|x|st
′
o
)
is finite

from part a). We are going to prove that the Lq( dz

|x|t′os ) norms of u are uniformly

bounded by the Lqo( dz

|x|t′os ) norm of u, where qo = t′o p
∗(s). We shall do this by

iteration and find a sequence qk which approaches infinity as k → ∞.
Let q ≥ p∗(s). We again use the function F (u) from part a) in the weak form

(2.6) of our equation. The left-hand side is estimated from below as before; see
(2.14). This time, though, we use Hölder’s inequality to estimate from above the
right-hand side,

(2.19)

∫
Ω

|V ||u|p−2uF (u) dz ≤ ‖V ‖Lto ‖|u|p−1F (u)‖
Lt′o

≤ ‖V ‖to ‖C(q)
|G(u)|p
|x|s ‖t′o ≤ C(q)‖V ‖Lto ‖u‖q

Lqt′o ( dz

|x|st
′
o
)
.

With the estimate from below we come to

‖∇G(u)‖pLp ≤ C(q) ‖V ‖Lto ‖u‖q
Lqt′o ( dz

|x|st
′
o
)
.

Using the Hardy-Sobolev inequality and then letting l → ∞, we obtain

(2.20) ‖u‖q
L

q
p∗(st′o)

p ( dz

|x|st
′
o
)

≤ C C(q) ‖V ‖Lto ‖u‖q
Lqt′o ( dz

|x|st
′
o
)
,

where C is independent of q.

Let δ =
p∗(st′o)

p t′o
. A small calculation shows that δ > 1 exactly when to > r′.

With this notation we can rewrite (2.20) as

(2.21) ‖u‖q
Lδqt′o ( dz

|x|st
′
o
)
≤

[
C C(q)

] 1
q ‖V ‖

1
q

Lto ‖u‖qLqt′o ( dz

|x|st
′
o
)
.

Recall that C(q) ≤ Cqp−1. At this point we define qo = p∗(s)t′o and qk = δkqo,
and after a simple induction we obtain

(2.22) ‖u‖Lqk ( dz

|x|st
′
o
) ≤

{k−1∏
j=0

[
C qp−1

j

] 1
qj

}
‖V ‖

∑k−1
j=0

1
qj

Lto ‖u‖Lqo ( dz

|x|st
′
o
).

Let us observe that the right-hand side is finite,

(2.23)
∞∑
j=0

1

qj
=

1

qo

∞∑
j=1

1

δj
< ∞ and

∞∑
j=1

log qj
qj

< ∞,

thanks to δ > 1. Letting k → ∞ we obtain ‖u‖∞ ≤ C ‖u‖Lqo ( dz

|x|st
′
o
). �
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Remark 2.3. We should keep in mind that the local version of Theorem 2.1 is also
valid. In other words, we can replace all the spaces in the statement of the theorem
with their local version. The proof is accomplished in a very similar fashion by
introducing a local cut-off function.

With the above theorem we turn to an equation, in fact a slightly more general
equation, satisfied by the extremals of the Hardy-Sobolev inequality.

Theorem 2.4. Let Ω be an open subset of Rn, which is not necessarily bounded,
1 < p < n, 0 ≤ s ≤ p, s < k and s(n−k) < k(n−p). If R ∈ L∞ and u ∈ D 1,p(Ω)
is a weak non-negative solution to equation

− div (|∇u|p−2∇u) ≤ R(z)
|u|p∗(s)−2

|x|s u in Ω,

then u ∈ L∞(Ω).

Proof. We define V = R|u|p∗(s)−p. From the Hardy-Sobolev inequality we have

u ∈ Lp∗(s)(Ω), and thus V ∈ L
p∗(s)

p∗(s)−p (Ω). Since r′ =
p∗(s)

p∗(s)− p
, part a) of

Theorem 2.1 shows that u ∈ Lq (Ω) for p∗ ≤ q < ∞. Therefore V ∈ L
q

p∗−p (Ω) for
any such q, and thus by part b) of the same theorem we conclude u ∈ L∞(Ω). �

In the next theorem we show that one can lower the exponent p∗ in the Lq reg-
ularity of u when s = 0. A similar result in the case p = 2, s = 0 and R = |u|p∗−p

was achieved in [LU]; see also [BK] and [GL]. We have to overcome some compli-
cations due to the more general structure of the equation, the possible singularity,
and the lack of monotonicity of the considered operator.

Theorem 2.5. Let Ω be an open subset of Rn, which is not necessarily bounded,
1 < p < n, 0 ≤ s ≤ p, s < k and s(n − k) < k(n − p). Suppose R ∈ Lr′ and

Vo ∈ L1∩Lr′ , and in the case p �= 2 assume R and Vo are non-negative, R, Vo ≥ 0.
If u is a non-negative locally bounded weak solution of the equation

(2.24) −p u ≤ R
|u|p−2

|x|s u + Vo,

then u ∈ Lq for every p∗

p′ < q ≤ p∗.

Remark 2.6. The condition that u is locally bounded holds for example when Vo = 0
and R ∈ Lr′ ∩ Lto , for some to > r′, by Theorem 2.1.

Remark 2.7. a) When p = 2 we can replace the inequality with equality and drop
the assumption on non-negativity of u.

b) From the proof it will be obvious that when p �= 2 the assumption R ≥ 0
can be replaced with R ≥ 0 outside of a compact set, which does not intersect
{z : |x|s = 0}. Of course, −p u ≤ 0 and u ≥ 0 implies u ≡ 0.

We turn to the proof of Theorem 2.5.

Proof. Let 0 < θ < 1/p be arbitrarily fixed. Our task then is to show that the
function u1−θ ∈ Lp∗

.
In the first part of the proof we shall exploit the variational structure of the

problem in order to construct suitable test functions, which shall be used in the
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second part of the proof. Suppose V, g ∈ L1∩Lr′ are two given functions. Consider
the functional

(2.25) E(v) =
1

p

∫
Ω

|∇v|p dz − 1

p

∫
Ω

V
|v|p
|x|s dz −

∫
Ω

gv dz.

Note that E is coercive when ‖V ‖Lr′ (Ω) is small. Indeed, we have

E(v) ≥ 1

p
‖v‖pD 1,p(Ω) − Sp−1

p,rs

1

p
‖V ‖Lr′ ‖v‖pD 1,p(Ω) − Sp,0 ‖g‖L(p∗)′ ‖v‖D 1,p(Ω),

taking into account (2.39) to justify the finiteness of the norm of g. Furthermore, E
is weakly lower semi-continuous and D 1,p(Ω) is a reflexive Banach space. Therefore,
provided that V has a small norm, there exists a minimizer, which is a solution of

(2.26) −p v = V
|v|p−2

|x|s v + g.

Moreover, any solution of the above equation satisfies

(2.27) ‖v‖D 1,p(Ω) ≤ S1/(p−1)
p (1− Sp

p,rs‖V ‖Lr′ )1/(p−1) ‖g‖1/(p−1)

L(p∗)′ .

With this in mind, suppose ε is a given positive constant. Since R ∈ Lr′ we can fix
a large Ro > 0 and a small δ > 0 such that

(2.28)

∫
Rn\BRo

|R| r′ dz ≤ 1

2
ε and

∫
{|x|<2δ}

|R| r′ dz ≤ 1

2
ε.

Let α ∈ C∞ be a function, 0 ≤ α ≤ 1, with

supp α ⊆ {|x| < 2δ} ∪ {Rn \BRo
}, α ≡ 1 on {|x| < δ} ∪ {Rn \B2Ro

}.
In particular supp (1 − α) ⊂ B2Ro

∩ {|x| > δ}, and hence due to the local bound-
edness of u we have

g = Vo + (1− α) R(z)
|u|p−2

|x|s u ∈ L1 ∩ Lr′ .

For every k ∈ N, let αk ∈ C∞
o (Rn) be a function, 0 ≤ αk ≤ 1, satisfying

supp αk ⊂ B2k+1Ro
\ {|x| < δ

2k+1
} with αk = 1 on B2kRo

\ {|x| < δ

2k
}.

Notice that αk ↗ 1 a.e. as k → ∞. Define V = αR(z) and Vk = ααk R(z).
Using the properties of the cut-offs we see that these functions enjoy the following
properties:

V ∈ Lr′ , Vk ∈ L1 ∩ Lr′ as supp Vk � R
n,

and Vk ↗ V as k → ∞. In addition, since
∫
Ω
|V |r′ dz ≤

∫
Ω
α |R| r′ dz ≤ ε, the

functions V and hence Vk have small Lr′ norms, which can be made less than ε
by taking Ro sufficiently large and δ sufficiently small in (2.28). From now on we
assume that Ro and δ have been fixed in the above described manner so that E is
coercive and further so that ‖V ‖Lr′ ≤ ε with ε to be fixed later independently of
k, and in fact depending only on p, u, ‖R‖L∞ and the Sobolev constant.

With the help of the introduced functions we have that u is a non-negative
solution of

(2.29) −div (|∇u|p−2∇u) ≤ V
|u|p−2

|x|s u + g.
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For every k ∈ N let uk be a solution of

(2.30) −div (|∇uk|p−2∇uk) = Vk
|uk|p−2

|x|s uk + g.

When p �= 2 the assumption R, Vo ≥ 0 implies that a minimizer uk of

(2.31) Ek(v) =
1

p

∫
Ω

|∇v|p dz − 1

p

∫
Ω

Vk
|v|p
|x|s dz −

∫
Ω

gv dz

can be taken to be non-negative, i.e., when p �= 2 we have uk ≥ 0. This shall be
used at the very end of the proof.

Next we define the necessary cut-off, which shall be used in the final step. Let
ηm(t) be the following function:

(2.32) ηm(t) =

⎧⎪⎨
⎪⎩
t, t > 1/m,

m
θp

1−p θ t
1

1−p θ , t ≤ 1
m .

Observe that ηm is a continuous function and

0 ≤ η′m ≤ max{1, 1

1− p θ
} =

1

1− p θ
,

which implies the useful fact

η′m(t) ≤ 1

1− p θ
t.

We also define

(2.33) φm(t) = η1−pθ
m and fm(t) = η1−θ

m .

A short calculation gives

(2.34) φm(t) =

⎧⎪⎨
⎪⎩
t1−pθ, t > 1/m,

mpθt, t ≤ 1
m ,

φ′
m(t) ≤

⎧⎪⎨
⎪⎩
(1− p θ) mpθ, t > 1/m,

mpθ, t ≤ 1
m .

In particular, for every fixed m, we have that φ′
m is a bounded function, and thus if

0 ≤ v ∈ D 1,p(Ω), then 0 ≤ φm(v) ∈ D 1,p(Ω). Since 1− θ > 1− pθ the derivative
f ′
m(t) is also bounded, and thus fm(v) ∈ D 1,p(Ω). From now on, for simplicity,
given a function 0 ≤ v ∈ D 1,p(Ω) we let

η = ηm(v), φ = φm(v) and f = fm(v),

all of which, due to the chain rule, are functions from D 1,p(Ω).
A small but very important calculation shows that we have

|∇f |p = (1− p θ)p−1
( 1− θ

1− pθ

)p

|∇η|p−2 ∇η · ∇φ.



46 DIMITER VASSILEV

With cθ =
(

1−θ
1−p θ

)p

, using ∇v · ∇φ ≥ 0 and the above identity, we then have

∫
Ω

|∇η|p−2 ∇η·∇φ dz =

∫
{v< 1

m}
|∇η|p−2 ∇η·∇φ dz +

∫
{ 1

m<v}
|∇η|p−2 ∇η·∇φ dz

=
m(p−1)p θ/(1−p θ)

(1− p θ)p−1

∫
{v< 1

m}
v(p−1)p θ/(1−p θ) |∇u|p−2∇v · ∇φ dz

+

∫
{ 1

m<v}
|∇v|p−2 ∇v · ∇φ dz

≤ 1

(1− p θ)p−1

∫
{v< 1

m}
|∇u|p−2 ∇v · ∇φ dz +

∫
{ 1

m<v}
|∇v|p−2 ∇v · ∇φ dz

≤
∫
Ω

|∇v|p−2 ∇v · ∇φ dz as 1 ≤ 1/(1− p θ).

Therefore we have the following bound:

(2.35)

∫
Ω

|∇f |p dz ≤ cθ

∫
Ω

|∇v|p−2 ∇v · ∇φ dz.

Let us set

v = u+
k

and use φ as a test function in (2.30). The inequality above gives an estimate of
the left-hand side. For the first term on the other side we have∫

Ω

Vk
|v|p−1

|x|s φ dz =

∫
{v>1/m}

Vk
|v|p−1

|x|s φ dz +

∫
{v< 1

m}
Vk

|v|p−1

|x|s φ dz

≤
∫
Ω

Vk
|v|p−1+1−θp

|x|s dz + mθp

∫
{v< 1

m}
Vk

|v|p
|x|s dz

≤ Sp
p‖Vk‖Lr′

∫
Ω

|∇f |p dz + mθp−p 2s(k+1)

δs
‖Vk‖L1

≤ Sp
p‖V ‖Lr′

∫
Ω

|∇f |p dz + mθp−p 2s(k+1)

δs
‖Vk‖L1 ,

using pr = p∗(rs) and the fact that f ∈ D 1,p(Ω). The other term on the right-hand
side can be estimated in the following way:∫

Ω

gφ dz ≤
∫
{v< 1

m}
|g| φ dz +

∫
{ 1

m<v}
|g| φ dz(2.36)

≤ mp θ

∫
{v< 1

m}
|g| v dz +

∫
{ 1

m<v}
|g| v1−θp dz

≤ mθp−1‖g‖L1 + ‖g‖Lq ‖v‖p
∗/q

Lp∗ ,

where

(2.37) q =
( p∗

1− pθ

)′
=

p∗

p∗ − (1− pθ)
> 1,

as 1 − p θ > 0. Recall we are assuming only g ∈ L1 ∩ Lr′ . The definition (2.37) of
q shows that q < (p∗)′, while

(2.38) p∗(p) = p ≤ p∗(s) ≤ p∗(0) = p∗
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and thus

(2.39) r′ =
p∗

p∗(s)− p
≥ p∗

p∗ − p
=

(
p∗/p

)′
>

p∗

p∗ − 1
= (p∗)′.

Therefore we have q < r′ and g ∈ Lq
loc for every 1 ≤ q < r′.

Putting the above three estimates together we have shown that the gradient of
f satisfies the inequality (with Sp = Sp, o)

(2.40)
1

cθ

∫
Ω

|∇f |p dz ≤ Sp
p‖V ‖Lr′

∫
Ω

|∇f |p dz + mθp−p 2s(k+1)

δs
‖Vk‖L1

+ mθp−1‖g‖L1 + ‖g‖Lq(v>1/m) ‖v‖p
∗/q

Lp∗ (v>1/m)
.

With the above estimates at hand, we can conclude by moving the first term from
the right side to the left, and then letting m → ∞, provided we have

(2.41) 1− cθS
p
p‖V ‖Lr′ > 0, i.e., ‖V ‖Lr′ is small.

Taking the initial Ro sufficiently large at the start of the proof, we can let m → ∞.
Recall fm → (v+)1−θ, which gives the inequality∫

Ω

|∇(v+)1−θ|p dz ≤ Cp,θ‖g‖Lq(Ω) ‖v‖p
∗/q

Lp∗ (Ω)
.

Working similarly with v− we can prove eventually (recall v = uk) that theD 1,p(Rn)

norms of u1−θ
k satisfy

(2.42) ‖u1−θ
k ‖pD 1,p(Rn) = Cp,θ ‖g‖Lq(Ω) ‖uk‖p

∗/q

Lp∗ (Ω)
,

and hence they are uniformly bounded in view of (2.27).
The proof is finished by letting k → ∞, but the argument in the cases p = 2

and p �= 2 are different. When p �= 2 we take into account that by construction
uk ≥ 0 (cf. the line after (2.30)) and if uk → ū weakly in D 1,p(Ω), where −p ū =

V ūp−1

|x|s + g, then Lemma 2.8 implies u1−θ ∈ Lp∗
. If p = 2 the situation is

simpler since we can use the monotonicity. In fact, since ‖V ‖Lr′ is small and
u, ū ∈ D 1,p(Ω), Hölder’s inequality and the strong monotonicity of the Laplacian
give (u− ū)+ = 0. Indeed, using w = (u− ū)+ as a test function in the inequality

−u + ū ≤ V
u− ū

|x|s

we see that (cf. (2.3))

‖w‖2D 1,2(Ω) ≤ C ‖V ‖Lr′

(∫ w2r

|x|rs dz
)1/r

≤ C ‖V ‖Lr′ ‖w‖2D 1,2(Ω) ≤ 1

2
‖w‖2D 1,2(Ω);

hence ‖w‖D 1,2(Ω) = 0 and thus w = 0, i.e., u ≤ ū. The proof is complete. �

In the proof of the previous theorem we used the following comparison/uniqueness
principle for the p-Laplacian on an unbounded domain.

Lemma 2.8. Let 1 < p < ∞, V ∈ Lr′ and u, ū ∈ D 1,p(Ω), u ≥ 0, be weak
solutions, respectively, of

(2.43) −p u ≤ V
up−1

|x|s + g
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and

(2.44) −p ū = V
|ū|p−2ū

|x|s + g.

a) Suppose ū ≥ 0 and g ≥ 0. If g �= 0, then u ≤ ū. Otherwise, u = c ū on the
set {u ≥ ū}.

b) More generally, suppose g ū ≥ 0 and ū is a super solution of (2.44), i.e.,

−p ū ≥ V
|ū|p−2ū

|x|s + g.

If g ū �≡ 0, then u ≤ |ū|. Otherwise, u = c |ū| on the set {u ≥ |ū|}.

Proof. a) For ease of reading let us first consider the case when equality holds in
the inequality satisfied for u; i.e., suppose u, ū ∈ D 1,p(Ω) are two non-negative
weak solutions. We are going to show that if g �= 0, then u = ū. Otherwise, one
of the solutions is a constant multiple of the other. Working as in Lemma 3.1 in
[Lin] (see also [DS] and [A]), we define

uε = u + ε and ūε = ū + ε

and the two test functions

η =
uε

p − ūp
ε

uε
p

= uε −
( ūε

uε

)p
uε and η̄ =

ūp
ε − uε

p

ūp
ε

= ūε −
(uε

ūε

)p−1
ūε.

Multiplying the equation for u by η and the equation for ū by η̄, and then adding
the two equations we have

(2.45)

∫
Ω

|∇u|p−2 ∇u · ∇η + |∇ū|p−2 ∇ū · ∇η̄ dz

=

∫
Ω

V

|x|s
(
up−1η + ūp−1η̄

)
dz +

∫
Ω

g (η + η̄) dz.

From

∇η =
[
1 + (p− 1)

( ūε

uε

)p ]
∇uε − p

( ūε

uε

)p−1

∇ūε

we find

|∇u|p−2 ∇u·∇η =
[
1 + (p−1)

( ūε

uε

)p ]
|∇uε|p − p

( ūε

uε

)p−1

|∇uε|p−2 ∇uε ·∇ūε

=
(
uε

p + (p− 1) ūp
ε

)
|∇ lnuε|p − p ūp

ε |∇ lnuε|p−2 〈∇ lnuε, ∇ ln ūε〉

= uε
p |∇ lnuε|p + ūp

ε

[
−|∇ lnuε|p − p |∇ lnuε|p−2 〈∇ lnuε, ∇ ln ūε −∇ lnuε〉

]

≥ uε
p |∇ lnuε|p + ūp

ε

[
Cp |∇ lnuε − ∇ ln ūε|p − |∇ ln ūε|p

]
= uε

p |∇ ln uε|p − ūp
ε |∇ ln ūε|p + Cp ūp

ε |∇ ln uε − ∇ ln ūε|p.
Using the following inequality valid when p ≥ 2 (cf. Lemma 4.2 of [Lin]),

|a|p > |b|p + p |b|p−2 〈b, a − b〉+ Cp |a − b|p , a, b ∈ R
n, a �= b.

The inequality we just proved shows that the left-hand side of (2.45) can be esti-
mated as follows:∫
Ω

|∇u|p−2 ∇u·∇η + |∇ū|p−2 ∇ū·∇η̄ dz ≥ Cp

∫
Ω

(uε
p + ūp

ε ) |∇ lnuε −∇ ln ūε|p dz.
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Therefore we have

Cp

∫
(uε

p+ūp
ε ) |∇ lnuε−∇ ln ūε|p dz ≤

∫
V

|x|s
[( u

uε

)p−1

−
( ū

ūε

)p−1]
(uε

p−ūp
ε ) dz

+

∫
g ūε

[uε

ūε
+ 1−

(uε

ūε

)p

−
(uε

ūε

)1−p ]
dz.

The first integral on the right goes to 0 when ε → 0 by the Lebesgue convergence
theorem since V ∈ Lr′ . A small calculation shows that the function

f(t) = 1 + t − tp − t1−p

is negative for t > 0 with f = 0 iff t = 1. In fact f(1) = 0, f ′′(t) < 0 and f ′(1) = 0.
The proof of the case when we have equality in both places and when p > 2 is
complete. The case 1 < p < 2 follows in the same fashion using the corresponding
inequality of [Lin, Lemma 4.2],

|a|p > |b|p + p |b|p−2 〈b, a− b〉+Cp
|a − b|2

(|a|+ |b|)2−p
, a, b ∈ R

n, a �= b, 1 < p < 2.

Now, consider the more general case. Assume again p > 2, as the case 1 < p < 2
follows by a similar argument. Notice that η ≥ 0 iff η̄ ≤ 0. Therefore we can
multiply the inequality satisfied by u with the test function η+ and then add the
equation satisfied by ū after we multiply it with η̄− = min{η̄, 0}. Then we work
as before, but this time the conclusions will hold only on the set {u ≥ ū}. The
proof of part a) is complete.

b) Define v = ū+ = max{ū, 0}; hence 0 ≤ v ∈ D 1,p(Ω), vε = v + ε and consider

(2.46) η̄ =
vε

p − uε
p

vεp
= vε −

(uε

vε

)p
vε.

Therefore we can multiply the inequality satisfied by u with the test function η+

and then add the inequality satisfied by ū after we multiply it with η̄− ≤ 0, which
will bring us to

Cp

∫
(uε

p + vε
p) |∇ lnuε −∇ ln vε|p dz

≤
∫

V

|x|s
[( u

uε

)p−1

−
( v

vε

)p−1]
(uε

p − vε
p) dz

+

∫
g vε f(uε/vε)dz.

Since g ū ≥ 0, letting ε → 0 we see that with v = ū+ we have u ≤ v if g ū > 0
somewhere, and otherwise u and v are proportional on the set {u ≥ v}, i.e., in the
case g ū ≡ 0. Finally, let us observe that −ū is a solution of

−p (−ū) ≥ V
|ū|p−2(−ū)

|x|s − g.

Taking v = max{−ū, 0} = −ū− and observing that −gvε = gū− − ε g, the
argument above shows that u ≤ v if g ū > 0 somewhere, and otherwise u and v are
proportional on the set {u ≥ v}, i.e., in the case g ū ≡ 0. The conclusion is that if
g ū �≡ 0, then u ≤ |ū|, while if g ū ≡ 0, then u = cū on the set u ≥ |ū|. �
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So far we have concerned ourselves with the global properties of solutions. Having
done this we can obtain the asymptotic behavior of solutions at infinity. The first
result concerns the local behavior on a ball away from some finite point; see [E]
and [Z] for related results.

Theorem 2.9. Suppose s, p, k, and n satisfy the conditions of Theorem 2.1. Let
u be a non-negative solution to the inequality (2.5), with V ∈ Lr′ . We assume that
u has been extended with zero outside Ω. Suppose that qo ≥ p is an exponent such
that u ∈ Lqo(Ω). There exist constants C = C(Rn, p, ||u||D1,p(Ω), ‖u‖qo) > 0 and
0 < Ro = Ro(‖V ‖Lr′ ) such that, for every z ∈ R

n and R = |z|/2 ≥ Ro, we have

(2.47) max u
B(z,R/2)

≤ C

(
1

B(z,R)

∫
B(z,R)

uqodx

) 1
qo

.

Furthermore, u has the following decay at infinity:

(2.48) u(z) ≤ C

|z|n/qo .

Proof. Given a function α ∈ C∞
o (Rn), α ≥ 0, we consider the function αpF (u) ∈

D 1,p(Ω); see (2.11) and (2.15). We recall (2.16) and observe in addition that

(2.49) F (u) ≤ u |G′(u)|p.
We use the fact q/p > 1 in order to see that G is a piecewise smooth and globally
Lipschitz function. Using αpF (u) as a test function in the weak formulation (2.6),
we have ∫

Ω

|∇u| p−2〈∇u,∇(αpF (u))〉 dz ≤
∫
Ω

V
|u|p−2

|x|s uαpF (u) dz.

Let us consider the left-hand side (LHS) of the above inequality, which is easily
seen to equal

(2.50) LHS =

∫
αp|∇G|p dz + p

∫
|∇u|p−2αp−1F (u)∇u · ∇αdz.

For any ε > 0 we have ab ≤ εa
p

p + ε−p′/p bp
′

p′ , and hence

(2.51)

|∇u|p−2αp−1F (u)∇u · ∇α ≤ ε

p
αp|∇u|pu−1F (u) +

ε−p′/p

p′
|∇α|pF (u)up/p′

≤ ε

p
αp|∇G|p + Cε−1qp−1|∇α|pGp,

after using (2.49) and (2.16) in the last inequality. Inserting (2.51) in (2.50) we find

LHS ≥ (1− ε)

∫
αp|∇G|p dz − Cε−p′/pqp−1

∫
|∇α|pGp dz.

We shall use the above inequality with a fixed sufficiently small ε so that 1− ε > 0.
With the help of (a + b)p ≤ 2p(ap + bp), and using once more (2.16) and the
paragraph after it, we come to

(2.52)

∫
|∇(αG)|p dz ≤ C

∫
Ω

V
αpGp

|x|s dz + Cqp−1

∫
|∇α|pGp dz,
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where C is a constant independent of q. Therefore, using the Hölder and the
Hardy-Sobolev inequalities (pr = p∗(rs)!), we have

(2.53) ‖∇(αG)‖pLp ≤ C‖V ‖Lr′ (suppα) ‖∇(αG)‖pLp + Cqp−1

∫
|∇α|pGp dz.

Since V ∈ Lr′ it follows that if 0 �= z ∈ R
n and R = |z|/2 ≥ Ro, then

(2.54)

∫
BR(z)

V r′ dz → 0 as Ro → ∞.

Therefore, C‖V ‖Lr′ (suppα) ≤ 1/2 for all α with

(2.55) α ∈ C∞
o

(
BR(z)

)
with R = |z|/2, |z| ≥ Ro,

where Ro depends on V and C, and it shall be fixed for the rest of the proof. Using
the Sobolev inequality, we have shown that for any such α we have

(2.56) ‖αG‖Lp∗ ≤ ‖∇(αG)‖Lp ≤ Cq(p−1)/p‖(∇α)G‖Lp .

Therefore, if u ∈ Lq we can apply Fatou’s theorem when l → ∞ to get

(2.57)
(∫

αp∗
uδq

)1/p∗

≤ C q(p−1)/p
(∫

|∇α|puq
)1/p

,

where δ = p∗/p > 1. In particular, for any 0 < ρ < r < R and α ∈ C∞
o

(
B(z, r)

)
with α ≡ 1 on B(z, ρ) and |∇α| ≤ 2

r−ρ , we have

(2.58)
( 1

|B(z, ρ)|

∫
B(z,ρ)

uδq dz
) 1

δq ≤ Cp/qq(p−1)/q

(r − ρ)p/q

( 1

|B(z, r)|

∫
B(z,r)

uq dz
) 1

q

.

We can define the sequences qj = qoδ
j and rj = R

2

(
1 + 1

2j

)
for j = 0, 1, . . . by

which Moser’s iteration procedure gives inequality (2.47). Let us observe that∑∞
j=0

1
qj

< ∞ and
∑∞

j=0
ln qj
qj

< ∞ thanks to δ > 1; cf. (2.23). The decay property

follows immediately taking into account that the volume of BR(z) is proportional
to Rn, i.e., |z|n. �

Combining Theorems 2.1 and 2.5 and (2.48), we can assert the following decay
of solutions to (2.5).

Theorem 2.10. Let Ω be an open subset of Rn, which is not necessarily bounded,
1 < p < n, 0 ≤ s ≤ p, s < k and s(n − k) < k(n − p). Suppose R ∈ Lr′ ∩ Lto ,
for some to > r′, and in the case p �= 2 assume that R and Vo are non-negative,
R ≥ 0, Vo ≥ 0.

If u is a non-negative solution of (2.24), then there exists a

C = C(Rn, p, ||u||D 1,p(Ω)) > 0

such that u has the following decay at infinity:

(2.59) u(z) ≤ C

|z|q ‖u‖D1,p(Ω),

for any q < n−p
p−1 .

Remark 2.11. Let us observe that the fundamental solution of the p-Laplacian on

R
n equals C|z|−

n−p
p−1 , where C is a constant.
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3. Asymptotics for the scalar curvature equation

In this section we restrict our considerations to the case p = 2 and furthermore
we require V = R(z)u2∗−2 with R ∈ L∞; i.e., we consider a non-negative weak
solution u of

(3.1) − u ≤ R(z)u2∗(s)−1

|x|s in Ω.

From Theorem 2.10 and Remark 2.7 we know that for any 0 < θ < 1 there exists
a constant Cθ > 0 such that

(3.2) u(z) ≤ Cθ

1 + |z|θ(n−2)
‖u‖D1,p(Ω).

The next result shows that the decay is at least as that of the fundamental solution.
Furthermore, if u is a non-negative solution rather than a subsolution, then u has
the same decay as the fundamental solution.

Theorem 3.1. Let Ω be an open subset of Rn, which is not necessarily bounded,
2 < n, 0 ≤ s ≤ 2, s < k and R ∈ L∞.

a) If u is a non-negative solution of (3.1), then there exists a constant C > 0
such that

(3.3) 0 ≤ u(z) ≤ C

1 + |z|n−2
, z ∈ Ω.

b) If u is a non-negative non-trivial solution of

(3.4) − u =
R(z)u2∗(s)−1

|x|s in Ω

with R ≥ 0, then

(3.5)
C−1

1 + |z|n−2
≤ u(z) ≤ C

1 + |z|n−2
, z ∈ Ω.

Proof. We shall first prove the estimate for u from above. Let us extend u as a

function on R
n by setting it equal to zero outside of Ω. Let us define f = |R(z)|u2∗−1

|x|s .

Thanks to Theorem 2.10 we have for any 0 < θ < 1

(3.6) f(z) ≤ Cθ
|R(z)|

1 + |z|θ(n+2−s)

1

|x|s .

Consider the function v = Γ ∗ f , where Γ is the positive fundamental solution
of the Laplacian Γ(z) = 1

n(n−2)ωn
|z|2−n (recall n > 2), where ωn is the volume

of the unit ball in R
n, so that −Γ = δ. For points z, ζ in R

n we shall write
z = (x, y) ∈ Rk × R

n−k and ζ = (ξ, η) ∈ Rk × R
n−k. With this notation and using
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(3.6) we have (Cn = 1
n(n−2)ωn

)

v(z) = Cn

∫
Rn

f(ζ)

|z − ζ|n−2
dζ = Cn

∫
|z−ζ|≤ |z|

2

f(ζ)

|z − ζ|n−2
dζ

+ Cn

∫
|z−ζ|> |z|

2

f(ζ)

|z − ζ|n−2
dζ

≤ Cθ‖R‖∞
1 + |z|θ(n+2−s)

∫
|z−ζ|≤ |z|

2

1

|z − ζ|n−2

1

|ξ|s dζ

+
Cθ‖R‖∞
1 + |z|n−2

∫
Rk

∫
Rn−k

1

(1 + |ζ|θ(n+2−s))

1

|ξ|s dη dξ ≤ Cθ‖R‖∞
1 + |z|n−2

,

from Lemmas 3.5 and 3.3 (see also the remark following Lemma 3.5 for the case
k = n).

Going back to the bound from above for u we see that the difference u − v is a
subharmonic function, which goes to zero at infinity and is equal to zero on ∂Ω.
From the weak maximum principle we can conclude that

u− v ≤ 0,

from which (3.3).
If u is a solution, we can take a ball B centered at the origin and a constant

C such that the subharmonic function u− C Γ goes to zero at infinity, equals zero
on ∂Ω, and is positive on the (compact) boundary ∂B. From the weak maximal
principle u−C Γ is positive everywhere. The proof of the theorem is complete. �

Remark 3.2. The second part of Theorem 3.1, i.e., when we assume in addition
that R ≥ 0, can also be derived with the help of the Kelvin transform on R

n, which
can be seen as follows.

We know that the Kelvin transform is an isometry between D 1,2(Ω) and
D 1,2(Ω∗); cf. [E] and [GV1]. A calculation using  (Ku) = |z|−n−2(u) ( z

|z|2 )

shows that the Kelvin transform Ku of u is a non-negative weak solution of the
inequality

− (Ku)(z) ≤ R(
z

|z|2 )
|x|s
|z|2s (Ku)2

∗(s)−1(z)

≤ R(
z

|z|2 )
1

|x|s (Ku)2
∗(s)−1(z) in Ω∗.

Notice that R( z
|z|2 ) ∈ L∞ (Ω∗) when R ∈ L∞ (Ω). Furthermore, if Ω is a neigh-

borhood of the infinity, then 0 is a removable singularity of Ku; i.e., the above
inequality is satisfied on Ω∗ ∪ {0} and Ku ∈ D 1,2(Ω∗ ∪ {0}); cf. [E] and [GV1]. In
other words, when 0 ≤ R ∈ L∞ the function Ku satisfies the same inequality and
conditions as u. Recalling that u(z) = |z|2−n (Ku)( z

|z|2 ), the claim follows from the

regularity we have shown in Section 2.
The following lemma contains a useful fact concerning the value of a certain

integral, which was used in the above theorem.
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Lemma 3.3. Let m > n−s
2 and 0 ≤ s < k < n. The following formula holds:

(3.7)

∫
Rk

∫
Rn−k

1

(1 + |x|2 + |y|2)m
1

|x|s dy dx

=
σn−k

2

σk

2
B(

n− k

2
,m− n− k

2
) B(

k − s

2
,m− n− s

2
).

Proof. With a2 = 1 + |x|2 we have

(3.8)

∫
Rn−k

1

(1 + |x|2 + |y|2)m dy =
an−k

a2m

∫
Rn−k

1

(1 + |y|2)m dy

=
σn−k

a2m−(n−k)

∫ ∞

0

rn−k−1

(1 + r2)m
dr =

σn−k

2a2m−(n−k)

∫ ∞

0

t
n−k

2 −1

(1 + t)
n−k

2 +(m−n−k
2 )

dt

=
σn−k

2a2m−(n−k)
B(

n− k

2
,m− n− k

2
).

Therefore, we find

(3.9)

∫
Rk

∫
Rn−k

1

(1 + |x|2 + |y|2)m
1

|x|s dy dx

=
σn−k

2
B(

n− k

2
,m− n− k

2
)

∫
Rk

1

(1 + |x|2)m−n−k
2

1

|x|s dx

=
σn−k

2

σk

2
B(

n− k

2
,m− n− k

2
)

∫ ∞

0

t
k−s
2 −1

(1 + t)
k−s
2 +(m−n−k

2 − k−s
2 )

dt

=
σn−k

2

σk

2
B(

n− k

2
,m− n− k

2
) B(

k − s

2
,m− n− s

2
).

�

Remark 3.4. For future reference, let us notice that the above proof amounts to
twice using, with the appropriate choice of the involved parameters, the formula∫

Rk

1

(1 + |x|2)a
1

|x|s dx =
σk

2
B(

k − s

2
, a− k − s

2
),

which is valid for any a > 0, k > s and a > k−s
2 .

We end the section with one more technical lemma, which was used in Theorem
3.1.

Lemma 3.5. Let k ≥ 2, n ≥ 3 and 0 ≤ s < k ≤ n and s < 2. There exists a
constant C > 0 such that

I(z) =

∫
|z−ζ|≤ |z|

2

1

|z − ζ|n−2

1

|ξ|s dζ ≤ C |z|2−s.

Proof. To estimate the integral I we observe that I is homogeneous and that
I(λz) = λ2−sI1(z) for λ > 0. Therefore, if I is finite on |z| = 1 we can conclude
that

(3.10) I(z) ≤ C|z|2−s.

In order to see that I is finite when |z| = 1, let us notice that it depends only on |x|
and |y| as the integral is invariant under rotation in R

k or Rn−k. A consequence of



HARDY-SOBOLEV INEQUALITIES 55

this fact is that it is enough to show that on |z| = 1 the integral I is finite at only
three points, namely, x = 0, x = 1, and x = y (we write x = 1 for the number one
on the real axis considered as a point in R

k, etc.).
For the rest of the proof we assume |z| = 1. The case of x �= 0 is easier, so we

shall first consider the last two points. Without any loss of generality we take x = 1
and we split the integral in two parts:

I(z) =

∫
{|z−ζ|≤ |z|

2 }∩{|x−ξ|≤ |z|
4 }

+

∫
{|z−ζ|≤ |z|

2 }∩{|x−ξ|≥ |z|
4 }

.

On the domain of integration of the first integral we have that |ξ| is bounded away
from zero, and so the integral is finite. In turn, on the domain of integration of the
second integral |z − ζ| is bounded away from zero and |ξ|−s is integrable near the
origin as k > s; hence this integral is again finite.

Let us now consider the case x = 0. Introducing ρξo = ξ and rηo = y− η we put
I in the form

I =

∫
|ξ0|=1

∫
|ηo|=1

∫
r2+ρ2≤1/4

ρk−1 rn−k−1

(ρ2 + r2)
n−2
2

1

ρs
dr dρ dηo dξo.

Letting r = t cosφ, ρ = t sinφ we come to

I = σn−kσk

∫ 1/2

0

t1−s dt

∫ 2π

0

(sinφ)k−1(cosφ)n−k−1

| sinφ|s dφ < ∞,

iff s < 2 and k > s. �

4. A non-linear equation in R
n
related to the Yamabe equation

on groups of Heisenberg type

Suppose a and b are two natural numbers, λ > 0, and for x, y ∈ R
+ = (0,+∞)

define the function
φ = λ2

[
(x+ α)2 + (y + β)2

]
,

where α, β ∈ R.

Proposition 4.1. The function φ satisfies the following equation in the plane:

(4.1) Δφ − a+ b+ 2

2

|∇φ|2
φ

+
a

x
φx +

b

y
φy =

2aλ2α

x
+

2bλ2β

y
, xy �= 0.

Proof. Set ξ = λ(x+α), η = λ(y+β) and define φ̃(ξ, η) = φ(x, y). From ∂
∂x = λ ∂

∂ξ

and ∂
∂y = λ ∂

∂η we have

Σ
def
= Δφ − a+ b+ 2

2

|∇φ|2
φ

+
a

x
φx +

b

y
φy

= λφ̃ − a+ b+ 2

2
λ2 |∇φ̃|2

φ̃
+

aλ

x
φ̃ξ +

bλ

y
φ̃η.

Since φ̃ = ξ2 + η2 we have

Σ = 4λ2 − n+ 2

2
λ2 4(ξ

2 + η2)

ξ2 + η2
+

a

x
2λξ +

b

y
2λη

= − 2nλ2 + 2aλ2 + 2bλ2 +
2aλ2α

x
+

2bλ2β

y
.

Hence, taking into account a+ b = n, we proved Σ = 2aλ2α
x + 2bλ2β

y . �



56 DIMITER VASSILEV

Noting that Δφ + a
x φx + b

y φy is the Laplacian in R
n ≡ R

a+1 × R
b+1,

n = a+ b+2, acting on functions with cylindrical symmetry, i.e., depending on |x|
and |y| only, we are led to the following question.

Question 4.2. Given two real numbers po and qo, find all positive solutions of the
equation

Δu − n

2

|∇u|2
u

=
po
|x| +

qo
|y| , (x,y) ∈ R

n ≡ R
a+1 × R

b+1,

which have at most a quadratic growth condition at infinity, u ≤ C(|x|2 + |y|2).

As usual a simple transformation allows us to remove the appearance of the
gradient in the above equation. For a function F we have ΔF (u) = F ′′(u)|∇u|2 +
F ′(u)Δu and thus

Δuτ = τ (τ − 1)uτ−2|∇u|2 + τuτ−1Δu =
τ

2
uτ−2(2uΔu + 2(τ − 1)|∇u|2).

Therefore we choose τ such that 2(τ − 1) = −n, i.e., τ = 2−n
2 , and then rewrite

the equation for u as

Δu
2−n
2 =

2− n

2
u

2−n
2 −2(2uΔu − n|∇u|2) = − (n− 2)

2
u

2−n
2 −1

( po
|x| +

qo
|y|

)
.

This is the equation which we will study. As a consequence of the above calculations
we can write a three parameter family of explicit solutions.

Proposition 4.3. Let λ > 0. The function v(x,y) defined in R
n ≡ R

a+1 × R
b+1

by the formula

(4.2) v(x,y) = λ2−n( (|x|+α)2 + (|y|+β)2 )
2−n
2 , (x,y) ∈ R

n ≡ R
a+1×R

b+1

satisfies the equation

(4.3) Δv = − v
n

n−2

( p

|x| +
q

|y|
)
,

where

(4.4) p = α (n− 2)λ2 a, q = β (n− 2)λ2 b.

Let us observe that the above equation is invariant under rotations in the x or
y variables. Also, if v is a solution, then a simple calculation shows that for any
t �= 0 the function vt(x,y) = t(n−2)/2 v(tx, ty) is also a solution.

Another observation is that the same principle works if we split R
n in more

than two subspaces. For example, if we take three subspaces we can consider the
equation

Δv = v
n

n−2 f(|x|, |y|, |z|), f(x,y, z) =
p

|x| +
q

|y| +
r

|z|
and ask the question of finding all positive solutions with the same behavior at
infinity as the fundamental solution. Clearly the function

v = λ2−n( (|x|+ α)2 + (|y|+ β)2 + (|z|+ γ)2 )
2−n
2 ,

with the obvious choice of α, β and γ, is a solution.
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5. The best constant and extremals

of the Hardy-Sobolev inequality

In this section we give the proof of Theorem 1.2. It was proven in [SSW] that
there are extremals with cylindrical symmetry, i.e., functions depending only on
|x| and |y| for which the inequality becomes equality. On the other hand, it was
shown in [MS] that all extremals of inequality (1.5) have cylindrical symmetry after
a suitable translation in the y variable; see also [CW] and [LW] for some related
results.

Theorem 5.1 ([MS]). If u ∈ D 1,2(Rn) is a function for which equality holds in
(1.5), then

i) for any y ∈ R
n−k the function u(., y) is a radially symmetric decreasing func-

tion in R
k;

ii) there exists a yo ∈ R
n−k such that for all x ∈ R

k the function u(x, .+ yo) is a
radially symmetric decreasing function on R

n−k.

We turn to the proof of Theorem 1.2, in which we find the extremals and the
best constant in (1.5) in the case σpσ = 1, i.e., s = 1 in Theorem 1.1.

Proof of Theorem 1.2. By Theorem 2.1 and Theorem 2.5 of [BT] there is a constant
K for which (1.6) holds and for which this constant is achieved, i.e., the equality is
achieved. A small argument shows that a non-negative extremal u of the naturally
associated variational problem inf

∫
Rn |∇u|2 dz, subject to the constraint

(5.1)

∫
Rn−k

∫
Rk

|u|
2(n−1)
n−2

|x| dxdy = 1,

satisfies the Euler-Lagrange equation

(5.2) u = − Λ

|x| u
n

n−2 , u ∈ D1,2 (Rn),

where Λ = K
2(n−1)
n−2 . From Theorem 2.4 and standard elliptic regularity results we

can see that v is a C∞ function on |x| �= 0. Furthermore, ∇u ∈ L∞
loc(R

n) and u is

C∞ smooth in the y variables. In particular, u ∈ C0,α
loc (R

n) for any 0 < α < 1. In
order to see these claims let v = uyj

for some j. Hardy’s inequality shows v
|x| ∈ Lq

loc

for any 1 < q < k. From elliptic regularity v ∈ W 2,q
loc (R

n) for any 1 < q < k, and

hence the Sobolev embedding gives v ∈ W 1, δq
loc (Rn), where δ = n

n−q > 1. After

finitely many iterations we see that v ∈ W 1,2
loc (R

n), from which we can invoke
Remark 2.3 to conclude v ∈ L∞

loc(R
n). The same argument can be done for the

higher order derivatives in the y variables. For the x derivatives we argue similarly.
We consider (with v = uxi

)

v = − V

|x|v − Vo

|x| .

We note that V, Vo ∈ L∞
loc(R

n), and it is not hard to see that the proof of Theorem
2.4 (cf. also Remark 2.2 and Remark 2.3) allows us to conclude v ∈ L∞

loc(R
n), and

hence ∇xu ∈ L∞
loc(R

n), as claimed.
From Theorem 1.1 of [MS] the non-negative extremal u is a function with cylin-

drical symmetry after a suitable translation in the y variable. Thus we can assume
that u has cylindrical symmetry. Introducing ρ = |x|, r = |y| we have that u is a
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function of ρ and r. We define U(ρ, r) = u by restricting u to two lines through the
origin—one in R

k and the other in R
n−k. From the regularity of u it follows that

U is a smooth function of r for any fixed ρ. For any fixed r it is a smooth function
of ρ when ρ �= 0 and is Lipschitz for any ρ. Furthermore, in the first quadrant
ρ > 0, r > 0 of the ρ r-plane it satisfies the equation

(5.3) ΔU = − Λ

ρ
U

n
n−2 .

Using the equation and the smoothness of U in r it is not hard to see that U has
bounded first and second order derivatives on ( (0, 1)× (0, 1) ); cf. Lemma 5.2.

Let φ(ρ, r) = U− 2
n−2 . The calculations of Section 4 show that φ satisfies the

following equation in the plane:

(5.4) Δφ − n

2

|∇φ|2
φ

+
a

ρ
φρ +

b

r
φr − 2Λ

n− 2

1

ρ
= 0,

where a = k − 1, b = n− k − 1. Let μ > 0 and consider φ̃ = μ−1φ. Clearly φ̃ is a
solution of

Δφ̃ − n

2

|∇φ̃|2

φ̃
+

a

ρ
φ̃ρ +

b

r
φ̃r − 2Λ

μ(n− 2)

1

ρ
= 0.

Let us choose μ such that 2Λ
μ(n−2) = n−2

2 , i.e., μ = 4Λ
(n−2)2 . With this choice of μ

we see that φ̃ satisfies equation (4.11) in [GV2]. Moreover, a small argument using
the homogeneity of the Kelvin transform shows it satisfies the asymptotic behavior
(4.37) of [GV2], except the inequality for the derivatives holds only on |x| �= 0. We
can apply (4.40) of [GV2] by noticing that the integrals on the ρ and r axes vanish,
as U has bounded first and second order derivatives in the punctured neighborhood
of any point from the closed first quadrant, a fact which we observed above. Hence
(4.43) of [GV2] after setting |A| = λ gives φ̃ = λ2

[
(r + n−2

4aλ2 )
2 + s2

]
. Recalling

that φ = μ φ̃ and the value of μ we come to

φ = λ2 4Λ

(n− 2)2
[
(r +

n− 2

4aλ2
)2 + s2

]
.

This shows that v must equal

v = λ−(n−2)
( 4

(n− 2)2

)−n−2
2

Λ−n−2
2

[
(|x|+ n− 2

4aλ2
)2 + |y|2

]−n−2
2

= λ−(n−2)
(n− 2

2

)n−2

K−(n−1)
[
(|x|+ n− 2

4aλ2
)2 + |y|2

]−n−2
2

.

The value of K is determined by (5.1) after fixing λ arbitrarily, say λ = 1, since
the value of the integral in (5.1) is independent of λ. With this goal in mind we set
p = n−2

4a and compute the integral

1 =

∫
Rn−kRk

1

|x|
[ (n− 2

2

)n−2 1

Kn−1

1[
(|x|+ p)2 + |y|2

]n−2
2

] 2(n−1)
n−2

dxdy

(5.5)

=
1

K
2(n−1)2

n−2

(n− 2

2

)2(n−1)
∫
Rn−kRk

1

|x|
1[

(|x|+ p)2 + |y|2
]n−1 dxdy.
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Let a = |x|+ p. Then we compute∫
Rn−k

1

(a2 + |y|2)n−1
dy =

1

an+k−2

∫
Rn−k

1

(1 + |y|2)n−1
dy

=
σn−k

2an+k−2
B(

n− k

2
,
n+ k

2
− 1),

where σn−k is the volume of the unit n − k dimensional sphere and B(., .) is the
beta function. On the other hand, after a simple computation we find

∫
Rk

1

|x|(|x|+ p)n+k−2
dx =

σk

pn+k+1

∫ ∞

0

rk−2

(r + 1)n+k−2
dr =

σk

pn+k+1
B(k−1, n−1).

Plugging in (5.5) we obtain

K
2(n−1)2

n−2 =
(n− 2

2

)2(n−1) σn−k

2
B(

n− k

2
,
n+ k

2
− 1)

σk

pn+k+1
B(k − 1, n+ k − 1)

(5.6)

= 22k+3(n− 2)n−k−3(k − 1)n+k+1σn−k

× σkB(
n− k

2
,
n+ k

2
− 1)B(k − 1, n− 1).

The proof is complete, taking into account the allowed translations in the y variable.
�

In the above proof we used the following simple ODE lemma, which can be
proved by integrating the equation.

Lemma 5.2. Suppose f is a smooth function on R \ {0}, which is also locally
Lipschitz on R; i.e., on any compact interval there is a constant L such that
|f(t′) − f(t′′)| ≤ L |t′ − t′′| for any two points t′, t′′ on this interval. If f sat-
isfies the equation

f ′′ +
k

t
f ′ =

a

t
+ b, t > 0,

where k is a constant k > 1 and a, b are L∞
loc functions, then f has bounded first

and second order derivatives near the origin.

6. Some applications

Let us consider the prescribed scalar curvature equation on R
n,

(6.1) u = −R(z) u2∗−1,

where R is a bounded function and u is a non-negative function. As usual we say
that u is of finite energy if ‖u‖D 1,p(Rn) is finite. Clearly, if g = u4/(n−2)go is a
metric conformal to the Euclidean metric go on R

n, then the finite energy condition
is equivalent to g having finite volume. The results of Section 2 can be extended
to the case of the scalar curvature equation of many non-compact manifolds with
positive Yamabe invariant, but the following result, which follows from the fast
decay Theorem 3.1 a) of u (i.e., at least as fast as the fundamental solution) is
indicative of what is to be expected; see also [Le].
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Theorem 6.1. Suppose R ∈ L∞ and go is the Euclidean metric on R
n. Let u be

a positive solution to (6.1). If Rn with the conformal metric g = u4/(n−2)go has
finite volume, then u has fast decay and the metric g is incomplete.

The second application concerns the original motivation of Badiale and Taran-
tello [BT] to consider the Hardy-Sobolev inequality. The following equation has
been proposed (cf. [Ch], [B] and [R] for further details) as a model to study elliptic
galaxies:

(6.2) −u = φ(|x|)uq−1, 0 < u ∈ D1,2(R3) ( z = (x, y) ∈ R
3 !).

It is also required that u is of finite mass, i.e.,
∫
φuq−1 dz < ∞. Using the results

of this paper we can show the following theorem.

Theorem 6.2. Suppose (1 + |x|)γφ ∈ L∞(R3) for some 0 < γ < 2. If 2∗(γ) < q <
6, then any solution of (6.2) is also of finite mass.

Proof. Since the dimension of the ambient space is three, we have 2∗(0) = 6 and
2 < 2∗(γ) < 6. Given any q satisfying 2∗(γ) < q < 6, we can find an s < γ such

that q = 2∗(s) and u satisfies the equation −u = φ(|x|)uq−1 = V |u|2∗(s)−1

|x|s
with |V | = |x|s|φ| ≤ (1+ |x|)s|φ| ≤ (1+ |x|)γ |φ| ∈ L∞(R). Theorem 3.1 a) implies
that u decays at least as fast as the fundamental solution of the Laplacian in R

3,
u(z) ≤ C

1+|z| . Since q − 1 > 2∗(γ)− 1 > 1 it follows that
∫
φuq−1 dz < ∞, which

shows that every finite energy solution is also of finite mass. �
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