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1. Introduction

This paper constitutes the first part of a project devoted to the study of a class
of nonlinear sub-elliptic problems which arise in function theory on CR man-
ifolds. The infinitesimal groups naturally associated with these problems are
non-commutative Lie groups whose Lie algebra admits a stratification. The fun-
damental role of such groups in analysis was envisaged by E. M. Stein [72] in his
address at the Nice International Congress of Mathematicians in 1970, see also
the recent monograph [73]. There has been since a tremendous development
in the analysis of the so-called stratified nilpotent Lie groups, nhowadays also
known as Carnot groups, and in the study of the sub-elliptic partial differential
equations, both linear and non-linear, which arise in this connection. Despite all
the progress, our understanding of a large number of basic questions is not to
present day as substantial as one may desire. Such situation is due primarily to
the complexity of the underlying sub-Riemannian geometry, on the one hand,
and to the considerable obstacles which are imposed by non-commutativity and
by the presence of characteristic points on the other.

To introduce the problems studied in this paper we recall that a Carnot group
G is a simply connected nilpotent Lie group such that its Lie alggbmdmits

a stratificationg = é Vi, with [V, V] = Vi forl < j < r, [V, V] = {O}.
j=1
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We assume that a scalar product., - > is given ong for which theV’s are
mutually orthogonal. Every Carnot group is naturally equipped with a family of
non-isotropic dilations defined by

8,(g) = expo A, oexp (), g€G,
whereexp : g — G is the exponential map and, : g — g is defined by
Ay (X1 + ...+ X,) = AX3 + ... + A X,. The topological dimension dof is

N = ) dimV;, whereas thdromogeneous dimensiaf G, attached to the
j=1
automorphismgé; },-o0, is given byQ = " j dim V;. We denote by/H =
j=1

dH (g) afixed Haar measure @#. One has/H (5, (g)) = A2d H(g), so that the
numberQ plays the role of a dimension with respect to the group dilations. Let

= {X1,...,X,,} beabasis o¥; and continue to denote &the corresponding
system of sections 06. The sub-Laplacianassociated withx is the second-
order partial differential operator a6 given by

(werecallthatin a Carnot group one h’é;S_ —X;, see[26]). By the assumption
on the Lie algebra one immediately sees that the sysfesatisfies the well-
known finite rank condition, therefore thanks tottiander's theorem [39] the
operatolL is hypoelliptic. However, it fails to be elliptic, and the loss of regularity
is measured by the stepof the stratification ofy. For a functiornk on G we let
|Xul = Q-7 (Xu)®)?. For 1< p < Q we set

brr(2) = Cr@ e,

where D17 (£2) indicates the space of functionse L”"(£2) having distribu-
tional horizontal gradienku = (X1u, ..., X,,u) € L?(£2). The space®>?(£2)
is endowed with the obvious norm

llullprecey = llullLrm @) + 1 XullLr2)-

Here,p* PQ is the Sobolev exponent relative po The relevance of such
number is empha5|zed by the following embedding due to Folland and Stein
[26], [27].

Theorem (Folland and Stein).et 2 C G be an open set. Forary< p < Q
there existsS, = S,(G) > 0 such that forx € C2°(£2)

. 1/p* 1/p
(1.1 (/ lu|? dH) <S, (/ |Xu|”dH) .
Q Q
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The purpose of the present paper is to study the non-linear Dirichlet problem

042
Lu=—uo-z2

(1.2) 0
ueD2R), u=>0.

The exponen fg = 2* — 1 is critical for the cas@ = 2 of the embedding
(1.1). To motivate our results we recall that in the classical Riemannian setting
the equatiomdu = —u*+2/"=2 is connected to the compact Yamabe problem
[76], [3], [69], see also the book [4] and the survey article [59]. There exists an
analogue of such problem in CR geometry, nam@ixen a compact, strictly
pseudo-convex CR manifald of real dimensior2n + 1, with contact forn®, find
a choice of contact form in the conformal clasg ébr which the Webster- Tanaka

pseudo-hermitian scalar curvatuR is constantDenoting witho* = 42 0 a
conformal change df, one obtains for the corresponding scalar curvature

where we have leQD = 2n + 2. It is then clear that in the flat cage =

0 the pde associated with the CR Yamabe problem is the one that appears in
(1.2). Although on the formal level this problem has many similarities with
its Riemannian predecessor, the analysis is considerably harder since, as we
mentioned, the sub-Laplaciahfails to be elliptic everywhere. In 1984-88 D.
Jerison and J. Lee in a series of important papers [44], [45], [46], [47] gave a
complete solution to the CR Yamabe problem when the CR mani¥bldas
dimension> 5 andM is not locally CR equivalent to the sphere@i*!. They
proved first that the CR Yamabe problem can be solved on any compact CR
manifold M provided that the CR Yamabe invariantifis strictly less than that

of the sphere irC"*1, Similarly to Aubin’s approach in the Riemannian case,

in order to determine when the problem can be solved they then proved that the
Yamabe functional is minimized by the standard Levi form on the sphere and its
images under CR automorphisms. A crucial step in this analysis is the explicit
computation of the extremal functions in the special case when 2 andG

is the Heisenberg group in the above stated Folland-Stein embedding . Jerison
and Lee made the deep discovery that, up to group translations and dilations, a
suitable multiple of the function

(1.3) u(z, 1) = (L+ |z|H? + 12~ (Q-2/4,

is the only positive solution of (1.2) whe@ = H". Here, we have denoted with
(z,1),z € C", ¢t € R, the variable point ifH".

In 1980 A. Kaplan [48] introduced a class of Carnot groups of step two
in connection with hypoellipticity questions. Such groups, which are called of
Heisenberg typeconstitute a direct generalization of the Heisenberg group, as
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they include, in particular, the nilpotent component in the lwasawa decompo-
sition of simple groups of rank one. Since their introduction there has been a
considerable amount of work in the study of such groups and of their geometry,
we refer the reader to the papers [49], [17], [50], [51], [16], [54], [18], [19], [20],
[15], [9], and to the references therein. From our perspective groups of Heisen-
berg type display a crucial feature: Their conformal invariances can be revealed.
This leads to the construction of some beautiful solutions to various problems.
In this connection, in his first work on the subject Kaplan [48] constructed an
explicit fundamental solution for the sub-Laplacian, thus extending Folland’s re-
sult for the Heisenberg group [25], see (1.5). In [9] Capogna, Danielli and one of
us found explicit formulas for the fundamental solution of gheub-Laplacian
in any group of Heisenberg type, and for the horizoptalapacity of rings.

When$2 = G is a group of Heisenberg type we have discovered that problem
(1.2) possesses a one- parameter family of explicit entire solutions.

Theorem 1.1. LetG be a group of Heisenberg type. For every 0the function

m (Q — 2) €2 >Q42
(€2 + x(8)|P)?+ 161y(g)I?

is a positive, entire solution of the Yamabe equation (1.2).

(14)  K.(g) = ( <cG

The symbolsx(g), y(g) in (1.4) respectively denote the projection of the
exponential coordinates of the point G onto the first and second layer of the
Lie algebrag, whereasn indicates the dimension of the first layer. The reader
should compare (1.4) with the Jerison-Lee minimizer (1.3). To give a glimpse of
the complexity of the present situation with respect to the classical one we recall
Folland’s mentioned fundamental solution for the Kohn sub- Laplaciad™on

(1.5) [(z,1) = Co(lz|* + 13727274,

whereCy, is a suitable constant. WhereAsis a function of the natural homo-
geneous gaugl¥ = N(z,t) = (|z|*+?)Y/4, the Jerison-Lee minimizer in (1.3)
is not. This is in strong contrast with the famous results of Aubin [1], [2] and
Talenti [75] who proved that for every value pfthe minimizers in the Sobolev
embedding are functions with spherical symmetry.

When 2 = G problem (1.2) is invariant with respect to the group left-
translations and also with respect to the scaling

u—u;, =122y 55, A > 0.

Now itisimmediate to verify thatk ), = K./, i.e., one obtains a function of
the same type. We were thus naturally led to conjecture that, up to left- translations
and dilations, the functio®’; in (1.4) is the only hon-negative entire solution to
(1.2). Such conjecture, if true, would generalize Jerison and Lee’s cited result
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to groups of Heisenberg type. This problem turns out to be considerably harder
than its already difficult Heisenberg group predecessor. Our objective is to come
back to it in a subsequent study and prove the conjecture.

We next describe the plan of the paper. Section two is devoted to collect several
basic results which will play a role in the following sections. In section three
we establish some integral identities for Carnot groups which are reminiscent
of those originally discovered for the standard Laplacian by Rellich [68], and
subsequently by Polkaév [67]. The implementation of such identities, whose
existence is an interesting fact in its own right, is one of the principal motivations
behind this paper. To understand this point the reader should glance at Theorem
3.7 which is the main result of section three. It states that, when the ground
domaing? is starlike with respect to one of its points, the problem

Lu = —f(u)

1.6 0
(1.6) ueD¥2(2), u=>0,

admits no non-trivial solution such thatu, Zu € L*°(£2), provided that the
following analogue of the famous Pataev condition is fulfilled

1.7) 20F ) —(Q —ufu) < 0,

where F(u) = f(j‘ f(s)ds. In particular, whenf (u) = u” condition (1.7) re-
duces top > g—fg, so that problem (1.2) has no non-trivial solutiosuch that

Xu € L*®(2)andZu € L*°($2). Here, the notion of starlikeness is expressed by
means of the infinitesimal generatéiof the group dilation$s; },-0. We remark

that such vector field is neither left-invariant, nor itsisb-unitaryaccording to

C. Fefferman and D.H. Phong [24]. One easily sees that, in exponential coor-
dinates, the vector field involves commutators up to maximum length. In the
classical case the boundary regularity of the relevant solution which is necessary
to apply the Rellich-Potraiev identity is guaranteed, via standard elliptic theory,
by suitable smoothness assumptions on the ground dofhasee, e.g., [67].

The situation is drastically different in the sub-elliptic setting even if the domain
£2 is C*, due to the presence of characteristic points on the boundaey dfe

recall that the characteristic set of a smooth donsairc G with respect to the
systemX is

T =Fox=1{g€dR|X;(g) € T,(3R),j =1, ... m}.

A bounded domain with trivial topology in a group of Heisenberg type with
odd-dimensional center always has a non-empty characteristic set. On the one
hand theL> estimates in the Appendix of this paper, combined with the local
regularity theory of Folland and Stein [27], [26], allow to conclude that a weak
solutionto (1.2) belongsinfact 16> (£2). On the other hand near a characteristic
pointu can experience a sudden loss of regularity. £drarmonic functions on
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the Heisenberg grouf”, i.e., solutions of the Kohn sub-Laplacidnthis phe-
nomenon was discovered by D. Jerison [43]. He constructed an explicit solution
for the smooth domaifz, 1) € H" | t > —M|z|?}, with M > 0 suitably fixed,
which vanishes on the boundary and which is at most iolaét clasg™%* near

the isolated characteristic point= (0, 0). As a consequence, sughharmonic
function fails to satisfy the conditioNu € L*°(£2), as well asZu € L*(£2).

This example should alert the reader about the difficulties that can occur at char-
acteristic points. At this point it should be clear that assuraipgori, as we do

in Theorem 3.7, the boundedness near the characteristic X¥et afid Zu for a
solution of (1.2) constitutes a serious obstacle to overcome. This is even more so
for Zu, since, as we have observed, thelerivative involves commutators up

to maximum order. In connection with the results in section three we mention
that for the Heisenberg grouii” integral identities of Rellich- Polmaev type

were first discovered in [30], [31]. In [31], however, the relevant solutions were
a priori assumed to be globally smooth and the basic question of regularity at
characteristic points was not addressed.

Section four is devoted to the study of the regularity properties of a weak
solution to (1.2) near the characteristic set. This is the central section of the
paper. One of the key ingredients of our approach are some sub-elliptic barriers
constructed in Theorem 4.3. The existence of these barriers is established under
natural geometric assumptions on the domain near the characteristic set, such as
uniform starlikeness with respect to the generator of group dilations, see (4.10),
plus a suitable condition of “convexity”, see (4.12). The latter can be stated as
follows. Letp € C*(G) be a defining function fof2. By this we mean that

2={geG|p(g <R}

for someR € R. Denote byys the smooth function oz defined byyr(g) =
|x(g)|%, wherex(g) indicates the projection onto the first laygy of g of the
exponential coordinates gfe G.We assume the existence of a neighborhdod
of the characteristic séf and of a constar@ > 0 such thatfor every € 2NU

(1.8) Lp(g) = C < Xp(g), X¥(g) > .

We emphasize that, sincép(g) = O for everyg € X, (1.8) implies in
particular thatZp > 0 onX. Onthe other hand it should be clear that a sufficient
condition for (1.8) to hold is

Lp(g) > C > 0, forevery g e X,

i.e., the strictC-sub-harmonicity of the defining functignon the characteristic

set (we recall that the latter is compact). This latter property is fulfilled, for
instance, by those bounded sets which play a key role in the analysis of the
Heisenberg groufll”, namely the level sets of the Jerison-Lee minimizers (1.3),
and those of the Folland fundamental solution (1.5) above, i.e., the gauge balls
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in H". However, as we show after the proof of Theorem 9.5, (1.8) fails for the
non-convex “coney(z, t) € H" | t > —M]|z|?}, and the existence of the above
mentioned Jerison’s negative example provides a strong reason for this failure.
In Theorems 4.6 and 4.7 we prove that a weak solution of (1.2) does possess the
propertiesXu, Zu € L*°($2), provided that the domair is strictly starlike
at the characteristic set, and the defining functior2o$atisfies the condition
(1.8). This implies that Theorem 3.7 applies and therefore domains having these
properties do not support solutions to (1.2), other than the trivial one. We stress
that, unlike Theorem 4.6, in which we make no restriction on the step of the group
G, in Theorem 4.7 to prove the boundednes«ofnear the characteristic set
we need to assume th@tbe of step two. We do not presently know whether the
result continues to hold for groups of higher step. In connection with the results
of section four we mention that Capogna, Nhieu and one of us [11], [12] have
recently obtained a complete solution of the Dirichlet problem for a general
class of sub-Laplacians which includes those treated in this paper. The class of
domains which is introduced in [12] is however somewhat different from that
considered in the present paper and a direct comparison is not immediate. For
instance, our assumption (1.8) seems stronger thaatitex £- ball condition
introduced in [12] and it would be interesting to know whether this is really the
case. We recall that a uniform ouiiball condition has been proved to imply the
boundedness of the harizontal gradient of the Green function near the boundary,
see [57] (for the case @) and [11], [12] for general Bfmander operators.
On one hand, by adapting the ideas in Theorem 4.6 we can prove, independently
from [12], an analogous result in the context of this paper. On the other hand,
we also obtain in Theorem 4.7 the boundednes&:gfand such result does not
seem to follow from the general theory developed in [12].

In section five we continue the study, initiated in section four, of the har-
monicity and sub-harmonicity properties of the componetits and y(g) of
the exponential coordinates in the first and second layer of the Lie algebra of a
Carnot group. Using the results in Lemmas 4.2 and 5.2 we prove that the level
sets of the function

£.©) = (€ + 1x(@)P2 + 16)y(2)1D) ", ¢ eR,

fulfill the geometric assumptions in Theorems 4.6, 4.7. As a consequence, we
obtain the following non- existence result.

Theorem 1.2. Let G be a Carnot group of step two. Given aRy > 0, and
e € Rwith €? < R?, the functioru = 0 is the only non-negative weak solution
of (1.2) in

Qr.=1g€ G| €+ x(9)7? +16y(9)1* < R*.
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From Theorem 1.2 we infer, in particular, that in any group of Heisenberg
type the gauge balls, and the level sets of the entire solutions in Theorem 1.1
support no solution to problem (1.2) other than the trivial one.

In section six we state without proof (for the latter we refer the reader to [79])
the main result about the existence of global minimizers in every Carnot group.
Theorem 6.1 guarantees the existence of an entire non-negative solution to (1.9)
below whens2 is the whole groupgi. The proof of such result is based on a
suitable adaptation of P. L. Lions’ method of concentration of compactness [60]

- [63].

In the subsequent sections of the paper we study groups of Heisenberg type.
Section seven is devoted to proving Theorem 1.1. In section eight we consider the
CR inversion and Kelvin transform, introduced by Kayi [53] for the Heisen-
berg group, and later generalized to groups of Heisenberg type in [16], [15]. In
Proposition 8.2 we show that the inversion preserves starlikeness with respect
to the generator of the group dilations. In [15] it was proved that if the ambient
group is of Iwasawa type, then the CR Kelvin transform possesses several very
useful properties. The ones which are particularly relevant for us are collected
in Theorem 8.4. We exploit these results to establish new properties. In Theo-
rem 8.6, we show that the Kelvin transform is an isometry between the Sobolev

spaceé L2(2) andD L2(2*), where2* denotes the image a® under the CR
inversion. This result, which plays a key role in the next section, when we study
equations on unbounded domains, reflects the conformal invariance of the Yam-
abe equationin (1.2). In Definition 8.12 we introduce the notion of characteristic
cones and half-spaces in a Carnot gréupf step two. LefR%. denote the cone

{1, - yk) €RE |y > 0,i =1, ..., k}. GivenM, b € R, anda € RX \ {0}, we

call the open sets

Cira={8€G|<y(g),a>> Mlx(g)*+ b}
and
Crra=1{8€G|<y(g).a>< —M|x(g)|”+b)

characteristic conesrhe cone will be saidonvexf M > 0, concavaf M < 0.
WhenM = 0 we use the notatioH, ", to introduce theharacteristic half-spaces

Hlj,ra: C(-)’,_b,a: {geGl<y(g,a>> b},
Cora=1g€Gl<y(g,a> < b}.

The boundaries of such half-spaces are catleatacteristic hyperplanedt
is an interesting fact that the image through the CR inversion of a convex char-
acteristic cone is a left-translation along the center of the group of the bounded
domains2g . in Theorem 1.2, i.e., the level sets of the entire solutins The-
orem 1.1. We prove this in Proposition 8.13, see also Proposition 8.8. By means
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of the Kelvin transform we obtain explicit formulas for the Poisson kernel with
singularity on the characteristic set for the gauge balls in lwasawa groups. We
have also found explicit formulas for the Poisson kernel for the bounded re-
gions which are the conformal images of the non-characteristic “hyperplanes"
in the groupG. These formulas display a new phemonenon. The behavior of a
non-negativeC-harmonic function near a singular boundary point changes dras-
tically depending on whether such point is characteristic or not, see Theorems
8.10, 8.14, Remark 8.11 and (8.10).

In section nine we exploit the conformal invariance of (1.2) to establish
Lemma9.1. The latter allows to transplant, via the CR Kelvin transform, problem
(1.2) from a set? to its conformal image?2* under the inversion. Combining
Lemma 9.1 with Theorem 1.2 and Proposition 8.13 we obtain the following
non-existence result.

Theorem 1.3. Consider a group of Iwasawa tyie Letcjj,b,a C G beaconvex
characteristic cone. There exists no solution(i®) in 2 = Cj; , ., other than

u = 0. In particular, there exists no non-trivial solution for the characteristic
half-spacesH; .

Theorem 1.3 should be viewed as conformally dual to Theorem 1.2. An inter-
esting open guestion is whether the concave cones support non-trivial solutions
to the Yamabe problem (1.2). At the moment we ignore the answer. As we explain
at the end of section nine, interestingly, our approach does not work for these
regions since, as we previously mentioned, their bounded images through the CR
inversion fail to satisfy the convexity assumption (1.8) near the characteristic set.
The above stated open problem is closely related to another one. Consider the
bounded domai2; . in Theorem 1.2, witke > 0, and let2* = G \ §R,€.
Does$2* support non-trivial solutions to (1.2)? We only know the answer when
€ = 0, i.e., for the complement of a gauge ball, and it is negative.

Theorem 1.4. Let G be a group of lwasawa type and consider the unbounded
domain®* = {g € G | N(gg, ) > R}, whereN is the gauge in (8.1, € G
and R > 0 are fixed. There exist no non-trivial solution to (1.2)2¥.

Theorems 1.3 and 1.4 are proved in section nine. In connection with Theorem
1.3 we mention that Lanconelli and Uguzzoni [58] have recently obtained in the
special case of the Heisenberg grdifpan interesting non-existence result for
the non-characteristic hyperplanes, i.e., those hyperplanes which are parallel to
the group center (the-axis). Their analysis is essentially different from ours
since, given the absence of characteristic points on the boundary, their focus is
on the asymptotic behavior of a solution to (1.2) at infinity. In a note added in
proof in [58] it is said that in the forthcoming article [77] Uguzzoni has been
able to obtain, for the characteristic hyperplafgsn the Heisenberg group, a
uniqueness result similar to the second part of our Theorem 1.3.
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It may be appropriate to mention in closing that one of the ultimate goals
of our project is to understand as explicitly as possible the extremal functions
wheng2 = G in (1.1), for the full range X p < Q. More precisely, whe is
a group of Heisenberg type we would like to obtain an appropriate sub-elliptic
version of the cited results of Aubin and Talenti. In this connection, giveéffa
connected open s& C G itis interesting to consider the following non- linear
Dirichlet problem with critical growth

Lou = —uP 1
(1.9) 0
ueD(2), u=0,
whereL,u = — Y7 X3 (1 XulP~2X;u) = Y7y X;(|XulP~"?X;u) is what we

call the p- sub-Laplaciarof u. Standard variational arguments show that when
2 = G the problem of characterizing the extremals in (1.1) is equivalent to
determining all solutions to (1.9). This is a very difficult task and at the moment
we only have some partial progress. We hope to come back to this and related
questions in a future study.

The results in this paper were presented at the Conference in memory of
Filippo Chiarenza, held in Catania, November 12-14 1998, see [34].

2. Preliminaries

In this section we introduce the relevant definitions and state some results which
will be needed in the sequel. Consider the Lie alggpbra @7_,V; of G. We
assume that og there is a scalar product with respect to which & are
mutually orthogonal. The exponential mappiagp : ¢ — G is an analytic
diffeomorphism. We use it to define analytic maps G — V;,i = 1,...,r,
through the equatiop = exp(§1(g) + &2(8) + ... +§,(8)), If £(g) = 1(g) +
..+&(g)issuchthag = exp(&£(g)). Withm = dim(V1), the coordinates of the
projectioné; in the basisXy, ... ,X,, will be denoted by; = x1(g), ..., x, =

xn(g), i.e.,

(2.1) xj(g) =< &(8), Xj > j=1 .. m,

and we setx = x(g) = (x1,...,x,) € R™. The Euclidean distance to the
origin| - | ong induces a homogeneous nofrigz ong and (via the exponential
map) one on the grou@ in the following way (see also [26]). Fdr € g, with
E=&+..+&,& €V, welet

r 2r!
(2.2) lg = (Z |si|2r‘/i> :
i=1
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and then defingg|g = |£|4 if g = exp £. Such homogeneous norm éhcan
be used to define a pseudo- distancdson

(2.3) p(g, h) = |k glg.

The pseudo-distance (2.3) is equivalent to the Carnot- Gaodtry distance
d(-,-) generated by the syste, i.e., there exists a constafit= C(G) > 0
such that

(2.9) Cp(g,h) <d(g,h) < Cp(g, h), g.heG,

see [66]. We will almost exclusively work with the distanéeexcept in few
situations where we will find more convenient to use (2.3).

If B(x,R)={y e G | d(x,y) < R}, then by left- translation and dilation
it is easy to see that the Haar measur&of, R) is proportional toR<, where

r

Q = > i dimV; is the homogeneous dimension 6f One has for every
i=1
f. g, h € G and foranyx > 0

d(gf.gh) =d(f, h), d(8,(8), 8,.(h)) = 1 d(g, h).

Further on, we will need to exploit the properties of the exponential coordi-
nates inthe second layer of the stratificatiop.&e thus fix an orthonormal basis

Y1, ..., Y of V,and, similarly to (2.1), we define the exponential coordinates in
the second layev, of a pointg € G by letting
(2.5) yi(g) =<§(Q),Y; >, i=1.. .k,

andy = (y1,..., %) € RY We next recall the Baker-Campbell-Hausdorff
formula, see, e.g., [39]

(2.6) expEexpn=exp(E+n+1/2[£, 0]+ ...), Eneg,

where the dots indicate a linear combination of terms of order three and higher
which is finite due to the nilpotency @&. By definition the order of an element
invV;isj.

We next list some known results. To state the former we recall that given a
bounded open sé? C G, and a functiorp € C(3d D), the Dirichlet problem for
a sub-Laplaciaf andD consists in finding a solution 8w = 0 in D such that
u=¢onabD.

Theorem 2.1 (Bony’s maximum principle [5])Let D C G be a connected,
bounded open set, arfle C (3 D). There exists a uniqué-harmonic function
Hd? which solves the Dirichlet problem in the sense of Perron-Wiener-Brelot.

Moreover,Hf satisfies

sup |H¢D| <sup |P|.
D aD
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Theorem 2.2 (Schauder type interior estimates [78]et D C G be an open
set and suppose that is £-harmonic inD. For everyg € D andr > O for
whichB(g,r) ¢ D, one has fox € N

C
| Xj X Xjyw (@) = — max |wl,
" B(g.,r)

for j; e {1,...,m},i =1, ..., s, and for some constarit = C(G, s) > 0.

To state the next result we introduce a definition. Given an opeb setG
we denote withC1>°(D) the space of those distributionse L>(D) such that
Xu € L*°(D), endowed with the natural norm.

Theorem 2.3 (L*° Poinca¥g inequality [33]) Given a Carnot groups there
existsC = C(G) > 0, such thatif: € LY (B(g,, 3R)), thenu can be modified
on a set of measure zero BYg,, R) so to satisfy

lu(g) —u(h)| < C d(g, h)lullgro (g, 3r)

for everyg, h € B(g,, R). If, furthermoreu € C*(B(g,, 3R)), then only the
L norm of Xu suffices in the right hand side of the previous inequality.

We note explicitly that the theorem asserts that every funatien£> (B
(g0, 3R)) has a representative which is Lipschitz continuou®(g,, R) with
respect to the Carnot- Caraitdory distancel. The reverse implication also
holds, see [33].

Let 1 < p < oo. The notion ofhorizontal p- capacityassociated with a
systemX was introduced in [9], see also [56] for a different, yet equivalent,
definition in the casep = 2 for the Heisenberg groufl”. We will need the
following result which is contained in Theorem 8.1 in [9].

Theorem 2.4 (Capacitary estimates of rings [9])Let G be a Carnot group.
Givenl < p < Q there exist constant§,, C, > 0, depending orG and p,
such that for every € G,0 < r < R one has

C1r@" < cap,(B(g,r), B(g, R)) < Cor@".
In particular,
C1r9? < cap,(B(g,r)) < Cor¢7.
The latter estimates gives
capp({g}) = lim cap,(B(g, 1)) = 0, l<p<o0.

We will also need the following special case of Proposition 6.1 from [9].
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Proposition 2.5. Let 2 C G be a bounded open set, and fix p < Q. For
every relatively closed subdomal C £2, with cap,(E) = 0, there exists a
sequencey € C>°(2 \ E) suchtha®D < ¢ < 1,4 — 1in 2\ E and

/ 1X&|PdH — 0
2

ask — oo.

In the next result we indicate witN = ) dimV; the topological dimen-
j=1
sion of G. The symbolHy_; denoteg N — 1)-dimensional Hausdorff measure
constructed using the Riemannian distancéson

Theorem 2.6. Let D C G be aC* domain and denote b = ¥ x = {g €
0D | X;(g) € T,(aD), j = 1, ..., m} its characteristic set with respect to the
systemX. One has

Hy_1(Xp x) =0.

Theorem 2.6 is due to Derridj [22], [23]. In the sequel we will denote with
rke, r“ the Folland-Stein Hider classes, see [25].

Theorem 2.7. Let D be a bounded > domain in the Heisenberg groly* and
let¢ € C°(H") be supported in a small neighborhood of a non-characteristic
pointg, € 3D. Givenf € I'**(D),k € NU{0},0 < « < 1, then for the unique
solutionu to the Dirichlet problem for the Kohn sub-Laplacian

(2.7) Lu=f in D, u=0 on 3D,

one haspu € I'*+2%(D).

Theorem 2.7 is a special case of the results of Jerison in [42]. It is quite natural
to conjecturethat Theorem 2.7 isin fact valid for arbitrary groups. However, foran
arbitrary Carnot groupgr a corresponding Schauder theory at non-characteristic
points is presently lacking, and this is why we now introduce the following
hypothesis which will be assumed valid throughout the paper:

(2.8) Let D C G be a bounded”> domain and considef € I'**(D), k €
NU{0},0 < a < 1. Foreveryg, € 9D \ X there exists a neighborhodd of
g, such that the solution to (2.7) belongs ta™*+2%(D N U).

We plan to return to this point in a future study.
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3. Some integral identities and their consequences

In this section we establish some integral identities for solutions of the following
problem

Lu = —f(u)

(3.1) )
ueD 2(2), u=>0.

Such identities are reminiscent of those originally discovered by Rellich [68]
and subsequently by Poraév [67] for Laplace equation. Unlike what happensin
the classical case, however, the presence of characteristic points on the boundary
of §£2 causes weak solutions of (3.1) to lack the amount of regularity which is
necessary to implement such integral identities. The subsequent section will be
devoted to overcoming this serious obstacle.

Theorem 3.1. Let G be a Carnot group and leb C G be aC! bounded open
set with outer unit normal;. For u € C?(D) one has

m
ZZ YuXiu <X;,n> dHy_1+ divgY |Xu|2dH
‘=3 Jop D

—22 Xju[X;,YludH —2 | YuLudH
i=1 7D b

=/ XuP? <¥,n> dHy1,
oD

whereY is any smooth vector field iG.

Proof. The divergence theorem gives

/ |Xul> <Y, n> dHN_lzf divgY |Xul®> dH
aD D

2 Z X;u[X;,YludH + 2 < X(Yu), Xu > dH.
i=1 7D D

In the above we have denoted v the Riemannian divergence . An-
other application of the divergence theorem and the observatiafthaX; = 0
allow to obtain

/ < X(Yu), Xu > dH:Z/ YuXu < Xi,n
D i=1 aD

> dHN_1—/ Yu LudH.
D

The latter two identities imply the conclusion. O
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We next make a special choice of the vector figid Theorem 3.1, namely we
letY = Z, whereZ is the infinitesimal generator of the one-parameter group of
non- isotropic dilation$s, },.- 0. Such vector field is characterized by the property
that a functioru : G — R is homogeneous of degreavith respect tds; },-0,
i.e.,u(8;,(x)) = Au(x) for everyx € G, if and only if Zu = su. We will need
the following

Lemma 3.2. In a Carnot groupG the infinitesimal generator of group dilations
Z enjoys the following properties:

() divgZ = Q.

(i) Forany X; € X ={Xy, ..., X,,} one hagdX;, Z] = X;.
(i) £ (Zu) =Z(Lu)+ 2L u,foranyu € C*°(G).

(iv) In particular, Zu is £-harmonic if such is.

Proof. Propertiegii) — (iv) where established in [21], so we only need to prove
(i). This follows from the fact thad H (5, (x)) = A%d H (x) and thus taking the
Lie derivative of the volume form in the direction @f givesdivgZ = Q, i.e.,

7Z* =—7Z + Q. O

Property(iv) is useful in obtaining higher regularity for a solution of problem
(3.1) at characteristic points. We notice explicitly that the vector fielid not
sub-unitary according to the definition of C. Fefferman and D. H. Phong [24]
and that its expression in exponential coordinates involves derivation along the
vector fieldsX;, j = 1, ..., m, and their commutators up to maximum length.

Corollary 3.3. Under the assumptions of Theorem 3.1,Zebe the generator
of the group dilations. For any € C?(D) we have

22/ Zu Xiu < Xi,n> dHNl—i—(Q—Z)/ |Xul?dH
i=1 aD D

—2/ Zu,CudH:/ |Xul? <Z,n> dHy_1
D aD

Proof. It follows immediately from Theorem 3.1 and from Lemma 3.2. O
We next state our basic sub-elliptic Rellich-Pabev identity.

Theorem 3.4. Let D C G be aC* domain and: € C?(D) be a solution of

(3.2) Lu=—fw), Iin D,
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for some functiory’ € C(R) such thatf (0) = 0. SettingF'(s) = f(; f()dt, the
following identity holds

/EZQFm>—<Q—ZMfwndH
D

Zu Xju < X;,n>dHy_1 — /|Xu|2 <Z,n>dHy_1
aD

+2/ﬂw<ln>MM4+@—a
oD
X Z/u Xju < Xj,n>dHy_1.
=L%p

Proof. We obtain from (3.2) and from the divergence theorem
-2 / ZuludH =2 / Z(F(u))dH
D D
=-2 / divgZ F(u) dH + 2 / F(u) <Z,n> dHy_1
D oD

—ZQ/F(u)dH—i—Z/ Fu)<Z,n> dHy_1,
D aD

where in the latter equality we have usggd of Lemma 3.2. Next, we use the
equation

1
|Xul? = Eﬁ(uz) —ulu

in combination with (2.2) and the divergence theorem to obtain

/ | Xul? dH :/ uf (u)dH + qu Xju < X;,n>dHy 1.
D D

=l4p
Substitution in Corollary 3.3 completes the proof. O

Lemma 3.5. Let D C G be an open set and suppose that I,>%(D) be a
solution to (2.2) for some functiofi € C*(R). Thenu € C*°(D).

Proof. By the assumptions we hav& € I,%%(D). The local regularity theory
developed by Folland and Stein, see [26], allows to inferl“,i’c“. At this point
the conclusion follows from the smoothnesfoby a standard iteration argument.

O

To state our next result we introduce a definition.
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Definition 3.6. Let D C G be a connected open set of clagscontaining the
group identitye. We say thaD is starlike with respect to the identigy(or simply
starlike) along a subse¥ C 9D, if

<Zn>(g =0

ateveryg € M. D is called starlike with respect to the identiyf it is starlike
alongM = 0D. We say thaD is uniformly starlike with respect te along M
if there exists a constamt = ap > 0 such that for everg € M

<Z,n>(g > a

A domain as above is called starlike (uniformly starlike) with respect to one
of its pointsg along M C aD, if g71D is starlike (uniformly starlike) along
g M with respect tee.

Theorem 3.7. LetD c_G beC, bounded and starlike with respectgp e D.
Suppose thai € I'%%(D) is a non-negative solution of (2.1) withe C®(R),
suchthaut = OondD. Assume in additionth&u € L>*°(D)andZu € L* (D).
If

(3.3) 20F(u) —(Q —2uf) = 0,

thenu = 0. In particular, if G is of step two (2.1) has no non-trivial such solution
whenf(u) = u?,if g > g—fg

Remark 3.8.The inequality (3.3) is the analogue of the famous Ralev con-
dition for Laplace equation, see [67].

Proof. By invariance with respect to left-translation we can assumegthate.
According to Lemma 3.5 we havee C*° (D). Recall that¥' is a compact set.
By Theorem 1 in [81] (see also Theorem 4 in [52] and the results in [22]) for
every bounded open neighborhobicbf X one has: € C*(D \ U). Using this
observation and Theorem 2.6 we can choose an exhaustidmvih a family of

C*, connected, open sef% ' D, ase — 0, such thait € C*(D,), and for
whichaD, = r*ur? with it cap\ =, 1t 79D\ X, Hy_1(I'?) — 0.

We apply Theorem 3.4 to the sdis to obtain



470 N. Garofalo, D. Vassilev

/[2QF(u)—(Q—2)uf(u)]dH=2Z Zu Xju < Xj,n>dHy_1
j:la

D, De

—/|Xu|2<z,n>dHNl+2 /F<u)<z,n>dHN1 +0-2

dD¢ D¢
m m
XZ/quu<Xj,n>dHN_1:2Z/Zquu<Xj,n>dHN_l
J‘=13De j=1 Fel

—/|Xu|2<z,n>dHNl+2 /F(u) <Z,n>dHy_1 +(0—2)
1"1

rl

uXju<X;j,n>dHy_1+2 Z/Zu Xju < Xj,n>dHy_1
j:]- 2

—/lXu|2<Z,n>dHN1+2 /F(u) <Z,n>dHy_1 +(Q—2)
Iz r?
m
X qu Xju < Xj,n>dHy_1.
j=1 2

Sincex = 0 on 1“61 andu > 0O insideD,, one hasDu(g) = k(g)n(g) for
everyg € I'%, for a functionk < 0. This impliesF (u) = 0 onI’! and also

ZMZXju<X<,n>=k<Z,n>ZXju<X»,n>= |Xu|2<Z,n >,
J J

and the above identity gives

/[ZQF(M) —(Q—-ufw)]dH — /IXMI2 <Z,n>dHy

De rl

=2 Z/Zu Xju < Xj,n > dHN_l—/|Xu|2 <Z,n>dHy_1
j=1 T2

r2

+2 /F(u) <Z,np>dHy_1 +(0—2) Z/u Xju < X;,n>dHy_1.
2 J=1 "2

(3.4)

By the assumptioXu, Zu € L*°(D), and fromthe factthaVN_l(QZ) — 0,
we infer that the boundary integrals in the right-hand side of (3.4) tend to zero.
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On the other hand, in view of the starlikenessbfve have< Z,n >> 0, so
that we obtain from the monotone convergence theorem

f|Xu|2 <Z,n>dHy_1 — /|Xu|2 <Z,n>dHy_1,

Ql aD
whereas
/[ZQF(M) —(Q —2uf(w)dH — /[ZQF(M) —(Q —2ufwm)] dH,
D¢ D

thanks to the assumptione "% (D). These considerations allow to conclude

(3.5) /[ZQF(u) —(Q = ufw)dH — /|Xu|2 <Z.,n>dHy_1=0.
D oD

Using (3.3) we finally obtain

(3.6) /lXu|2 <Z,n> dHy_1=0.
D

The divergence theorem and (i) of Lemma 3.2 give

/ <Z,n>dHy_1 = Q|D|.
D
We must thus have: Z, n > > 0 on some subset @fD of positive Hy_;

measure. From the smoothnes$oive infer the existence of an open $etc G
suchthat< Z, n > > a > 0onA = V N aD. Since the characteristic set
X' is compact, we can assume without loss of generalitythat>Y = 2. In
conclusion we see that the horizontal gradient vanished.oBy extendingu
across the boundary by setting it equal to zero outsidp @fe obtain a weak
solution to (3.1) inV which vanishes in the open sét" = V N (G \ D). By
Theorem 10.6 in the Appendix we conclude that musizbe= 0 in D. This
proves the first part of the theorem.

Suppose now tha6 is of step two. The non-linearity (u) = ug%; for
u >0, f(u) = 0, whenu < 0, is not inC*®(R), since 1< g—fg < 2 when
Q > 6, but only belongs to a clagg-’(R). Since f € C>(0, o0), using the
local regularity theory in [26] we conclude as before that C*° (D). The
assumption (2.8) guarantees the regulafif§# of u up to the boundary away
from the characteristic se¥. Since for a group of step two the generator of
dilations Z involves only theX;’s and their first commutators, we infer thzk
isin I"'t# up to the boundary in a neighborhood of a non-characteristic point. We
can thus apply the Rellich type identity to the exaustion domainand argue

as in the first part. O
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4. Regularity at the characteristic set of the horizontal and radial
derivatives

In the previous section we have obtained a uniqueness result for non-negative
solutions of a Yamabe type equation by making the strong a priori assumptions
thatXu, Zu € L*(D). In practice, the existence of characteristic points on the
boundary of the ground domain imposes serious restrictions to the regularity of
the solution, see [43], [12], and it is not clear that Theorem 3.7 has any content
at all. The purpose of this section is to prove that it does indeed, at least if the
domain D satisfies some very natural and simple geometric requirements. We
start by considering a weak solution to the non-linear Dirichlet problem with
critical exponent in a connected, bounded openset G

o+2
Lu =—uc2

(4.1) ,
ueD2R), u=>0.

By Theorem 10QL in the appendix we know that € L°°(£2). This crucial
information allows to implement the local regularity theory of Folland and Stein,
[27], [26], as in the proof of Lemma 3.5, to concludee C*°(£2). We next
suppose tha® satisfies in addition the following natural condition: There exist
A, r, > 0 such that for every) € 952 and every O< r < rg

(4.2) I(G\ £2) N B(Q,r)| = A|B(Q,r)l|.

Such geometric assumption is fulfilled if, e.g2, satisfies the uniform
corkscrew condition, see [10], [12]. These papers contain an extensive study
of examples of domains which, in particular, satisfy (4.2). What counts for us is
that (4.2) allows to adapt to the present setting the classical arguments that lead,
via Moser’s iteration, to obtaim € I"%%(£2) for some O< o < 1, see, e.g., [35],
Section 8.10. Extending with zero outside?, we can assume henceforth that

(4.3) u € I'“(G).

If we suppose further tha® is a C* domain, and denote by = X, x
the characteristic set a2, then thanks to the assumption (2.8) at every non-
characteristic poing, € 352 one has in fact € I'*%(2 N U) for a suitable

neighborhoodJ of g,. To see this observe that the non-linearfig:) = ug%g’

foru > 0, f(u) = 0, whenu < 0, belongs in general to a cIaS‘%;f(R) since

1< Q—fg < 2whenQ > 6. We note explicitly that thanks to Theorem 2.7 this
regul%rity is amply fulfilled in the important case of the Heisenberg gtiétp

From these considerations it is clear that the main new obstacle to overcome is
the regularity of a weak solution 1@.1) near the characteristic s&t. To this

task we now turn.
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Our first objective is the construction of suitable sub-elliptic barriers for
Carnot groups. The existence of such barriers has far reaching implications. We
begin with a simple, yet useful result.

Lemma 4.1. Let G be a Carnot group of step. For every bounded sét c G
there exists a constadt(r, V) > Osuch that forevery e VandO< i <1

d(8:(8),8) < CA—=n"".

Proof. In view of (2.4) it suffices to prove the above inequality for the pseudo-
distancep. We illustrate the proof in the cagse= 2, and then indicate the changes
necessary whenis arbitrary. By (2.3) we have for evegye G

p(8:.(8), &) = 1g 8. (Dl = Y,

whereY e gis such thakxp(Y) = g7 16, . If g = exp(£), Wwith & = &1 + &,
we obtain from the Baker-Campbell-Hausdorff formula

exp(Y) = exp(—=§ + Au(§) — 1/2[§, A,(5)]).

It is now easy to see th@§, A, (£)] = [£1 + &, AEL + A2%E,] = 0. We thus
haveY = —& + A (§) = (0 — 1)& + (A2 — 1)&,. Applying (2.2) for|Y|, one
easily obtains the conclusion gf belongs to a bounded s&t, with a constant
C = C(V) > 0. This proves the lemma when= 2. In a group of step one has
& =& + ... + & and the Baker-Campbell-Hausdorff formula contains, besides,
[€, A, (8)], commutators of higher order. However, one sees easily that

£ A®1= =D ) pij0IE, &1,

i<j

wherep; ; (1) is a polynomial. Using this fact one reaches the conclusion simi-
larly to the case = 2. O

Givenapointg € G weletx(g) = (x1(g), ..., xn(g)), Wherex; (g) is defined
as in (2.1). The following lemma will play a crucial role in the sequel.

Lemma 4.2. The functiony (g) déf|x(g)|2 enjoys the following properties:

(4.4) Ly = 2m,
(4.5) Xy = 4y.

Furthermore, for anyM, > 0 one has
(4.6) LO/M,) = m/M,+ X/ M,)I,

at all points of the setg € G | |x(g)]? < % :
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Proof. We define the functions

¥ (t) = |1(g exp(tX)))|? ji=1 ...m.

The Baker-Campbell-Hausdorff formula implies
g exp(tX;) = exp(§1(g) +1X; +52(8)
1
+..+ &)+ é[él(g) + .+ 85, X1+ ).

From this one immediately sees that

(4.7) vi() = 621> + 2 < &1(9), X; > +1°.
One obtains from (4.7)
(4.8) ¥i(0) =2 < &1(g), X; >= 2x;(g), ¥ (0) =2

The equation (4.8) gives

Ly =) /(0 =2m,

j=1

IXY1P =) ¥j(07=4)" <&@, X; >*=4)_Ix;(9))> =4y,

j=1 j=1 j=1

which proves the first part of the lemma. The second part follows from the first
by elementary considerations. O

Henceforth, we denote with the function in Lemma 4.2. We next consider a
C*, connected, bounded open s2tc G. Since our assumptions @h are of a
local nature, and they involve the geometry of the domain near its characteristic
set X, there is no restriction in assuming the existence &f C*°(G) and of
ye > 0 such that for som& € R

(4.9) 2 ={geG|p(g <R},

and for which one ha®p(g)| > yo > 0, for everyg in some relatively compact
neighborhoo of 9 D. The outward pointing unit normal @2 isn = ‘%. In

the next theorem we prove thatif satisfies two natural geometric assumptions
at the charateristic set, then one can construct some sub-elliptic barries near
One such hypothesis is th&tbe uniformly starlike along~, see Definition 3.6,
with respect to one of its points, which by performing a left-translation we can

take to be the group identig; We explicitly remark that when this is the case,
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then by the compactness Bfwe can find a bounded open ¢étand a constant
8 > 0 such thaty ¢ U and for which, settingd = 9§2 N U, one has

(4.10) Zp(g,) =8 > 0, for g, € A.

We note that the uniform transversality conditich10) implies that the
trajectories ofZ starting from points ofA fill a full open setw interior to £2.
This can be seen by locally "straightening ot'and taking a finite cover. In
each of the neighborhoods whefds constant the trajectories are straight lines
transversal tal. By possibly shrinking the sét we can assume that= 2NU.

To fix the notation we suppose that there exists- 0 such that

8,80 €Ew for A, <A <1

Henceforth, we assume that the paramétgr> 0 in (4.6) in Lemma 4.2
has been chosen sufficiently large. Precisely, given the dofaaand an open
neighborhood’ of the characteristic set fixed as in the preceding discussion, we
assume tha¥/, > 0 has been so chosen that it fulfills the condition

— M,
(4.11) UclgeGli@l? ="

Having made this choice, we will henceforth assume that the inequality (4.6)
in Lemma 4.2 is valid in the whol&, and therefore im. This being said, we
will continue to use the symbold, w, A, and M, with the same meaning as
above throughout the rest of the section.

Theorem 4.3. Let§2 C G be a smooth, connected bounded open set as in (4.9)
which is uniformly starlike alond” with respect to one of its points. We assume
in addition that there existd/; > 0 such that the definining functiom of £2
satisfies the differential inequality

(4.12) Lp > Mil < Xp, X > in w.
LetM > max{M,, M,}. For0 < a < 1 we define
Y, = (R — p)%e VM,
Under the stated hypothesis we obtain for every w
(4.13) LU(9) = =77 V(o).

Furthermore, there exist;, C, > 0 such that for every, € A and, <
A < 1lonehas

(414) Cl(l_ )‘Yx = lpa(‘s)»go) = C2(1_ )\')a-
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Proof. We note that for any functiopr on G and another functiorf on the real
line one has

L) = [ DXL+ f'(@)Lo.
This observation implies
LWy = (R—p)* L™ + e VML(R - p)*)
+2 < X((R—p)*), X(e™VM) >
= [IX(W/M)I? = LG/ M)] ¥,

ala —1) 9 o :|
BET D xp)2 = ol w,
+[(R—p)Z' T
2u

20M~1 2
+ — < Xp, Xy > +|X(Y/M)| —ﬁ(lﬂ/M)] Yy

The first term above is negative attl12) gives

o 2aM~t
— Lo+ < Xp, Xy >< 0.
R—p R—p

From this it is clear tha¢4.13) would follow provided that one has an
X (Y/M)? = LOGf/M) < —m/M.

The latter inequality is a consequence of the fact that (4.6) holds for all
points inU, with M, replaced by, thanks to (4.11) and to the trivial inclusion
{geG|la(e))? <™} ClgeG|la(e)? < 2L}

The proof of (4.14) is obtained as follows. We consider for a fixed A
the smooth functio (1) = p(8,(g,)). By taking a Taylor expansion about the
point . = 1, and keeping in mind that(1) = p(g,) = R, we find for every
g € Aandir, <A <1

(4.15) R — p(8,(80) = Zp(g)(L = MH[1+ 01 - )],

whereO (1 — A) denotes a function which is bounded 6y1 — 1), uniformly
ing, € Aandi, < A < 1. Itis clear that from the latter identity (4.14) follows
using (4.10), the smoothness@ind the boundedness &f. O

Remark 4.4.We mention that for the Heisenberg gratp sub-elliptic barriers
related to those in Theorem 4.3 were found by one of us in [29].
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Theorem 4.5. Consider aC*> domains2 in a Carnot groupG satisfying(4.2)
and all the hypothesis in Theorem 4.3, including (4.12).4le¢ a weak solution
of (4.1), then there exists a constait= C(G, 2, u) > 0 such that for every
g € Aand0 < A < 1lone has

(4.16) u(3.(80)) = CA—-2)

Proof. We begin by observing that thanks to (4.3) and to the factithatO on
952, we have for any, € 082

(4.17) u(8,80) < C d(8,80:80)"
whered is as in (2.3). Lemma 4.1 now gives for evggye Aand0< i1 <1
(4.18) (8,80, 8) < C(1—n"",

for some constant = C(§2) > 0. Using (4.17), (4.18) and setting = o/r
we infer

(4.19) u(:80) = C(1—1"

for everyg, € A, A, < A < 1. Clearly, 0< a1 < 1.We now letoc =2* — 1=
(Q +2)/(Q — 2) and notice that > 1. Choose: € N such that ™" < «; and
leta, = 07" so that

(4.20) o"a, =1
Observe that (4.19) implies trivially
(4.21) u(8.8,) < C(1—n)%

for everyg, € A, A, < A < 1. We next use the barriers constructed in Theorem
4.3. For any poins, g, € w we have from (4.1), (4.21), (4.14) and from (4.13)

— Lu(8,8,) = u(8:80)°
<C(A—1)"% < CC{ W44, (8:8,) < —CCT*Mm™ LW, ,,(5,.2,)
= —L‘(C*‘Ifa%)(&go)-

Keeping in mind that ag, varies inA anda in the interval(x,, 1), the point
3,8, coversw, we have proved

L(C*Wyq, —u) < O in o.

At this point we observe that (possibly using a constant larger €Harwe
also have the estimate

(4.22) C'Wyp, > u on Jw.
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To see that (4.22) holds we argue as follows. It is clear that (4.22) holds
on dw N 352, since bothw andY,,, vanish there. On the other hand, the set
A = (doN )\ Ais at a fixed distance away from the characteristicSet
therefore forevery, € Athereexistg € {1, ..., m} suchtha;p(g,) # 0.By
continuity, the trajectories of; fill a (sufficiently small) full neighborhood,,
of g,. This means that there exists= 1,(g,) > 0 such thateverg € 2 NV,
can be written ag; exprX; for someg; € 922 NV, and some O< ¢ < 1,.
Using the uniform transversality &f; to 952 in £2 N V,, and Taylor's formula
we infer the existence af = C(g,) > 0 such that

(4.23) IR — p(grexptX;)| = C |,

for everyg; € 02NV, and O< ¢ < t,. We now use the assumption (2.8) to
conclude the existence of a constéatit= C*(u, g,) > 0 such that

u(grexptX;) < C*|t| < C* |t|*™

for everyg, € 92 NV, and 0< ¢ < t,. The latter inequality and (4.23) allow
to conclude that (4.22) does hold, for a constant dependingandg,, in the
setf2 NV, . By a finite covering we see that (4.22) continues to hold in the
intersection of a small neighborhood @f2 with A. We can thus detach from
952. Once inside2 we can use th€ > smoothness af to conclude that (4.22)
holds on t he remaining portion éf» N £2 as well. This completes the proof of
(4.22). We can now apply Bony’s maximum principle Theorem 2.4 to infer
that a similar estimate also holdsdn From this result and from the right-hand
side of (4.14) we conclude for evepgy € w andi, < A < 1

(4.24) u(:80) = C(1—21)°,

which shows that we have improved on (4.21). It is now clear that repeating the
above argumenistimes, where: is as in (4.20), we reach the desired conclusion
(4.16). O

We are now ready to state the two main results of this section. We start with
the boundedness of the horizontal gradient of a solution of (4.1) at characteristic
points.

Theorem 4.6. Consider aC*> domains2 in a Carnot groupG satisfying(4.2)
and all the hypothesis in Theorem 4.3, including (4.12).4le¢ a weak solution
of (4.1), then

Xu € L¥(R2).

Proof. Due to the left-invariance of the problem (4.1) we can assumes2hat
uniformly starlike alongX’ with respect tee. Since by the results in [52], [22]
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we know that: is smooth away fron¥’, in order to prove the theorem it will be
enough to show that

(4.25) Xu € L™(w),

wherew is fixed as before. We begin by introducing= u?~1 « I, wherer is
the positive fundamental solution df i.e., LI" = —§. According to Corollary
2.8 in [26], v satisfies the equatiofiv = —u?"~ in G. Since by (4.3u% 'is
in '%#(G) for some O< B < 1 (andu is compactly supported i6), we have

(4.26) veI*PG)

loc

from [26], Theorem 6.1. Therefore, if we let™ y — v, in order to prove (4.25)
it is enough to show it fow, i.e., thatXw € L*°(w). We notice thatw is
L-harmonic, i.e.Lw =01in £2.

Let ¢ € w, then there exisg, € A andA € (A,, 1) such thate = 3§, (g,).
We now note that, as in the proof of (4.15), assumption (4.10) implies for every
g € A, A, < A <1 andevery; € 082

(4.27) (1=2) = C(p(8) — p(8:80)) = C (p(g1) — p(5:.80))-
This allows to obtain, in view of (4.16) in Theorem 4.5,
(4.28) u(8:80) = C (p(g1) — p(8:80))-

At this point we apply Theorem 2.3 to the defining functjoof 2 to obtain
for everygy, g2 € 2

lp(g1) — p(g2)] = C IXpll =) d(81, 82)-

Using the latter inequality with, = 8, g, in (4.28) one finds forevery, € A,
Ao <A <1, andevery; € 082

(4.29) u(8:8,) < C*d(g1,8:.80)-

Forg = 8,8, € w we now choosg; € 952 in (4.29) in such a way that
d(g1, 8,8,) = dist(g, 082). This gives

u(g) < Cd(g,08) forevery g € w.

Since we know that € C*(£2 \ w) we can use a similar argument based on
the use of Theorem 2.3 to conclude

(4.30) u(g) < Cd(g,d8) forevery g € 2.
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We now fix a pointg € w and, withr = dist(g, 952)/2, consider the ball
B(g,r) C B(g,r) C £2. Applying the interior Schauder estimates in Theorem
2.2 to theL- harmonic functionw — w(g) one has

C
(4.31) I Xw(g)l = — sup |w—w(g)l
" Bg.n
Note that (4.30) gives fog’ € B(g, r)
(4.32) u(g) < Cdist(g',02) < Cld(g,g) +dist(g,32)] < Cr.
Sincew = u — v, one has fog’ € B(g, r) in view of (4.32), (4.30)
lw(g) —w(g) < [ug)
(4.33) +u(@)]+ [v(g) —v(g)| < Clr+|v(g) —v(gll

Finally, we observe that (4.26) impliese £>(£2), and therefore applying
Theorem 2.3 once more we conclude o’ € 2

lu(g) —v(g)l < Cd(g, g).
Substitution of this information in (4.33) gives

sup lw—w(g| = Cr.
B(g.r)
Combining the latter inequality with (4.31) brings the sought for conclusion
Xw € L*®(w). This finishes the proof of Theorem& O

In the next result we establish the boundedness o#Zthderivative of the
solution of (4.1) near the characteristic set. We stress that such derivative involves
commutators of the vector fields; up to maximum order. Although we suspect
the result to be true for groups of any step, we have been able to establish it only
for groups of step two.

Theorem 4.7. Let G be a Carnot group of step two. Conside€& connected,
bounded open s&2 C G satisfying(4.2)and all the hypothesis in Theorem 4.3,
including (4.12). Under these assumptions; is a weak solution of (4.1) one
has

(4.34) Zu € L¥().

Proof.
We proceed as in the proof of Theorem 4.6 and note that in order to prove the
theorem it is enough to show that

(4.35) Zw € L¥(w),

wherew is fixed as before and, w have the same meaning as in Theorem 4.6.
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For A very close to 1, we defing; = 8, (w) N w, A, = §,(A) and consider
the difference quotient

w(g) — w(d;-18)
1-21 ’
We claim that there exists a constant> 0 such that for all sufficiently
close to 1 one has fgr € w;

(4.37) l92(e)l = C.

Suppose the claim (4.37) true, then passing to the liniitas 1 we conclude
|Zw(g)| < C for everyg € w, which proves (4.35), thus establishing the
theorem. We then turn to the proof of (4.37). The key observation isghit
L-harmonic inw, since

Lw(g) — L(w(818))  Lw(g) — A 2Lw(S-18)
1—a1 B 1—a1 N
FromTheorem 2.1 itis therefore enough to prove that (4.37) hol@s&od w,
andi € (A1, 1), for somei; close to 1. We note thalw, = A, U (dw;, \ Ay).

We analyze the two portions separately. Since any ppiatA; can be written
asg = 8,¢, for someg, € A we have

(4.36) $1.(8) =

g € w,.

(4.38) Loi(g) = 0.

w(a)»go) - w(go)

4.39 = —A
(4.39) () 11
Recalling thatv = u — v we find

L M((Skga) - u(go) - U((Skgu) + v(ga)
6n()] = | = A —

8180 v(85g,) — v(g,
- u(xg)Jr| (82.80) (g)|’
11— 1-2
sinceu = 0 on A. At this point we use Theorem 4.5 to conclude

(4.40)

) o) — o
@41) 6,60 = 4 THELZYED e, <
Next, we remember that (4.26) holds. The embedding Theorem 5.25 in [26]
implies that

14
loc

(4.42) r2HG) ¢ A2 (G) = ChX(G).

where the latter space denotes the standavlliét ‘class with respect to the
Riemannian distancéz (-, -) on G. We conclude, in particular, thatis locally
Lipschitz continuous with respect i (-, -), and therefore

lv(g) —v(h)| < dr(g,h), g. hef.
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One easily sees that
dr(8:80,80) < C (1—2).

The latter two inequalities imply the uniform boundedness of the difference
quotient ofv in (4.41) for g, € A andA betweerk, and 1. This shows that (4.37)
holds onA;. Finally, to obtain the same inequality 6w, \ A, it is enough to
observe that fok close to 1 such sets are uniformly away from the characteristic
setY, so that the desired conclusion follows from thé® regularity ofu in
a uniform neighborhood of such sets. In conclusion, we have proved the claim
(4.37), and therefore the theorem. O

Remark 4.8We emphasize that the step two hypothesistbhas been used
only in the embedding in (4.42).

5. Non-existence of positive solutions to the Yamabe equation in bounded
domains

In this section we apply the results of sections four and five to obtain non-
existence theorems for a class of bounded domains which play a basic role in the
analysis of Carnot groups. Such class contains the gauge pseudo-balls defined
via (2.3), as well as, when the group is of Heisenberg type, the level sets of the
entire solutions (1.4) to the CR Yamabe problem (1.2pin= G . We begin by
stating a corollary of Theorems 4.6, 4.7 and 3.7.

Theorem 5.1. Let G be a Carnot group of step two. L&2 ¢ G be aC™®
bounded domain, starlike with respectgo € 2 and uniformly starlike with
respect tog, along the characteristic se¥'. Suppose in addition that condition
(4.2) holds and that a defining functigmof £2 fulfills (4.12)for some constant
M > 0in aneighborhood of'. Under these hypothesis = 0is the only weak
solution of(4.1).

In order to produce interesting geometric examples to which Theorem 5.1
can be applied we establish a useful lemma, which is a simple consequence of
the Baker-Campbell- Hausdorff formula. This result shows in particular that in
a Carnot group the coordinates in the first and second layers of the Lie algebra
g are L-harmonic. We will use the notations of section two, see the definitions
(2.2), (2.5).

Lemma 5.2. Let G be a Carnot group. One has
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From the latter equation we infer, in particular, that the functipa> |y(g)|?
is £-subharmonic and in fact

k
LAy =2 IXonP = 0.

i=1
There exists a constait = C(G) > 0 such that
IX(yPI? < CIxP Iyl%

Proof. Letg = exp(&) with & = & + ... + &,. Forr € R the Baker-Campbell-
Hausdorff formula and the stratification gigive forl = 1, ..., m

xj (g exptX;) = x;(g) + 18,
t
(5.1) vi(gexprX;) = yi(g) + 5 < (61, X1, Y > .

From (5.1) theC-harmonicity ofx;(g) andy;(g) is obvious. Using (5.1) we
now definefoil =1, ...,m

k

Gi(1) = |y(gexptX))> = > (v?
Ij;.
(5.2) + < [61 Xi) Y > i+ 7 < [61, X1, >2).

Differentiating with respect to we find

k

(5.3) $/0) =) <[£. X/1.Y; > yi,

i=1
hence
k

$(0? < |yl D (< [&1, X1, ¥i >)%

i=1
Keeping in mind thag; = Z;”Zl x;X; we easily obtain

k

m k
(< EL XY =) < xP YD) (< [X, XL Y )2

i=1 j=1 i=1

In conclusion

IX(yPP =) ¢i© < Clxf |yl

=1
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where

Let nowG be a Carnot group of step two. We define the function

G4)  fi(e) = (2 + Ix(@)P?+ 16y(2)1) ", ceR.

For R > 0 ande € R, with €2 < R?, consider theC> bounded open set

(55) -QR,e = {g €G I fe(g) < R}

Whene = 0 itis clear that2g . is nothing but a gauge pseudo-ball centered
at the group identity, except that the natural gauge was defined in (2.2) without
the factor 16. Here we have introduced such factor for the purpose of keeping a
consistent definition with the case of groups of Heisenberg type, studied in the
next sections. For all practical purposes the reader can neglect it and idgntify
in (5.4) with (2.2). Forg € G, we let2z (g) = {h € G | f.(g7*h) < R} =
g QR,G'

Theorem 5.3. Let G be a Carnot group of step two. Given agye G, R € R
ande € R with €2 < R?, the functionu = 0 is the only non-negative weak
solution of (4.1) in2g (g).

Proof. We need to show that the s&% . (g) fulfills the conditions of Theorem
5.1. By left translation it is enough to considex .. Sincep = f4is also a
defining function for the domain, we will work with this function. Noting that
|x|? is homogeneous of degree two and that is homogeneous of degree four,
we find

(5.6) Zp(g) = 4 (e® + |x(9)1DIx(g)1? + 16/y(g) 2.

On 32z we have(e? + |x(g)|%)? + 16|y(g)|> = R%, it is thus easy to
recognize from (5.6) tha®2y . is uniformly starlike. Furthermore, according
to the Definition 7 in section 5.2 of [10], the domainGs§ — X, i.e., it has
cylindrical symmetry near the characteristic Sednd therefore as a consequence
of Theorem 15 in [10], section 5.2 . is a X-NTA domain. In particular, the
existence of a uniform exterior corkscrew guarantees that (4.2) is satisfied. Let
¥ = |x(g)|? andy» = |y(g)|?, so thatp = 2 + 16y,. One has

Lo =2|XY >+ 2y Ly + 16Ln,

Xp = 2y Xy + 16X .
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Using Lemmas 4.2 and 5.2 we obtain
Lo > 4m + 2.
On the other hand
(5.7) < Xp, X >= 292+ 16 < X, Xt >,
and using again Lemmas 4.2 and 5.2 we see that
(5.8) <Xy, X¥p>=< Cy |yl

whereC > 0 is a universal constant. This shows that
M
<Xp. XY > 204+ CY < Y < L,

for a sufficiently large constan#/;, which exists since2x . is a bounded do-
main. We have proved that all the hypothesis in Theorem 5.1 are satisfied. This
completes the proof. O

6. Existence of global minimizers

In their paper [44] on the CR Yamabe problem D. Jerison and J. Lee observed
that using the concentration compactness method of P. L. Lions, see [60], [61]
and also [74], one can see that the best constant in the Folland- Stein embedding
(1.1) for the Heisenberg group in the cgse= 2 is achieved and thus (1.2)
admits an entire non-negative solution. P. L. Lions’ method is very powerful and
general and can, in fact, be suitably adapted to the homogeneous setting of a
Carnot groupG to prove that for any 1< p < Q the best constant in (1.1)

is achieved. Consequently, for any sycthe quasi-linear equation with critical
exponent

(6.1) Lou=>" X;(1XulP"2X;u) = —u?" in G

j=1

possesses an entire non-negative solution. The purpose of this section is to record
these basic results without presenting the proofs, which will appear elsewhere
[79].

Two crucial aspects of the equation (6.1) are its invariance with respect to the
group translations and dilations. The former is obvious, since the vector figlds
are left- invariant. The latter must be suitably interpreted and follows from the
observation that for every > 0 one hasC,(cu) = c?~tu, and that furthermore

(6.2) L,(wo8;)=A" 38, 0Lyu.
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If we thus define, for a solutiom of (6.1) and forA > 0, the rescaled
functionu; = A% o §;, then it is clear that, satisfies (6.1) if and only if
a = Q/p* = (Q— p)/p. These consideration lead to introduceifoz C°(G)
two new functions

def

(63) Thi :f uoTty, hegG,

wherer, : G — G is the operator of left-translation (g) = hg,

(6.4) U, ey 03;, A > 0.

Itis easy to see that the norms in (1.1) are invariant under (6.3) and (6.4).
The problem of finding the best constant in the Folland-Stein embedding (1.1)
leads to the following variational problem

(6.5) I =1 Y inf /|Xu|'” | u € C(G), /|u|ﬂ* =1
G G

Aminimizing sequencu, } € C;°(G) isthus characterized by the properties

(6.6) /|um|f’*:1 and /|Xum|1’ - I
G m—0o0
G

The following is the main result about existence of global minimizers.

Theorem 6.1. Let G be a Carnot group and consider the minimization problem

(6.5). Every minimizing sequenge, } of (6.5) is relatively compact r[OD Lr(G),
after possibly translating and dilating each of its elements uging)and (6.4).
In particular, there exists a minimum of (6.5) and the equation

(6.7) Lou =—ul "t

admits a non-trivial, non-negative solutiane 70) Lr(G).

The proof of Theorem 6.1 is based on an adaptation of the method of concen-
tration of compactness of P. L. Lions [60], [61], [62], [63]. In such adaptation
the Euclidean spadrR” is replaced by a Carnot group with its homogeneous
structure and Carnot-Carathdory distance. Similarly to Lions’ cited works, in
particular [62] and [63], the crucial ingredients are the following lemmas.

Lemma 6.2. Supposey,, is a sequence of probability measures @n There
exists a subsequence, which we denotellpy, such that exactly one of the
following three conditions holds:
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(1)(compactness) There is a sequengg) € G such that for every > 0
there existR > 0 for which, for everyn,

/ dv, > 1—e€.

B(glan)
(2)(vanishing) For allR > 0 we have
lim (sup / dvm> =0.

geG
B(g,R)

(3)(dichotomy) There exists, 0 < A < 1 such that for every > 0 there
existR > 0 and a sequencég,,) with the following property: Giver®’ > R
there exist non-negative measurgsandv? for which

(6.8) 0 < v+ v,i <V
(6.9) supp v,}, C B(gn, R), supp v,f, Cc G~ B(g., R)
(6.10) )x—/v; +‘(1—A)—/vi <e

Lemma 6.3. Supposer,, — u in D Lr(G), um = |Xun,|PdH — p, and
Vm = |lum|?"dH — v weaks in measure, wherg and v are bounded, non-
negative measures d&. There exist at most countable pointse G and real
numbersi; > 0, e; > 0, such that

(6.11) v=[ul” +) dis,
J
(6.12) w= | XulPdH 4" e;d,,
J
(6.13) 14,77 < e;,

wherel is the constant in (6.5). In particular,
(6.14) > d < oo,

We mention that the implementation of Lions’ program relies, among other
things, on the Rellich-Kondrachov compact embedding. In the sub-elliptic setting
the proof of this result requires a substantial amount of work. A general version
of it was proved in [32]. It states that i2 denotes a bounde&-PS domain
(Poincag-Sobolev domain) in a Carnot-Caratitlory space, then the embedding

LYP(2) c Li(2)
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is compact provided that% ¢ < p* = pQ/(Q — p). Here,£1?(£2) indicates

the Sobolev space of those functiofise L?(£2) such thatXf e L”(£2),
endowed with the natural norm. Carnot groups are the basic models of Carnot-
Caratl€odory spaces. We need to apply such result to an increasing sequence
of bounded domain$2, C 2,1 C G, such that2, ~ G. We can take as

£2, the Carnot-Carattddory ball centered at the identitye G with radiusk,

since it was proved in [28], [32] that such sets &S domains in any Carnot-
Caratl€odory space.

For the proof of Lemmas 6.2 and 6.3, and that of Theorem 6.1, we refer the
reader to [79].

7. Existence of explicit entire solutions to the Yamabe equation on groups
of Heisenberg type

In this section we consider a special class of Carnot groups, those so-called of
Heisenberg type. Such groups were introduced by Kaplan [48] and have been
subsequently intensively studied by several authors, see the references cited in the
introduction. We list only some of the basic properties of groups of Heisenberg
type and refer the reader to the cited references for further details.

Let G be a Carnot group of step two whose Lie alggbea V; @ V». Consider
the mapJ : Vo, — End(Vy) defined by

(7.2)
< J(éZ)giy Si/ >=< gzv [gi’ Si/] >, for ";:2 € VZ and gi’ gi/ € Vl-

G is said ofHeisenberg typé for every & € V,, with |&;] = 1, the map
J(&) : Vi — Vi is orthogonal. The definition of and the orthogonality
assumption respectively imply

(7.2) < J(§2)61,61 >=0, |/ (§2)81] = |52] |54l

The next properties of groups of Heisenberg type can be found in [48], [9].
For the reader’s convenience we have collected them in a lemma, whose proof
has been included for completeness.

Lemma 7.1. Let G be a group of Heisenberg type. The following formulas hold

k
(7.3) L(y(@I?) = > Ix(g)[?
(7.4) IX(y19)1? = |x[* y?
(7.5) < X(Ix(®®, X(Iy(e)>) >=0.
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Proof. Recalling(5.2) one sees

1 k 1 k
/0 =5 ;(< Y, [£1, X/] >)? = > ;(< J(YDEL X >)2.

This implies in view of (7.1), (7.2)

m 1 m k
LUy =) ¢/© =35 3D (< J(DEs, Xi >)?

=1 =1 i=1

NI =

k
(7.6) S )EP = |x|
i=1

From (5.3) one has

k

(7.7) ¢,(0) = Z <[, Xi1.Yi >< &2, Y >=< &, [61, Xi] > .
i1

Using (7.2) we obtain from the latter equality

m

IX(yP1P =) 907 =) (< J(Eb X, >)* = [T E& = x| |y

=1 =1
Finally, (4.7), (7.7), (7.1) and (7.2) imply

m

<X, X(yP) > =2 ) <&, X >< &, [, X/] >
=1

(7.8) =2 < J(§)61,6>=0.
This completes the proof. O
We consider next the function introduced in (5.4)

2)l4

fe(@) = (€ + 1x(9))* + 16]y(2)1?) ceR.

Lemma 7.2. Let G be a group of Heisenberg type, then foe G one has

x(g)[?

X € 2 = ’

X =20
Q 2

fe(g) fe( )3
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Proof. For ease of notation we lgt = f.. Settingp = f* as in the proof of
Theorem 5.3, one easily finds

2_ - 2
(7.9) I Xf1° = 16fGIXpI ;
1 3
(7.10) Lf = e |:£,0 — 4—f4|X,0|2j| .
Since

Xp = 2(e* + x| X (1x[?) + 16X (|y[?),
using Lemmas 4.2 and 7.1 we obtain
(7.11) 1Xp)? = 42+ [x1D?X (1x[D) 2 + 171X (|y|?) 2
+64(e? + x5 < X(Ix[D), X(y]?) >
= 16(e? + |x[)?|x|? + 16%|x|?|y[?
= 16x?[(€® + [x|*)? + 16]y|*] = 16/x|* f*

Substitution in (7.9) gives the first part of the lemma. We compute Agxt
Applying Lemma 7.1 again one finds

Lp = L((€*+ x?) + 16L(y[*) = L ((* + |x[*)?) + 8klx|*.
On the other hand, Lemma 4.2 gives
L€+ 1x1H?) = 2X (X112 + 2(e* + [x ) L(Ix[?)
= 4(m + 2)|x|* + 4me>.
Recalling that the homogeneous dimensiotra$ O = m + 2k, we conclude
(7.12) Lp =40 + 2)|x|? + dme.

Finally, replacing (7.11) and (7.12) in (7.10) we obtain the second part of the
lemma. O

We can now give the

Proof of Theorem 1.1With f = f, as above and > 0, we consider the function
w = h(f), whereh e C?(R), and look for conditions oh for which w satisfies
the Yamabe type equation

(7.13) Lu = —uo2.

Using Lemma 7.2 we find
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(7.14) Lw =h"(OIXFIZ+H(Lf
1 |x|2
=h (f)?

= [h”(f) +

 To- mez}
h X
+ (f)[ - |f|+f3
Q; h(f)] P2+ ")

f3?
Formula (7.14) suggests that we choassich that

n'(t) + QT_lh’(t) -0

for eachr € R. The choiceh(r) = At>~2, 1 € R, accomplishes this. Having
takenw = A2~ ¢ we must now wonder whether we can satisfy (7.13) for some
value ofA. In view of (7.14) this amounts to satisfy the equation

A(0+2/(0-2)
f3 h (f) = T jom
which reduces to
A= (m(Q - 2)62)(Q—2)/4.
This completes the proof. O

8. The Kelvin transform

In [53] Koranyi introduced an inversion on the Heisenberg group and used it
to define an analogue of the Kelvin transform in such setting. Subsequently,
such inversion formula, as well as the Kelvin transform, were generalized in
[16] and [15] to all groups of Heisenberg type. The purpose of this section is
to recall the relevant definitions and establish some more properties of the CR
Kelvin transform. Such properties are particularly far reaching in the context
of lwasawa groups, where we show that the Kelvin transform is an isometry

between the spacaos 12(0) andD L2(£2*), wheres2* denotes the image of
£2 under the CR inversion. This will be a useful fact in the next section when
we study equations on unbounded domains. Using the Kelvin transform, we
have obtained explicit formulas for the Poisson kernel with singularity on the
characteristic set for the gauge balls. We have also found explicit formulas for
the Poisson kernel for the bounded regions which are the conformal images of
the non-characteristic “hyperplanes” in the grdepAn interesting observation
is the different asymptotic behavior of the Poisson kernel with pole at a point on
the characteristic set and at a point outside of it.

Recall that Iwasawa type groups arise naturally as the nilpotent component
in the lwasawa decompositici AN of any simple group of rank one. Every
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Iwasawa group is a group of Heisenberg type. We refer the reader to [16] and
[15] for more details.

Definition 8.1. Let G be a group of Heisenberg type with Lie algehya=
Vi@ Vo. For g = exp(€) € G, withé = & + &, the inversiorns : G* — G,
whereG* = G \ {e} is defined by

_(_ 2 -1 . &2
0@ = (~(x@F 1 +47E) o1~ ).

where the map is asin (7.1), and denotes the identity map df. One easily
verifies that

o?(g) =g, g €G".

As in the previous two sections, in the sequel we will use, instead of (2.2),
the renormalized gauge

(8.1) N(g) = (x()I* + 16ly() 1) Y*,

Kaplan proved in [48] that in a group of Heisenberg type the fundamental
solutionI” of the sub-Laplaciaf is given by the formula

(82) [I'(g.h)=CgoN(h*g)~ 1?2, g.heG,g#h,

whereC, is a suitable constant. Equation (8.2) will play a key role in Definition
8.3 below. Writingo (g) = exp(n), with n = n, + n2, for the image ofg, we
easily obtain from Definition 8.1 an@.2) that

&1 &2

(8.3) In1| = W and |n| = W

An immediate consequence of (8.3) is that
(8.4) N () =N(@™ g €G".

A direct verification, using (7.1) and the definition of the group dilations,
shows that the inversion anticommutes with the group dilations, i.e.,

(8.5) 0(8,(8)) = 8;-1(a(g)). g§€G".

A corollary of (8.5) is that starlikeness behaves well under inversion. This is
contained in the following result.

Proposition 8.2. Letp € C*(G). The following formula holds

Z(poo)=—(Zp)oo.
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Proof. Seth(g) = p(o(g)). Applying (8.5) we obtain
h(é:8) —h(g) _/\p((Srw(g)) — p(0(g))

A—1 Al—1 '

and taking the limit. — 1 finishes the proof. O

g € G*,

Definition 8.3. Let G be a group of Heisenberg type, and consider a funation
on G. The CR Kelvin transform of is defined by the equation
w*(g) = N(g)" 97?2 u(o (), geG".

Wheng is a group of lIwasawa type, then it was proved in [15] that the inver-
sion and the Kelvin transform possess various basic properties. In the following
theorem we collect the two which will be needed in the sequel.

Theorem 8.4 Gee [15]).
Let G be a group of lwasawa type. The Jacobian of the inversion is given by

d(H o0o)(g) = N(g)"*¢ dH(g), geG".
The Kelvin transformy* of a function satisfies the equation
Lu*(g) = N ()~ (Lu) (o (), geG.

Remark 8.5.In the sequel we denote ly* the image of a generic domaif

under the inversiow. We stress that, since we have chosen not to define the
inversion of the point at infinity, in the case in whighis a neighborhood afo,

by which we mean that there exists a ik, R) such tha(G \ B(e, R)) C £2,
then§2* is a punctured neighborhood of the identity, i€} = D \ {e}, for an

open setD such thatt € D. The reader should keep this point in mind for the
proof of the next result, as well as for the results in section nine. The following
theorem is a consequence of the conformal properties of the inversion and of
the Kelvin transform. Such result will be used in the next section in combination
with the conformal invariance of the Yamabe type equation expressed by Lemma
9.1.

Theorem 8.6. The Kelvintransformis anisometry betwefeﬁ’z([z) andD L2()
2%,

Proof. Letu, v € D L2(2)andu*, v* € D L2(02*) be their Kelvin transforms.
We begin by observing that thanks to Theorem 8.4 and (8.4)

(u*(g"))? dH(g)
Q*

]ZQ/(Q—Z)

= f * [N(g) 9 ?u(o(g)) dH(g)

]ZQ/(Q_Z) N(g)*szH(g) :/ u(g)z*dH(g)
2

_ fg [N () C2ug)
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We want to show next that

(8.6) /< Xu(g), Xv(g) > dH(g) :/ < Xu*(g"), Xv*(g") > dH(g').
[7) o

By an easy density argument it suffices to assumeuthate C°(£2). An
integration by parts shows that (8.6) is equivalent to

/ u(g) Lo(g) dH(g) = f u*(g) Lo* (g dH ().

2 £2*

Using again Theorem 8.4 and (8.4) we obtain

/ u*(g") Lv*(g") dH (g

0*

= / N(g") 9P u(o(g) N(g) "2 (Lv)(o(g)) dH (g
Q*

_ / u(g) Lo(g) N(©) @2 N ()@ N(g) 22 dH (g)
2

=/u(g) Lv(g) dH(g).

2
This completes the proof. O

Our next task is to investigate how the CR inversion acts on various domains
which play a basic role in the geometry of Carnot groups of Heisenberg type.
Given the ubiquitous role of the Heisenberg grdtip in analysis, we begin
by deriving various explicit formulas in this special setting and then generalize
them to groups of Heisenberg type. We recall tHatis the Lie group whose
underlying manifold isC" x R with group law

(8.7) ., )=+, t+t+2Im(z-7)),

where forz, z/ € C" we have let -z’ = Y_7_, z;z}. In real coordinates a basis
for the Lie algebra of left-invariant vector fields @& is given by
] d ] ] ]
Xi=—+2y—, Xpuj=——-2x;—, j=1..,n, —.
I= g, TG A =y T Y
Here, we have identified= x + iy e C", with the real vectotx, y) € R?".
Since[X;, X, 1] = —48jk§’—t, the Lie algebra is generated by the syst€m=
{X1, ..., X2,}. The relative sub- Laplaciad = Zfil ij is the real part of the
Kohn complex Laplacian. We recall that the exponential map is the identity and
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that, as for any group of step two, the dilations are the parabolic&ies) =
(Az, A%t). The corresponding homogeneous dimensio®is= 21 + 2. The
natural gauge foH" is obtained by specializing (2.2)

Iz, )] = (|z]* + AV

We next write the formulas for the inversionlift, see [53]. LetA = |z|2+ it
sothatdA = |(z, 1)|*. The inversion of a pointz, 7) is given by

def

w, 1) =0 (-2

(5 57
A° AAT
The expression of the inversion in the real variables is

|z%x —ty 2Py +ix t

8.8 = —— V=, T=—7,
(8.8) |z|* + 12 |z]* + 2 |z|4 + 12

wherew = u + iv. We now introduce some unbounded regions which play an
interesting role in the analysis Bif".

Definition 8.7. GivenM, b € R, we call the open sets
Cip ={@ ) eH" |t > Mz|* + b}
and
Cyp={@ ) eH" |t < —M|z|*+b}

characteristic cones. The cone is called conveXif> 0, concave ifM < 0.
WhenM = 0 we use the notatiof;" to indicate the characteristic half-spaces

Cop={neH" |t > b}, Cu,={E1)eH" |t < b}

The boundaries of such half-spaces are called characteristic hyperplanes.

A simple computation shows that a characteristic oﬁm has the isolated
characteristic poin{0, ») on the group center. Using the left-translations (8.7)
one sees that), , = (0, b) Cj, . It is worth mentioning that the concave cone
Cliw’o, with M < 0 suitably chosen, is precisely the region for which D. Jerison
[43] produced the counterexample to the boundedness of the horizontal gradient
referred to in the introduction. We will further comment on this example subse-
guently, when we prove Theorem 9.5. Our next task is to compute the images of
the convex characteristic conesh¥i under the inversion. We only consider the
conesCy; ,, the obvious modifications faf}, , being left to the reader.
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Proposition 8.8. Leto be the inversion ofl" defined by (8.8). Forevery > 0,
b > 0, definec = \/M/2b, R = ((M? + 1)/4b%)*4, and consider the set

Qre=1{(z 1) eH" | (2> +€>)?+1*> < RY.

One has

1 1
a(Cyp) =0, —22) 2re={z,) € H' | (2 +€)? + (1 + )% < RY).
2b 2b
In particular, the image through the inversion of the characteristic half-space
Hy ={(z,t) e H" | t > b} is the gauge balB((0, —5.)) = {(z,1) € H" |
l2[*+ (1 + 3)* < RY).

Remark 8.9.Several comments are in order. First, it is obvious from the defi-
nition thate? < R2. Secondly, the set®; . are precisely the level sets of the
Jerison-Lee minimizers (1.3) and of their generalizations introduced in (5.5), if
in the latter we neglect the immaterial factor 16. In the statement of the proposi-
tion we deliberately did not consider the case 0. The reason for this is that
whenb < 0, then the group identity is either containeds®x . (b < 0), or it
belongs to its boundary (= 0). The image through the inversion would not be

a bounded domain and we are not interested in such situation.

Proof. It follows from straightforward computations using (8.8). O

We next use the Kelvin transform and Proposition 8.8 to derive an explicit
formula for the Poisson kernel of the gauge balHihwith singularity at one of
the two characteristic points on the boundary. We thank A. Kgriam bringing
to our attention that a similar formula already appeared in [40] and that related
(but different) formulas are contained in [56] and also in the unpublished notes
[55].

Theorem 8.10. Consider that gauge balB(e, R) ¢ H" centered at = (0, 0)

with radius R > 0 and denote by* = (0, £R?) the only two characteristic
points. The Poisson kernel for the Kohn sub-Laplacian with singularity at the
point g is given by

R*—g|*

+ _ p0O-2
P(g.8,) =R g IgE| 0D’
o

where g = (z,1).

Proof. We only prove the formula for the poigt™ = (0, R?), the other case
being treated similarly. Consider the gauge M&{(0, —R?), R). In view of
Proposition 8.8 such ball is the image through the inversion of the characteristic
half-spacefl,” = {(z,1) € H" | t > b} with b = 5%,. The functionw(z, 1) =

t — b is a non- negativeC-harmonic function inH," which vanishes on the
boundary. Since the point at infinity if,” is mapped into the characteristic
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pointe € dB((0, —R?), R), in virtue of Theorem 8.4 we conclude that the
Kelvin transformw* of w is non-negative and-harmonic inB((0, —R?), R).
A simple calculation gives

R*— (|z|*+ (t + R»)?)
2R? |(z,1)]2+2 ’

Left-translating by(0, —R?) we obtain a non-negativé-harmonic function
in B(e, R)

w*(z,t) = (z,1) € B((0, —=R?), R).

1 R'*—(z]*+17)
2R? |(z, (1 — R?))|9+%’
which vanishes everywhere @B(e, R) except afgF. Using the notatiory =
(z, t) we consider the normalized function
R —|g|*
lg~ g 122

u(z, t) =

P(g,g) = R

which has the same properties:oplus the additional oné (e, g/) = 1. Ac-
cording to the definition introduced in [10F(g, g.") is thus a kernel function

for £ andB(e, R), normalized a¢ and with pole ag . On the other hand it was
proved in [10], Corollary 1.1, that the gauge balls AF&TA domains, and that
moreover, Theorem 4.11, for such domains there is uniqueness of the normalized
kernel function. This concludes the proof of the theorem. O

Remark 8.11.The explicit representation @t (g, g) sheds light on a striking
new phenomenon. As it is well known, the standard Poisson ketnhe|x,)
for the unit ballB ¢ R” has the following property: If one considers a non-
tangential region (a Euclidean cone) with vertexat 9B, I',(x,), then there
exist constant§’y, C, > 0, depending omn, «, such that fox € I, (x,)
C1 C2
[P < P(x,x,) = [P,

Guided by these considerations one might be led to conjecture that an analo-
gous asymptotic behavior should hold, where 1 be replaced b@ — 1 and the
Euclidean distance by the Carnot- Caexilory one. Such intuition, however,
is only correct away from the characteristic set. As Theorem 8.10 shows, there
exist non-negativ&€-harmonic functions in the gauge bal(e, R) which vanish
everywhere on the boundary but at one single characteristic gipjind whose
non-tangential behavior negy is

C, N Cy
o = P&.8) = 715
d(g. &) d(g. gf)

This shows that the presence of characteristic points causes a sudden jump
in the rate of blow-up near a singular boundary pointdelnarmonic functions.
We plan to return to these and related questions in a forthcoming paper.

— Xo

(8.9)
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We next consider the Poisson kernel for another family of domains of interest,
namely thenon-characteristic half-spaceSimilarly to what was done in Defini-
tion 8.7, these domains are introduced in a natural way in the Heisenberg group.
Their definition can then be extended to any Carnot group of step two. Since
in this paper we are not concerned with non- characteristic domains, in what
follows we confine ourselves to describe one particular, yet significant, example.
We consider in the Heisenberg group the half-space parallel to the center

My ={(x,y,) eH" | <x,a>+<y,b>>1}

wherea, b € R” are fixed so thafa|® + |b|?> # 0. Denoting withp(x, y, 1) =

1- < x,a > + < y,b > the defining function of’7,, one easily sees that
|Xp(x,y,1)]?> = |a]2 + |b|?> # 0, hence this half-space has no characteristic
points on its boundary. We indicate wifli;, the image offT,; through the
inversion (8.8). Since the point atinfinity is 67, ,, the group identity belongs

to o713 ,. If we consider the function

wx,y,t)=<x,a>+ <y, b>-1,

then by Lemma 5.2 is £-harmonic inl7, ,, and non-negative. As a consequence
of Theorem 8.4 the Kelvin transform af, w*, has the same properties. Further-
more, it vanishes everywhere 6il;,, except ak. An elementary computation
gives

w*(x, y,1)

B _|z|4+t2+|z|2(< x,a>+<y,b>)+t(<x,b>—-<y,a>)
|(z, 1)|2+2 '

From this formula one easily obtains for= (z, t) = (x, y, t) for a constant
C=C@hb)>0

d(g,e)’1+0W(g.e) _  C
d(g,e)e+? T d(g, eV
asd(g,e) — 0, g € IT;,,. A comparison of this estimates with (8.9) underlines

the strikingly different behavior of non-negative-harmonic functions near a
singular boundary point, depending on whether the latter is characteristic or not.

(8.10) w*(g) < C

After this excursion into the Heisenberg group we return to the setting of
groups of Heisenberg type. Our first objective is to introduce an appropriate
notion of cones and half-spaces in a Carnot group. This can be done in a natural
way by means of the exponential map, or instead working directly on the group by
exploiting its homogeneous structure. This latter approach was fully developed
in [10]. Below, we will use the former approach. Given a pging G we will

continue to denote with(g) = (x1(g), ..., x,x(g)) andy(g) = (y1(g), ..., yx(g))
the projection of the exponential coordinateg @h the first and second layer of
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the Lie algebrg. We indicate witiR% the con€{(y1, ..., yx) € R* | y; > 0,i =
1, ..., k}

Definition 8.12. Let G be a Carnot group of step two. Gived, b € R, and
a e R*\ {0}, we call the open sets

Crpa=1{8€G|<y(g),a>> Mlx(g)*+ b}
and
Crra=1{8€G|<y(g),a>< —M|x(g)|”+b}

characteristic cones. In the case in whiahe R’jr \ {0}, then we call the cone
convex ifM > 0, concave ifM < 0. WhenM = 0 we use the notatioriﬁi,jf61 to
indicate the characteristic half-spaces

C(—)’:h,az {geG|<y(g),a>> b}, Copra=18€G|<y(g,a>< b}

The boundaries of such half-spaces are called characteristic hyperplanes.

We next consider the analogue of Proposition 8.8 for convex cones in groups
of Heisenberg type. Again, we only describe the images;m‘a.

Proposition 8.13. Let G be a group of Heisenberg type with the inversion as
in Definition 8.1. For everyt > 0,5 > 0,a € R: \ {0}, definec = /M /25,

R? = ,/16M?2 + |aj2/8b, and consider the set
2re=1{g € G| (x(@P +€)*+ 16y < RY.
One has
N a
o(Cypa) = (O, —@) 2R
_ 2., 22 a 4
=g Gl (x@P+e?+16y(0) + o2 < R*].

In particular, the image through the inversion of the characteristic half-space
H',={g € G |< y(g),a> > b}isthe gauge balB((0,—35;), R) = {g €

Gl Ix@I+ |y + 5[ < R
Proof. We begin by observing that from their definitions one immediately sees

thate? < R? Letg = (x,y) andh = o(g) = (x*,y*). If h € C};, ,, from
Definition 8.1 and (8.3) we see that the coordinatesmfist satisfy the inequality

M 1
|x|* + 16)y> + ;|x|2+ s <y.a><0
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By elementary calculations the latter is easily seen equivalent to
M\? a2 16M2+|a)?
2
— 16‘ — _—.
('xl + Zb) TPt < T eae
From this the theorem easily follows. One only needs to remember that the
Baker-Campbell-Hausdorff formula gives for the group law in exponential co-
ordinatesg = (x, y), ¢ = (x', y)
g8 = +x,y+y)+1/20(x,y), &, y)].
This gives in particular
O, y) & =& y+y).
]
We next obtain an analogue of Theorem 8.10 for groups of lwasawa type.

Theorem 8.14. Let G be a group of lwasawa type and consider a gauge ball
B(e, R). The characteristic seE of B(e, R) is a sphere contained in the sub-
manifold{g € G | x(g) = 0}. Furthermore, for any, = (0,a) € X, a € R,
the Poisson kernel with singularity gt is given by

R*— N(9)*
N(g1g,)@+?
Proof. Let p(g) = |x(g)|*+ 16ly(g)|* so thatB(e, r) = {g € G | p(g) < R}.
Settinge = 0in (7.11) we obtain

1Xp(g)? = 161x(2)I* p(g) = 16R* |x ().

The latter equation implies the claim abautsince

(8.11) P(g,8,) = R%™?

R4
T =(g B R) | 1Xp() =0 = (g € G| x(e) =0, (@ = o).

Consider nowg, € ¥, sothatg, = (0, a) with |a|> = ’f—g.The left-translation
by (0, —a) sendsB(e, R) to the gauge balB((0, —a), R), and the poing, to
the group identity. According to Proposition 8.13 the bal((0, —a), R) is the
image through the inversion of the characteristic hyperplaig with b = 3i2
Thanks to Lemma 5.2 the supporting function

w(g) =< y(g),a> —b
of Hbfa is a non-negativ&-harmonic function which vanishes on the boundary.
Consider the Kelvin transform a#f,
w*(g) = —=N(¢)"®*? [< y(g),a> +bN(2)"]
1 RY = (x(@)I* +16ly(9) +aP)
S 32 N(g)2+2 ’
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see Definition 8.3. Due to Theorem &4 is £-harmonic and non-negative in
B((0, —a), R). We left-translate this function tB(e, R) usingg, and normalize
the resulting function, denoted ¥(g, g,), so that it has value one at One
easily finds

02 R*—(x(@I*+16]y()[%)
(|x(g)[*+ 16y(g) — a|?)2+2’

At this point the conclusion of the proof follows the same argument of the
proof of Theorem 8.10. O

P(g’go) =R

9. Non-existence of positive solutions to the Yamabe equation in
unbounded domains

We are interested in deriving some non-existence results for

Lu* = _(M*)(Q+2)/(Q—2)
(9.1) o
u* € D 23(2%), u* >0,

with £2* an unbounded open set in an lwasawa type grups in the case
of bounded domains, in order to show non-existence of positive solutions some
assumption on the domain are needed.

Let G be an lwasawa group an@d* be an unbounded open set. Using the
Kelvin transform we will reduce the problem to one on a bounded domain,
where we can apply Theorem 5.1. Bywe denote the image of the open &t
under the inversion with center at the identitye recall Remark 8.5. We also
note that since problem (9.1) is translation invariant we can by left- translation
sends2* to another conveniently chosen unbounded domain. If the complement
of £2* contains a ball we can thus suppose from the beginning that such ball
is centered at the group identi¢y Furthermore, by a simple rescaling we can
without restriction assume that the radius of the ball be one. We start with a
simple, yet crucial, lemma.

Lemma 9.1. Letu be a solution of

©2) Lu =0 —u?
ueD¥2), u=0,

and denote by* its Kelvin transform. Them* satisfies

(93)  Lu'(9) = —N(®" 9 27" u*(g) g €.

In particular, whenp = Q—fg we conclude that ifi satisfies problem (4.1),
thenu* is a solution of (9.1) in2*.
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Proof. Letu be a solution to (9.2). From Theorem 8.6 we knoiwwe Zo) L2(02").
Consider an arbitrary functiotr € C°(£2*), then we can write) = ¢*, for
somegp € C°(£2). Integrating by parts and applying Theorem 8.4 gives

/ < Xu*(g), Xy (g) > dH(g)) = / < Xu*(g), X¢*(¢) > dH(g)
2* 22*
—_ / u* (g)Lo* (g)dH (g)
Q*

—_ / N(g)2Cu(o(g))Lé* (o (¢)dH(g)
J,

__ / u(g)Lp(e)dH (g) = / < Xu(g). X¢(g) > dH(g)

2 2
_ /Q u(g)"$()dH(g),

where in the last equality we have used the fact thigta solution to (9.2). We
now make the change of variabfe= o(g’), ¢’ € 2%, and use Theorem 8.4
again to obtain

*

/ﬂ u(g)"$(@)dH(g) = / u(o(8))"$(0 ()N (g)2CdH(g))

/ u* (0 (g))"9* (0 (g))N(g) @2 Ct24H (g).
In conclusion we have found

f < Xu*(g"), Xy (g > dH(g)

Q*
= f u* (0 (g))Pe* (o (g))N(g) e 2r~CH2qH (g,

By the arbitrariness of € C>°(§2*), (9.3) follows. O

In the following theorem we show thatif is a solution to (9.1) in a neigh-
borhood of infinity (see Remark 8.5), then the Kelvin transformsofhas a
removable singularity at the group identity

Theorem 9.2. LetG be an Iwasawa group. Suppose thats a solution of (9.1)
in £2*, with £2* a neighborhood of infinity. Let be the Kelvin transform af*
defined ing2, then the group identity is a removable singularity, i.ey can
be extended as a smooth function in a neighborhoadvdfiere the equation is
satisfied.
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Proof. Due to the assumptions a2* we can write2 = D \ {e}, whereD

is a bounded open set containiagTheorem 8.6 implies that e D 12(2),
moreover from Lemma 9.1 (with the roleswfndu* reversed) we know that
satisfies (4.1) in2, hence for everyr € C>°(D \ {e}) one has

(9.4) / < Xu, Xy >dH = /uz*lwdH.

D D

According to Theorem 2.4 we havep,({e}) = 0, therefore thanks to Propo-
sition 2.5 we can find a sequence of functianse C2°(D \ {e}) such that
0<& <1,4(g) — 1foreveryg € D\ {e}, and for which

(9.5) / |X&|?’dH — 0,
D

ask — oo. We fix ¢ € C2°(D) arbitrarily. For everyk € N one haspg <
C>*(D \ {e}), and therefore we obtain from (9.4)

/uz*_1¢§de :/ < Xu, X(¢pz) > dH
D

D

:/{k<Xu,X¢>dH+f¢<Xu,X§k>dH.
D D

Sinceu € D 12($2) ¢ D2(D) we can apply Lebesgue dominated conver-
gence theorem to conclude, using (9.5),

(9.6) f < Xu,X¢ >dH = /uz*_lqde.

D D

The arbitrariness o € C°(D) shows that the identity is a removable
singularity. This completes the proof. O

The above results imply non-existence of positive solutions for unbounded
domains$£2* whose image through the inversiof2, is a bounded punctured
domain which fulfills the geometric assumptions in Theorem 3.7.

Theorem 9.3. Let G be a group of lwasawa type. ConsidelC& unbounded
open set2* ¢ G and denote by? its image through the inversion. Suppose
that 2 = D \ {e}, whereD is a bounded open set, containing the identity,
which satisfies all the hypothesis in Theorem 5.1. In this situation there exists no
solution to problem (9.1) if2*, other thanu* = 0.
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Proof. We argue by contradiction and suppose the existence of a non- trivial
solutionu* to (9.1) in £2*. Consider the Kelvin transform defined ins2. By

Theorem 8.6 we know thate D -2(52). Moreover, Lemma 9.1 guarantees that
u is a non-trivial solution to problem (4.1) f2. At this point we invoke Theorem
9.2 to conclude that has a removable singularity atWe can thus extend to

a non-trivial solution to (4.1) in the whol®. But this is in contradiction with
Theorem 5.1, therefore we must have= 0. O

To illustrate the scope of Theorem 9.3 we present an interesting application
of it.

Corollary 9.4. LetG be a group of lwasawa type and consider the unbounded
domain®* = {g € G | N(gg,; 1) > R}, whereN is the gauge in (8.1g, € G
and R > 0 are fixed. There exist no non-trivial solution to (9.1)27.

Proof. By left-translation and rescaling we can suppose ghat ¢, R = 1. In
this situation, it is easy to verif@2* is mapped by the inversion ib = 2 \ {e},
where2 = {g € G | N(g) < 1}. To complete the proof it is enough to observe
that, as it was proved in Theorem 5.3 (case: 0), the domains2 fulfills the
assumptions in Theorem 5.1. O

We finally consider a notable class of unbounded domains with non- compact
boundary, the convex characteristic cones, and prove that these sets do not support
non-trivial solutions to the Yamabe problg@1).

Theorem 9.5. Consider a group of lwasawa typ&. Let Cﬁjb,a C G be a
convex characteristic cone as in Definition 8.12. There exists no soluti@nlfo
in 2* = Cj;, . other thanu = 0. In particular, there exist no non-trivial

solutions for the characteristic half-spacgs,.

Proof. Suppose:* is a non-trivial solution to (9.1) ilf;&.b,a and denote by its
Kelvin transform. In view of Proposition 8.13, is defined in(0, —%) 2R e
where$2 . is the domain in (5.5), witlR ande specified as in Proposition 8.13.
By left- translation we obtain a new non-trivial function, which for simplicity we
continue to denote with, defined in the bounded open s2 .. From Theorem

8.6 we infer that: € D L2(Q2r o). Thanks to Lemma 9.1 we know thatis a
non-trivial solution to problem (4.1) it .. At this point we invoke Theorem
5.3 to reach a contradiction. The proof is thus completed. O

An open problem.In closing, we remark an interesting open question connected
with Theorem 9.5. We do not know whether the concave characteristic cones
introduced in Definition 8.12 admit non-trivial solutions to the problem (9.1).
We emphasize that, interestingly, the approach taken in this paper brakes down
for these unbounded regions. To illustrate why, we focus on the model case of
the Heisenberg groul”, and consider the concave characteristic cone

Cyi={@ el |t > —Mz]*+1},
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with M > 0. Using (8.8) one easily sees th@j, ; is mapped through the
inversion into the bounded region

M 1 M?+1
Ay ={@n e " | (2" = )°+ ( + 2 < ——}
Lettinge? = &, R* = %*1, it is then clear that
1
Ay = (0, _E) AR,
whereAg . denotes th&€> bounded open set
Ape={G@. 0 eH" | (z? —)*+1* < RY, 0<e<R.

Performing a left-translation we are thus reduced to analyzipg. Such
set differs fromg2; . defined in (5.5) since its defining function contains the
term —e?, instead of+-¢2. Elementary calculations prove that, letting, 1) =
(|z]? — €)% + 2, then

|Xp(z, 1)|? = 16RY|z|?,

on dAg., SO that the characteristic set ofg . is given by ¥ = {(0, +

vV R* — e%)}. Since Ag . has cylindrical symmetry by Theorem 5 in [10] we
infer that it is aX-NTA domain and therefore, in particular, condition (4.2) is
satisfied. Denoting by the infinitesimal generator of the group dilations one
easily finds for(z, 1) € 9 Ag .

Zp(z,1) = MR* — €% + 4e?|x|? > 4R =€ > 0,

which proves thatig . is uniformly starlike according to Definition 3.6. At this
point suppose for a moment thag . satisfy the condition (4.12) in a neighbor-
hood of the two isolated characteristic points. We could then apply the theory
developed in section four and conclude in view of Theorem 5.1 that there exists
no non-trivial solution to (4.1) imy .. Via inversion and Kelvin transform, such
result would imply an analogous non-existence result for the concave character-
istic coneC, ;. However, as we will now show, the assumption (4.12) cannot be
fulfilled for the domainA .. This amounts to say that we cannot prove, follow-
ing Theorems 4.6 and 4.7, that for a soluticio (4.1) inAz . one hasku andZu
bounded near a characteristic point. The counterexample of D. Jerison referred
to in the introduction provides evidence that this obstruction is not merely a fault
of our method, but rather is deeply connected with the lack of “convexity" near
the characteristic set. Our condition (4.12) thus rule out the non-convex cones.

To complete our discussion we then turn to proving that (4.12) fails. The
following calculations are a special case of those in the proof of Theorem 5.3
and we thus omit all details. With as above we find

Lp(z,1) = (8n + 12)|z|? — 8ne.
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On the other hand we have with(z, 1) = |z|2
< Xp, Xy > (z,1) = 8z[*(|z]* — €.

Sincee > 0 from these formulas one easily verifies that forMo > 0 and
8 > Oitis possible to satisfy the inequality

2
Lp > — Xp, X
p_Ml<p1/f>

in as-neighborhood of one of the two characteristic pointsi@f..

10. Appendix: A priori estimates in Lebesgue spaces

In this section we establish those basic regularity results on which the work of
the previous sections rests. Although we could have worked in a far more general
setting we have chosen to confine the attention to the model problem

Lou=3"1X;(|Xu|P2X;u) = —uP" 1

(10.1) 0
ue D (), u=0.

sincethe latter is particularly interesting from the geometric viewpoint. Hereafter,
£2 indicates an open set (not necessarily bounded) in a Carnot groBy a

weak solution to (10.1) we mean a functione ﬁl’P(Q) such that for every
¢ € C2(£2)

@02) [ pxulr? < xuxg > dn = [ wian.
22 2

Thanks to the embedding (1.1), in definition (10.2) it is possible to replace

the requesp € C>°(£2) with the weaker ong < 10)1’1’(52).We want to establish
the following regularity result.

Theorem 10.1.Let1l < p < Q and suppose that be a weak solution to the
problem (10.1), them € L*(£2).

The proof of Theorem 10.1 is based on the following global result which
extends the local.* estimates in [7].

Lemma 10.2. Letu € Zo) Lr(£2) be a weak solution to the equation
(10.3) D Xi(1XulP 7P Xu) = =V [ulPPu in R,
i=1

whereV e L2/7(£2) N L' (§2) for somer > %. Thenu € L®(£2).
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Remark 10.3We note explicitly that thanks to the embedding (1.1), even when
V e L%(Q) in Lemma 10.2, it is still possible to allow test functiopse

10) Lr(£2) in the weak formulation (10.2). It is clear that whenis bounded the
hypothesisV € L2/7(£2) in Lemma 10.2 is superfluous.

We do not present the proof of Lemma 10.2 since it consists essentially
in a suitable modification of the test function and truncation ideas introduced
in Serrin’s seminal paper [70], and subsequently generalized to the subelliptic
setting in [7], and also in different forms in [37], [38], [64], [80]. The reader can
consult the paper [36] for the proof of a related result in the Euclidean setting.
With Lemma 10.2 in hands we turn to the

Proof of Theorem 10.1We rewrite the equation in the form (10.3), wi

u?" 7. Since by (1.1) one hag = u?"~7 e L9/7(£2), in order to apply Lemma
10.2 it suffices to prove that there exists- g such thatV e L'(£), which is
equwalent to proving that e LS(.Q) for somes > p*. To establish this we let
o= ” and notice tha{— 7 > 1. For everyj € N we consider the function

e L if 11l < j,
: S TN (L= )T ] >

and define
t
@;i(t) = / Hj’(s)pds.
0
It is easy to verify that; € C*(R), and that there exists a constant> 0,
independent of, such that for every € R
(10.4) 0<¢/(1) <@, |[[t|" ¢;(1)| < @|H;(1)]".

Since by assumptiom € L?(£2), there exists a numbeé¢ > 0 such that

p*-p

(10.5) ®5, ( f uﬂ*dH) ’
2u

wheref2y, = {x € £2 | u(x) > M}. The chain rule in [32] gived]; (u), ¢;(u)
D17 (£2). We thus obtain from (1.1) and (10.2)

NI =

p

</ |Hj(u)|” dH) <SS, / | X (H;(u))|’"dH

=SP/ |Xu|p_2<XM,X(¢](M)) >dH:SPf I/lp*_1¢](l/t)dH

2 Q

= Sp¢/ ”p*_p|Hj(M)|de + SPQDM”*_”/ |H;(w)|"dH,
$2m 2\2m
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where in the last inequality we have used (10.4). We next exploit (10.5) to find

Spcpf u” P |H;(w)|"d H
2u

P*-p
< 5,0 (/ u"*dH) ' </ |Hj(u)|”*dH>p
2y 2

1 C O\
5—(/ |H,.<u)|de) .
2\Uq

Substitution in the previous inequality finally gives

N 1
( | IHj(u)lf’*dH)’ < 25,6M" 7 (/ IHi(u)lde)p
2 2

SinceH; (1) converges increasingly aiace. to uri, by Fatou and Lebesgue
dominated convergence theorems we infer letling oo

r 1

ap* p* % ’ P

(/ up'ldH)' < 25,0M7" P </ u“f’dH)
2 2

By our choicepp’ = p*, so that the right-hand side of the latter inequality

is finite. We have thus proved thate L*(£2) with s = 22 = % >~ p*.This
completes the proof. O

The next result is an interesting consequence of Theorem 10.1. It provides a
delicateL > estimate on metric balls for weak solutions to (10.1). Such estimate
is achieved by combining several ideas which, in the gase 2 are present
in the works of Moser [65] and Trudinger [76]. Although we do not make any
direct use of Theorem 10.4 in this paper, we have nonetheless decided to insert
such result in this appendix because of its independent interest.

Theorem 10.4. Letu be a nonnegative solution to the problem (10.1). We assume
thatu has been extended with zero outsiéleSuppose that > p is an exponent
suchthat e L*(£2), with [|u|| s ) depending only ofiu||p1, ). There exists

C = C(G, p, llullprre)) > Osuch that for every € G

1 5
(10.6) ess supu < C (— usdH) .
B(x,1) |B(x, 2)] B(x,2)

In particular, we can take = p* in the above inequality.
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Proof. Given a functionw € C°(G), « > 0, fory > 1 we consider the function
¢ = aPu? € DLP(2). Usingg as a test function in (10.2) we find

/a”uVer*_ldH:y/ oaPu’ Y Xu|PdH
2 2
+p/ o’ | Xu|”? < Xu, Xa > dH.
2
At this point we choos¢ = s — p + 1 to obtain
/ Pt TPdH = (s — p+ l)/ o?u* P | Xu|PdH
o) o)
+pf o’ L TPHY XuP? < Xu, Xa > dH
2
> / o | Xu|P% < Xu, X(u* P > dH
2
(10.7) —pf oL =P Xu P X | dH.
2
Now Young’s inequality gives
(10.8) f o Y P Xu P Xa| dH
2

— p=1,%5F p=1,5
= | &’ u | XulP"ur|Xa| dH
Q

1 1
(/ uSPaP|Xu|PdH)” (/ uﬂonl”dH)l
2 2

1
i/ a”u“_”|Xu|”dH+—/ W'\ Xa|PdH,
P Je €p Jo

A

A

wheree > 0 is arbitrary. Substituting (10.8) in (10.7), and choosing % we
find

(10.9) /a”u””*_”dH > (s—p+l)/ o?u' P | Xu|PdH
2 fo)

1 '
—e(p— 1)/ oaPu* P\ Xu|PdH — —/ u’'| Xa|PdH
2 €Jo

v

1
[s —p—l——]/ ozpus_”|Xu|de—p/ u’|Xa|PdH
P Je Q

v

1
—/ apus_plXulde—p/ u’|Xa|PdH.
P Ja Q

Let nowyr = ur,so that| X |7 = (%)p u*~P|Xu|?. We obtain from (10.9)
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(10.10) /a"|Xw|"dH < p/
2

oz”u”*_”+sdH+p2/ u’|Xa|PdH.
2

2

Forx € G we now consider 1< r < R < 2 and lete € C°(B(x, R))

be such thate = 1 in B(x,r) and|Xa| < 5. Applying (1.1) one has with

R—r"
X
6=~ >1
p

(10.11)

1 4
9 « F
(f uf“dH) = (/ WP dH)' < s,,f X (ay)|PdH
B(x,r) B(x,r) B(x,R)

<2r (/ oaf | Xy |PdH +f W’IXal”dH)
B(x,R) B(x,R)

<27 (p/ a’u? TP dH + (p? + 1)/ uS|on|PdH)
ko) 2
<2 <p||u||iio‘<?z> / oa’u'dH + (p® +1) / u~f|xa|de)
2 2

Inthe second to the lastinequality we have inserted (10.10), whereas Theorem
10.1 has been used in the last. From (10.11) we conclude the existekice-of
K(G, P, ||M||Loc(9)) > 0 such that

1

3 K
([ ) = K[
B(x.r) (R —r)? Jpu.R)

Assuming the finiteness of the integral in the right-hand side of the latter
inequality, Moser’s iteration procedure finally gives (10.6). ]

Theorem 10.4 has several interesting consequences. We only list the most
direct one.

Corollary 10.5. Let 2 C G be an unbounded open set.ulfis a solution to
(10.1), then

lim u(g) =0.

g€G, d(g,e)—>0o0

Proof. Immediate consequence of Theorem 10.4 and of the assumpt®on
L7 (). O

The next result is a theorem of unique continuation for non- negative weak
solutions to equations with critical growth. In the Euclidean setting and for lin-
ear equations a result of this kind was first observed in [13]. A version for the
Heisenberg group was obtained in [31].
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Theorem 10.6.Let$2 € G be anopensetand fdr< p < Q letu ¢ L,lt;f(.Q)
be a nonnegative weak solution of the equation

> OXi(1XuP P Xu) = =V ur™tin @2,
i=1

with V. e L9P(Q). There exist § = §G,I||VliLoma)
> 0and C = C(G, ||Vl ey > 0 such that for evenB(g,2r) C 2

one has
f wdH < C / udH.
B(g,2r) B(g,r)

Proof. By assumption we have for evegye §1vﬂ(:z)
/ |Xu|P™? < Xu, X¢ > dH = / VuP~Y¢dH.
2 2
We consider the test functioh= a” (u + €) 7t ¢ > 0, with « € CX(£2),

O<a=<l,a=1inB(g,r),a =0outsideB(g, 2r), | Xa| < C/r. Substituting
¢ in the equation we find

(p— 1)/901”(u +e) | Xu|l’dH
< p/goz”l(u-l—e)p”lXullonldH-i—/QlVlade.
We obtain
(p—12 /Q a?(u+¢)"?|Xul’dH
< p/ﬂa”l(u—{—e)pHIXulpllonIdH +/g|V|anH,
which, lettingv = log(u + ¢), we rewrite as follows
(p—l)/gaﬂxmde < pfgap1|XU|P1|Xa|dH+/Q|V|anH.

At this point a standard application ofottier and Young inequalities allows
to infer for everyo > 0

fap|Xv|de < U/af’lelf"dH
2

9}
41 |B(g, 2r)]
to = | |XaPdH + 22y .
b1 Ql | -1 IV lLernBeg.20))
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Choosing 0< o < 1 we find

|B(g, 2r)|
0 L+ 1VILermsg.ary) -

fap|Xv|de§ C
2

Invoking D. Jerison’s Poincarinequality [41] one concludes

1

L v PdH < C (Lt IIViloimian) -
Gl Do &) ( L2/ (B(g.2)))

The latter inequality implies thate B M O with respect to the homogeneous
structure of(G, d, d H). By the results in [6] there exists> 0 such tha(u +
6)8 € Ao, i e.,

1 1
(— (u + e)‘sdH> (— (u + e)—ﬁdﬂ) < C,
|B(g, 1)l B(g.r) |B(g,r)| B(g.r)

foreveryB(g, r) suchthatB (g, 2r) C £2. By Fatou theorem the latter inequality
continues to hold replacing: + ¢) by u. Finally, one obtains the doubling
inequality in the statement of the lemma by a by now standard argumentj14] .

Corollary 10.7. Letu be a non-negative solution to (10.1) in a connected, open
sets2. If u vanishes to infinite order at one poigite §2, thenu = 0in £2.

Proof. We can rewrite (1.3) in the form

D Xi(XulP 2 Xiu) = =V ul
i=1

with V = u?"~7, so thatV € L2/7(£2) ifand only ifu € L?"(§2). Since this is
true as a consequence of the Folland-Stein embedding (1.1), we can thus apply
Theorem 10.6 to reach the conclusion. O
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