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1. Introduction

This paper constitutes the first part of a project devoted to the study of a class
of nonlinear sub-elliptic problems which arise in function theory on CR man-
ifolds. The infinitesimal groups naturally associated with these problems are
non-commutative Lie groups whose Lie algebra admits a stratification. The fun-
damental role of such groups in analysis was envisaged by E. M. Stein [72] in his
address at the Nice International Congress of Mathematicians in 1970, see also
the recent monograph [73]. There has been since a tremendous development
in the analysis of the so-called stratified nilpotent Lie groups, nowadays also
known as Carnot groups, and in the study of the sub-elliptic partial differential
equations, both linear and non-linear, which arise in this connection. Despite all
the progress, our understanding of a large number of basic questions is not to
present day as substantial as one may desire. Such situation is due primarily to
the complexity of the underlying sub-Riemannian geometry, on the one hand,
and to the considerable obstacles which are imposed by non-commutativity and
by the presence of characteristic points on the other.

To introduce the problems studied in this paper we recall that a Carnot group
G is a simply connected nilpotent Lie group such that its Lie algebrag admits

a stratificationg = r⊕
j=1

Vj , with [V1, Vj ] = Vj+1 for 1 ≤ j < r, [V1, Vr ] = {0}.
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We assume that a scalar product< ·, · > is given ong for which theV ′j s are
mutually orthogonal. Every Carnot group is naturally equipped with a family of
non-isotropic dilations defined by

δλ(g) = exp ◦∆λ ◦ exp−1(g), g ∈ G,

whereexp : g → G is the exponential map and∆λ : g → g is defined by
∆λ(X1 + ... + Xr) = λX1 + ... + λrXr . The topological dimension ofG is

N =
r∑

j=1
dimVj , whereas thehomogeneous dimensionof G, attached to the

automorphisms{δλ}λ>0, is given byQ =
r∑

j=1
j dimVj . We denote bydH =

dH(g) a fixed Haar measure onG. One hasdH(δλ(g)) = λQdH(g), so that the
numberQ plays the role of a dimension with respect to the group dilations. Let
X = {X1, . . . ,Xm}beabasisofV1 andcontinue todenotebyX thecorresponding
system of sections onG. Thesub-Laplacianassociated withX is the second-
order partial differential operator onG given by

L = −
m∑

j=1
X∗j Xj =

m∑
j=1

X2
j

(we recall that in aCarnot grouponehasX∗j = −Xj , see [26]). By the assumption
on the Lie algebra one immediately sees that the systemX satisfies the well-
known finite rank condition, therefore thanks to H¨ormander’s theorem [39] the
operatorL is hypoelliptic. However, it fails to beelliptic, and the loss of regularity
is measured by the stepr of the stratification ofg. For a functionu onG we let
|Xu| = (

∑m
j=1(Xju)

2)1/2. For 1≤ p < Q we set

o

D 1,p(Ω) = C∞o (Ω)
||·||D1,p(Ω) ,

whereD1,p(Ω) indicates the space of functionsu ∈ Lp∗(Ω) having distribu-
tional horizontal gradientXu = (X1u, ..., Xmu) ∈ Lp(Ω). The spaceD1,p(Ω)

is endowed with the obvious norm

||u||D1,p(Ω) = ||u||Lp∗ (Ω) + ||Xu||Lp(Ω).

Here,p∗ = pQ

Q−p is the Sobolev exponent relative top. The relevance of such
number is emphasized by the following embedding due to Folland and Stein
[26], [27].

Theorem (Folland and Stein).LetΩ ⊂ G be an open set. For any1 < p < Q

there existsSp = Sp(G) > 0 such that foru ∈ C∞o (Ω)(∫
Ω

|u|p∗dH
)1/p∗

≤ Sp

(∫
Ω

|Xu|pdH
)1/p

.(1.1)
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The purpose of the present paper is to study the non-linear Dirichlet problem{
Lu = −uQ+2

Q−2

u ∈ o

D 1,2(Ω), u ≥ 0.
(1.2)

The exponentQ+2
Q−2 = 2∗ − 1 is critical for the casep = 2 of the embedding

(1.1). To motivate our results we recall that in the classical Riemannian setting
the equation∆u = −u(n+2)/(n−2) is connected to the compact Yamabe problem
[76], [3], [69], see also the book [4] and the survey article [59]. There exists an
analogue of such problem in CR geometry, namely:Given a compact, strictly
pseudo-convexCRmanifoldM of real dimension2n+1, with contact formθ , find
a choice of contact form in the conformal class ofθ forwhich theWebster-Tanaka

pseudo-hermitian scalar curvatureR is constant. Denoting withθ∗ = u
4

Q−2 θ a
conformal change ofθ , one obtains for the corresponding scalar curvature

R∗ = u
−Q+2

Q−2
(

2Q

Q− 2
Lu + R u

)
,

where we have letQ = 2n + 2. It is then clear that in the flat caseR =
0 the pde associated with the CR Yamabe problem is the one that appears in
(1.2). Although on the formal level this problem has many similarities with
its Riemannian predecessor, the analysis is considerably harder since, as we
mentioned, the sub-LaplacianL fails to be elliptic everywhere. In 1984-88 D.
Jerison and J. Lee in a series of important papers [44], [45], [46], [47] gave a
complete solution to the CR Yamabe problem when the CR manifoldM has
dimension≥ 5 andM is not locally CR equivalent to the sphere inCn+1. They
proved first that the CR Yamabe problem can be solved on any compact CR
manifoldM provided that the CRYamabe invariant ofM is strictly less than that
of the sphere inCn+1. Similarly to Aubin’s approach in the Riemannian case,
in order to determine when the problem can be solved they then proved that the
Yamabe functional is minimized by the standard Levi form on the sphere and its
images under CR automorphisms. A crucial step in this analysis is the explicit
computation of the extremal functions in the special case whenp = 2 andG

is the Heisenberg group in the above stated Folland-Stein embedding . Jerison
and Lee made the deep discovery that, up to group translations and dilations, a
suitable multiple of the function

u(z, t) = ((1+ |z|2)2+ t2)−(Q−2)/4,(1.3)

is the only positive solution of (1.2) whenΩ = H
n. Here, we have denoted with

(z, t), z ∈ Cn, t ∈ R, the variable point inHn.
In 1980 A. Kaplan [48] introduced a class of Carnot groups of step two

in connection with hypoellipticity questions. Such groups, which are called of
Heisenberg type, constitute a direct generalization of the Heisenberg group, as
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they include, in particular, the nilpotent component in the Iwasawa decompo-
sition of simple groups of rank one. Since their introduction there has been a
considerable amount of work in the study of such groups and of their geometry,
we refer the reader to the papers [49], [17], [50], [51], [16], [54], [18], [19], [20],
[15], [9], and to the references therein. From our perspective groups of Heisen-
berg type display a crucial feature: Their conformal invariances can be revealed.
This leads to the construction of some beautiful solutions to various problems.
In this connection, in his first work on the subject Kaplan [48] constructed an
explicit fundamental solution for the sub-Laplacian, thus extending Folland’s re-
sult for the Heisenberg group [25], see (1.5). In [9] Capogna, Danielli and one of
us found explicit formulas for the fundamental solution of thep-sub-Laplacian
in any group of Heisenberg type, and for the horizontalp-capacity of rings.

WhenΩ = G is a group of Heisenberg typewe have discovered that problem
(1.2) possesses a one- parameter family of explicit entire solutions.

Theorem 1.1. LetG be a group of Heisenberg type. For everyε > 0 the function

Kε(g) =
(

m (Q− 2) ε2

(ε2 + |x(g)|2)2+ 16 |y(g)|2
)Q−2

4

, g ∈ G(1.4)

is a positive, entire solution of theYamabe equation (1.2).

The symbolsx(g), y(g) in (1.4) respectively denote the projection of the
exponential coordinates of the pointg ∈ G onto the first and second layer of the
Lie algebrag, whereasm indicates the dimension of the first layer. The reader
should compare (1.4) with the Jerison-Lee minimizer (1.3). To give a glimpse of
the complexity of the present situation with respect to the classical one we recall
Folland’s mentioned fundamental solution for the Kohn sub- Laplacian onHn

Γ (z, t) = CQ(|z|4+ t2)−(Q−2)/4,(1.5)

whereCQ is a suitable constant. WhereasΓ is a function of the natural homo-
geneous gaugeN = N(z, t) = (|z|4+ t2)1/4, the Jerison-Lee minimizer in (1.3)
is not. This is in strong contrast with the famous results of Aubin [1], [2] and
Talenti [75] who proved that for every value ofp the minimizers in the Sobolev
embedding are functions with spherical symmetry.

WhenΩ = G problem (1.2) is invariant with respect to the group left-
translations and also with respect to the scaling

u→ uλ = λ(Q−2)/2 u ◦ δλ, λ > 0.

Now it is immediate to verify that(Kε)λ = Kε/λ, i.e., oneobtains a function of
thesame type.Wewere thusnaturally led toconjecture that, up to left- translations
and dilations, the functionK1 in (1.4) is the only non-negative entire solution to
(1.2). Such conjecture, if true, would generalize Jerison and Lee’s cited result
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to groups of Heisenberg type. This problem turns out to be considerably harder
than its already difficult Heisenberg group predecessor. Our objective is to come
back to it in a subsequent study and prove the conjecture.

Wenext describe theplanof thepaper.Section two isdevoted to collect several
basic results which will play a role in the following sections. In section three
we establish some integral identities for Carnot groups which are reminiscent
of those originally discovered for the standard Laplacian by Rellich [68], and
subsequently by Pohoˇzaev [67]. The implementation of such identities, whose
existence is an interesting fact in its own right, is one of the principal motivations
behind this paper. To understand this point the reader should glance at Theorem
3.7 which is the main result of section three. It states that, when the ground
domainΩ is starlike with respect to one of its points, the problem{

Lu = −f (u)
u ∈ o

D 1,2(Ω), u ≥ 0,
(1.6)

admits no non-trivial solution such thatXu,Zu ∈ L∞(Ω), provided that the
following analogue of the famous Pohoˇzaev condition is fulfilled

2QF(u)− (Q− 2)uf (u) ≤ 0,(1.7)

whereF(u) = ∫ u

0 f (s)ds. In particular, whenf (u) = up condition (1.7) re-
duces top ≥ Q+2

Q−2, so that problem (1.2) has no non-trivial solutionu such that
Xu ∈ L∞(Ω) andZu ∈ L∞(Ω). Here, the notion of starlikeness is expressed by
means of the infinitesimal generatorZ of the group dilations{δλ}λ>0.We remark
that such vector field is neither left-invariant, nor it issub-unitaryaccording to
C. Fefferman and D.H. Phong [24]. One easily sees that, in exponential coor-
dinates, the vector fieldZ involves commutators up to maximum length. In the
classical case the boundary regularity of the relevant solution which is necessary
to apply the Rellich-Pohoˇzaev identity is guaranteed, via standard elliptic theory,
by suitable smoothness assumptions on the ground domainΩ, see, e.g., [67].
The situation is drastically different in the sub-elliptic setting even if the domain
Ω isC∞, due to the presence of characteristic points on the boundary ofΩ. We
recall that the characteristic set of a smooth domainΩ ⊂ G with respect to the
systemX is

Σ = ΣΩ,X = {g ∈ ∂Ω | Xj(g) ∈ Tg(∂Ω), j = 1, ..., m}.
A bounded domain with trivial topology in a group of Heisenberg type with

odd-dimensional center always has a non-empty characteristic set. On the one
hand theL∞ estimates in the Appendix of this paper, combined with the local
regularity theory of Folland and Stein [27], [26], allow to conclude that a weak
solution to (1.2) belongs in fact toC∞(Ω). On the other handnear a characteristic
pointu can experience a sudden loss of regularity. ForL-harmonic functions on
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the Heisenberg groupHn, i.e., solutions of the Kohn sub-LaplacianL, this phe-
nomenon was discovered by D. Jerison [43]. He constructed an explicit solution
for the smooth domain{(z, t) ∈ Hn | t > −M|z|2}, withM > 0 suitably fixed,
which vanishes on the boundary and which is at most in a H¨older classΓ 0,α near
the isolated characteristic pointe = (0,0). As a consequence, suchL-harmonic
function fails to satisfy the conditionXu ∈ L∞(Ω), as well asZu ∈ L∞(Ω).
This example should alert the reader about the difficulties that can occur at char-
acteristic points. At this point it should be clear that assuminga priori, as we do
in Theorem 3.7, the boundedness near the characteristic set ofXu andZu for a
solution of (1.2) constitutes a serious obstacle to overcome. This is even more so
for Zu, since, as we have observed, theZ-derivative involves commutators up
to maximum order. In connection with the results in section three we mention
that for the Heisenberg groupHn integral identities of Rellich- Pohoˇzaev type
were first discovered in [30], [31]. In [31], however, the relevant solutions were
a priori assumed to be globally smooth and the basic question of regularity at
characteristic points was not addressed.

Section four is devoted to the study of the regularity properties of a weak
solution to (1.2) near the characteristic set. This is the central section of the
paper. One of the key ingredients of our approach are some sub-elliptic barriers
constructed in Theorem 4.3. The existence of these barriers is established under
natural geometric assumptions on the domain near the characteristic set, such as
uniform starlikeness with respect to the generator of group dilations, see (4.10),
plus a suitable condition of “convexity", see (4.12). The latter can be stated as
follows. Letρ ∈ C∞(G) be a defining function forΩ. By this we mean that

Ω = {g ∈ G | ρ(g) < R}
for someR ∈ R. Denote byψ the smooth function onG defined byψ(g) =
|x(g)|2, wherex(g) indicates the projection onto the first layerV1 of g of the
exponential coordinates ofg ∈ G.We assume the existence of a neighborhoodU

of the characteristic setΣ and of a constantC > 0 such that for everyg ∈ Ω∩U
Lρ(g) ≥ C < Xρ(g),Xψ(g) > .(1.8)

We emphasize that, sinceXρ(g) = 0 for everyg ∈ Σ , (1.8) implies in
particular thatLρ ≥ 0 onΣ . On the other hand it should be clear that a sufficient
condition for (1.8) to hold is

Lρ(g) ≥ C > 0, for every g ∈ Σ,

i.e., the strictL-sub-harmonicity of the defining functionρ on the characteristic
set (we recall that the latter is compact). This latter property is fulfilled, for
instance, by those bounded sets which play a key role in the analysis of the
Heisenberg groupHn, namely the level sets of the Jerison-Lee minimizers (1.3),
and those of the Folland fundamental solution (1.5) above, i.e., the gauge balls
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in H
n. However, as we show after the proof of Theorem 9.5, (1.8) fails for the

non-convex “cone"{(z, t) ∈ Hn | t > −M|z|2}, and the existence of the above
mentioned Jerison’s negative example provides a strong reason for this failure.
In Theorems 4.6 and 4.7 we prove that a weak solution of (1.2) does possess the
propertiesXu, Zu ∈ L∞(Ω), provided that the domainΩ is strictly starlike
at the characteristic set, and the defining function ofΩ satisfies the condition
(1.8). This implies that Theorem 3.7 applies and therefore domains having these
properties do not support solutions to (1.2), other than the trivial one. We stress
that, unlikeTheorem4.6, inwhichwemake no restriction on the step of the group
G, in Theorem 4.7 to prove the boundedness ofZu near the characteristic set
we need to assume thatG be of step two.We do not presently know whether the
result continues to hold for groups of higher step. In connection with the results
of section four we mention that Capogna, Nhieu and one of us [11], [12] have
recently obtained a complete solution of theLp Dirichlet problem for a general
class of sub-Laplacians which includes those treated in this paper. The class of
domains which is introduced in [12] is however somewhat different from that
considered in the present paper and a direct comparison is not immediate. For
instance, our assumption (1.8) seems stronger than theouterL- ball condition
introduced in [12] and it would be interesting to know whether this is really the
case.We recall that a uniformouterL-ball condition has been proved to imply the
boundedness of the horizontal gradient of the Green function near the boundary,
see [57] (for the case ofHn) and [11], [12] for general H¨ormander operators.
On one hand, by adapting the ideas in Theorem 4.6 we can prove, independently
from [12], an analogous result in the context of this paper. On the other hand,
we also obtain in Theorem 4.7 the boundedness ofZu, and such result does not
seem to follow from the general theory developed in [12].

In section five we continue the study, initiated in section four, of the har-
monicity and sub-harmonicity properties of the componentsx(g) andy(g) of
the exponential coordinates in the first and second layer of the Lie algebra of a
Carnot group. Using the results in Lemmas 4.2 and 5.2 we prove that the level
sets of the function

fε(g) =
(
(ε2+ |x(g)|2)2+ 16|y(g)|2)1/4 , ε ∈ R,

fulfill the geometric assumptions in Theorems 4.6, 4.7. As a consequence, we
obtain the following non- existence result.

Theorem 1.2. LetG be a Carnot group of step two. Given anyR > 0, and
ε ∈ R with ε2 < R2, the functionu ≡ 0 is the only non-negative weak solution
of (1.2) in

ΩR,ε = {g ∈ G | (ε2+ |x(g)|2)2 + 16|y(g)|2 < R4}.
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From Theorem 1.2 we infer, in particular, that in any group of Heisenberg
type the gauge balls, and the level sets of the entire solutions in Theorem 1.1
support no solution to problem (1.2) other than the trivial one.

In section six we state without proof (for the latter we refer the reader to [79])
the main result about the existence of global minimizers in every Carnot group.
Theorem 6.1 guarantees the existence of an entire non-negative solution to (1.9)
below whenΩ is the whole groupG. The proof of such result is based on a
suitable adaptation of P. L. Lions’method of concentration of compactness [60]
- [63].

In the subsequent sections of the paper we study groups of Heisenberg type.
Section seven is devoted to provingTheorem1.1. In section eight we consider the
CR inversion and Kelvin transform, introduced by Kor´anyi [53] for the Heisen-
berg group, and later generalized to groups of Heisenberg type in [16], [15]. In
Proposition 8.2 we show that the inversion preserves starlikeness with respect
to the generator of the group dilations. In [15] it was proved that if the ambient
group is of Iwasawa type, then the CR Kelvin transform possesses several very
useful properties. The ones which are particularly relevant for us are collected
in Theorem 8.4. We exploit these results to establish new properties. In Theo-
rem 8.6, we show that the Kelvin transform is an isometry between the Sobolev

spaces
o

D 1,2(Ω) and
o

D 1,2(Ω*), whereΩ* denotes the image ofΩ under theCR
inversion. This result, which plays a key role in the next section, when we study
equations on unbounded domains, reflects the conformal invariance of theYam-
abe equation in (1.2). In Definition 8.12 we introduce the notion of characteristic
cones and half-spaces in a Carnot groupG of step two. LetRk+ denote the cone
{(y1, ..., yk) ∈ Rk | yi ≥ 0, i = 1, ..., k}. GivenM,b ∈ R, anda ∈ Rk+ \ {0}, we
call the open sets

C+M,b,a = {g ∈ G |< y(g),a> > M|x(g)|2+ b}
and

C−M,b,a = {g ∈ G |< y(g),a> < −M|x(g)|2+ b}
characteristic cones. The cone will be saidconvexif M ≥ 0,concaveif M < 0.
WhenM = 0weuse the notationH±

b,a to introduce thecharacteristic half-spaces

H+
b,a = C+0,b,a = {g ∈ G |< y(g),a> > b},

C−0,b,a = {g ∈ G |< y(g),a> < b}.
The boundaries of such half-spaces are calledcharacteristic hyperplanes. It

is an interesting fact that the image through the CR inversion of a convex char-
acteristic cone is a left-translation along the center of the group of the bounded
domainsΩR,ε in Theorem1.2, i.e., the level sets of the entire solutionsKε in The-
orem 1.1. We prove this in Proposition 8.13, see also Proposition 8.8. By means
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of the Kelvin transform we obtain explicit formulas for the Poisson kernel with
singularity on the characteristic set for the gauge balls in Iwasawa groups. We
have also found explicit formulas for the Poisson kernel for the bounded re-
gions which are the conformal images of the non-characteristic “hyperplanes"
in the groupG. These formulas display a new phemonenon. The behavior of a
non-negativeL-harmonic function near a singular boundary point changes dras-
tically depending on whether such point is characteristic or not, see Theorems
8.10, 8.14, Remark 8.11 and (8.10).

In section nine we exploit the conformal invariance of (1.2) to establish
Lemma9.1. The latter allows to transplant, via theCRKelvin transform, problem
(1.2) from a setΩ to its conformal imageΩ∗ under the inversion. Combining
Lemma 9.1 with Theorem 1.2 and Proposition 8.13 we obtain the following
non-existence result.

Theorem 1.3. Consider a group of Iwasawa typeG. LetC±M,b,a ⊂ G be a convex
characteristic cone. There exists no solution to(1.2) in Ω = C+M,b,a, other than
u ≡ 0. In particular, there exists no non-trivial solution for the characteristic
half-spacesH±

b,a.

Theorem 1.3 should be viewed as conformally dual to Theorem 1.2.An inter-
esting open question is whether the concave cones support non-trivial solutions
to theYamabe problem (1.2).At themoment we ignore the answer.Aswe explain
at the end of section nine, interestingly, our approach does not work for these
regions since, as we previouslymentioned, their bounded images through theCR
inversion fail to satisfy the convexity assumption (1.8) near the characteristic set.
The above stated open problem is closely related to another one. Consider the
bounded domainΩR,ε in Theorem 1.2, withε > 0, and letΩ∗ = G \ ΩR,ε .
DoesΩ∗ support non-trivial solutions to (1.2)?We only know the answer when
ε = 0, i.e., for the complement of a gauge ball, and it is negative.

Theorem 1.4. LetG be a group of Iwasawa type and consider the unbounded
domainΩ∗ = {g ∈ G | N(gg−1o ) > R}, whereN is the gauge in (8.1),go ∈ G

andR > 0 are fixed. There exist no non-trivial solution to (1.2) inΩ∗.

Theorems 1.3 and 1.4 are proved in section nine. In connection with Theorem
1.3 we mention that Lanconelli and Uguzzoni [58] have recently obtained in the
special case of the Heisenberg groupHn an interesting non-existence result for
the non-characteristic hyperplanes, i.e., those hyperplanes which are parallel to
the group center (thet-axis). Their analysis is essentially different from ours
since, given the absence of characteristic points on the boundary, their focus is
on the asymptotic behavior of a solution to (1.2) at infinity. In a note added in
proof in [58] it is said that in the forthcoming article [77] Uguzzoni has been
able to obtain, for the characteristic hyperplanesHa in the Heisenberg group, a
uniqueness result similar to the second part of our Theorem 1.3.
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It may be appropriate to mention in closing that one of the ultimate goals
of our project is to understand as explicitly as possible the extremal functions
whenΩ = G in (1.1), for the full range 1≤ p < Q. More precisely, whenG is
a group of Heisenberg type we would like to obtain an appropriate sub-elliptic
version of the cited results of Aubin and Talenti. In this connection, given aC∞,
connected open setΩ ⊂ G it is interesting to consider the following non- linear
Dirichlet problem with critical growth{

Lpu = −up∗−1
u ∈ o

D 1,p(Ω), u ≥ 0,
(1.9)

whereLpu = −∑m
i=1X

∗
j (|Xu|p−2Xju) = ∑m

i=1Xj(|Xu|p−2Xju) is what we
call thep- sub-Laplacianof u. Standard variational arguments show that when
Ω = G the problem of characterizing the extremals in (1.1) is equivalent to
determining all solutions to (1.9). This is a very difficult task and at the moment
we only have some partial progress. We hope to come back to this and related
questions in a future study.

The results in this paper were presented at the Conference in memory of
Filippo Chiarenza, held in Catania, November 12-14 1998, see [34].

2. Preliminaries

In this section we introduce the relevant definitions and state some results which
will be needed in the sequel. Consider the Lie algebrag = ⊕r

j=1Vj of G. We
assume that ong there is a scalar product with respect to which theVj ’s are
mutually orthogonal. The exponential mappingexp : g → G is an analytic
diffeomorphism. We use it to define analytic mapsξi : G → Vi, i = 1, ..., r,
through the equationg = exp(ξ1(g) + ξ2(g) + ... + ξr(g)), if ξ(g) = ξ1(g) +
...+ξr(g) is such thatg = exp(ξ(g)).Withm = dim(V1), the coordinates of the
projectionξ1 in the basisX1, . . . ,Xm will be denoted byx1 = x1(g), . . . , xm =
xm(g), i.e.,

xj (g) =< ξ(g),Xj > j = 1, ..., m,(2.1)

and we setx = x(g) = (x1, . . . , xm) ∈ Rm. The Euclidean distance to the
origin | · | ong induces a homogeneous norm| · |g ong and (via the exponential
map) one on the groupG in the following way (see also [26]). Forξ ∈ g, with
ξ = ξ1+ ...+ ξr , ξi ∈ Vi , we let

|ξ |g =
(

r∑
i=1
|ξi |2r!/i

)2r!
,(2.2)
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and then define|g|G = |ξ |g if g = exp ξ . Such homogeneous norm onG can
be used to define a pseudo- distance onG:

ρ(g, h) = |h−1g|G.(2.3)

The pseudo-distance (2.3) is equivalent to the Carnot- Carath´eodory distance
d(·, ·) generated by the systemX, i.e., there exists a constantC = C(G) > 0
such that

C ρ(g, h) ≤ d(g, h) ≤ C−1 ρ(g, h), g, h ∈ G,(2.4)

see [66]. We will almost exclusively work with the distanced, except in few
situations where we will find more convenient to use (2.3).

If B(x,R) = {y ∈ G | d(x, y) < R}, then by left- translation and dilation
it is easy to see that the Haar measure ofB(x,R) is proportional toRQ, where

Q =
r∑

i=1
i dim Vi is the homogeneous dimension ofG. One has for every

f, g, h ∈ G and for anyλ > 0

d(gf, gh) = d(f, h), d(δλ(g), δλ(h)) = λ d(g, h).

Further on, we will need to exploit the properties of the exponential coordi-
nates in the second layer of the stratificationofg.We thus fixanorthonormal basis
Y1, . . . , Yk of V2 and, similarly to (2.1), we define the exponential coordinates in
the second layerV2 of a pointg ∈ G by letting

yi(g) = < ξ(g), Yi >, i = 1 . . . k,(2.5)

and y = (y1, . . . , yk) ∈ Rk. We next recall the Baker-Campbell-Hausdorff
formula, see, e.g., [39]

exp ξ exp η = exp (ξ + η + 1/2[ξ, η] + ...), ξ, η ∈ g,(2.6)

where the dots indicate a linear combination of terms of order three and higher
which is finite due to the nilpotency ofG. By definition the order of an element
in Vj is j .

We next list some known results. To state the former we recall that given a
bounded open setD ⊂ G, and a functionφ ∈ C(∂D), the Dirichlet problem for
a sub-LaplacianL andD consists in finding a solution toLw = 0 inD such that
u = φ on ∂D.

Theorem 2.1 (Bony’s maximum principle [5]). LetD ⊂ G be a connected,
bounded open set, andφ ∈ C(∂D). There exists a uniqueL-harmonic function
HD

φ which solves the Dirichlet problem in the sense of Perron-Wiener-Brelot.
Moreover,HD

φ satisfies

sup
D

|HD
φ | ≤ sup

∂D

|φ|.
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Theorem 2.2 (Schauder type interior estimates [78]). LetD ⊂ G be an open
set and suppose thatw is L-harmonic inD. For everyg ∈ D and r > 0 for
whichB(g, r) ⊂ D, one has fors ∈ N

|Xj1Xj2...Xjsw(g)| ≤
C

rs
max
B(g,r)

|w|,

for ji ∈ {1, ..., m}, i = 1, ..., s, and for some constantC = C(G, s) > 0.

To state the next result we introduce a definition. Given an open setD ⊂ G

we denote withL1,∞(D) the space of those distributionsu ∈ L∞(D) such that
Xu ∈ L∞(D), endowed with the natural norm.

Theorem 2.3 (L∞ Poincaré inequality [33]). Given a Carnot groupG there
existsC = C(G) > 0, such that ifu ∈ L1,∞(B(go,3R)), thenu can bemodified
on a set of measure zero in̄B(go, R) so to satisfy

|u(g)− u(h)| ≤ C d(g, h)‖u‖L1,∞(B(go,3R))

for everyg, h ∈ B̄(go, R). If, furthermore,u ∈ C∞(B(go,3R)), then only the
L∞ norm ofXu suffices in the right hand side of the previous inequality.

We note explicitly that the theorem asserts that every functionu ∈ L1,∞(B
(go,3R)) has a representative which is Lipschitz continuous inB(go, R) with
respect to the Carnot- Carath´eodory distanced. The reverse implication also
holds, see [33].

Let 1 ≤ p < ∞. The notion ofhorizontalp- capacityassociated with a
systemX was introduced in [9], see also [56] for a different, yet equivalent,
definition in the casep = 2 for the Heisenberg groupHn. We will need the
following result which is contained in Theorem 8.1 in [9].

Theorem 2.4 (Capacitary estimates of rings [9]). LetG be a Carnot group.
Given1 ≤ p < Q there exist constantsC1, C2 > 0, depending onG andp,
such that for everyg ∈ G, 0< r < R one has

C1 r
Q−p ≤ capp(B(g, r), B(g, R)) ≤ C2 r

Q−p.

In particular,

C1 r
Q−p ≤ capp(B(g, r)) ≤ C2 r

Q−p.

The latter estimates gives

capp({g}) = lim
r→0

capp(B(g, r)) = 0, 1≤ p < Q.

We will also need the following special case of Proposition 6.1 from [9].
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Proposition 2.5. LetΩ ⊂ G be a bounded open set, and fix1 < p < Q. For
every relatively closed subdomainE ⊂ Ω, with capp(E) = 0, there exists a
sequenceζk ∈ C∞o (Ω \ E) such that0 ≤ ζk ≤ 1, ζk → 1 in Ω \ E and

∫
Ω

|Xζk|pdH → 0

ask→∞.

In the next result we indicate withN =
r∑

j=1
dimVj the topological dimen-

sion ofG. The symbolHN−1 denotes(N − 1)-dimensional Hausdorff measure
constructed using the Riemannian distance onG.

Theorem 2.6. LetD ⊂ G be aC∞ domain and denote byΣ ≡ ΣD,X = {g ∈
∂D | Xj(g) ∈ Tg(∂D), j = 1, ..., m} its characteristic set with respect to the
systemX. One has

HN−1(ΣD,X) = 0.

Theorem 2.6 is due to Derridj [22], [23]. In the sequel we will denote with
Γ k,α, Γ k,α

loc the Folland-Stein H¨older classes, see [25].

Theorem 2.7. LetD be a boundedC∞ domain in the Heisenberg groupHn and
let φ ∈ C∞o (Hn) be supported in a small neighborhood of a non-characteristic
pointgo ∈ ∂D. Givenf ∈ Γ k,α(D), k ∈ N∪{0},0< α < 1, then for the unique
solutionu to the Dirichlet problem for the Kohn sub-Laplacian

Lu = f in D , u = 0 on ∂D ,(2.7)

one hasφu ∈ Γ k+2,α(D).

Theorem2.7 is a special case of the results of Jerison in [42]. It is quite natural
to conjecture thatTheorem2.7 is in fact valid for arbitrarygroups.However, for an
arbitrary Carnot groupG a corresponding Schauder theory at non-characteristic
points is presently lacking, and this is why we now introduce the following
hypothesis which will be assumed valid throughout the paper:

(2.8) LetD ⊂ G be a boundedC∞ domain and considerf ∈ Γ k,α(D), k ∈
N ∪ {0}, 0 < α < 1. For everygo ∈ ∂D \Σ there exists a neighborhoodU of
go such that the solutionu to (2.7) belongs toΓ k+2,α(D ∩ U).

We plan to return to this point in a future study.
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3. Some integral identities and their consequences

In this section we establish some integral identities for solutions of the following
problem {

Lu = −f (u)
u ∈ o

D 1,2(Ω), u ≥ 0.
(3.1)

Such identities are reminiscent of those originally discovered by Rellich [68]
and subsequently byPohoˇzaev [67] for Laplaceequation.Unlikewhat happens in
the classical case, however, the presence of characteristic points on the boundary
of Ω causes weak solutions of (3.1) to lack the amount of regularity which is
necessary to implement such integral identities. The subsequent section will be
devoted to overcoming this serious obstacle.

Theorem 3.1. LetG be a Carnot group and letD ⊂ G be aC1 bounded open
set with outer unit normalη. For u ∈ C2(D) one has

2
m∑
i=1

∫
∂D

Yu Xiu < Xi, η > dHN−1+
∫
D

divGY |Xu|2 dH

− 2
m∑
i=1

∫
D

Xiu [Xi, Y ]u dH − 2
∫
D

Yu Lu dH

=
∫
∂D

|Xu|2 < Y, η > dHN−1,

whereY is any smooth vector field inG.

Proof. The divergence theorem gives∫
∂D

|Xu|2 < Y, η > dHN−1 =
∫
D

divGY |Xu|2 dH

− 2
m∑
i=1

∫
D

Xiu [Xi, Y ]u dH + 2
∫
D

< X(Yu),Xu > dH.

In the above we have denoted bydivG the Riemannian divergence inG. An-
other application of the divergence theoremand theobservation thatdivG Xi = 0
allow to obtain∫

D

< X(Yu),Xu > dH =
m∑
i=1

∫
∂D

Yu Xiu < Xi, η

> dHN−1−
∫
D

Yu Lu dH.

The latter two identities imply the conclusion. ��
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Wenextmakeaspecial choiceof the vector fieldY inTheorem3.1, namelywe
let Y = Z, whereZ is the infinitesimal generator of the one-parameter group of
non- isotropic dilations{δλ}λ>0. Such vector field is characterized by the property
that a functionu : G → R is homogeneous of degrees with respect to{δλ}λ>0,
i.e.,u(δλ(x)) = λsu(x) for everyx ∈ G, if and only ifZu = su. We will need
the following

Lemma 3.2. In a Carnot groupG the infinitesimal generator of group dilations
Z enjoys the following properties:

(i) divGZ ≡ Q.
(ii) For anyXi ∈ X = {X1, ..., Xm} one has[Xi, Z] = Xi .
(iii) L (Zu) = Z( L u)+ 2L u, for anyu ∈ C∞(G).
(iv) In particular,Zu isL-harmonic if such isu.
Proof. Properties(ii)− (iv)where established in [21], so we only need to prove
(i). This follows from the fact thatdH(δλ(x)) = λQdH(x) and thus taking the
Lie derivative of the volume form in the direction ofZ givesdivGZ = Q, i.e.,
Z* = −Z +Q. ��

Property(iv) is useful in obtaining higher regularity for a solution of problem
(3.1) at characteristic points. We notice explicitly that the vector fieldZ is not
sub-unitary according to the definition of C. Fefferman and D. H. Phong [24]
and that its expression in exponential coordinates involves derivation along the
vector fieldsXj , j = 1, ..., m, and their commutators up to maximum length.

Corollary 3.3. Under the assumptions of Theorem 3.1, letZ be the generator
of the group dilations. For anyu ∈ C2(D) we have

2
m∑
i=1

∫
∂D

Zu Xiu < Xi, η > dHN−1+ (Q− 2)
∫
D

|Xu|2 dH

− 2
∫
D

Zu Lu dH =
∫
∂D

|Xu|2 < Z, η > dHN−1

Proof. It follows immediately from Theorem 3.1 and from Lemma 3.2. ��
We next state our basic sub-elliptic Rellich-Pohoˇzaev identity.

Theorem 3.4. LetD ⊂ G be aC1 domain andu ∈ C2(D) be a solution of

Lu = −f (u), in D,(3.2)
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for some functionf ∈ C(R) such thatf (0) = 0. SettingF(s) = ∫ s

0 f (t)dt, the
following identity holds∫

D

[2QF(u)− (Q− 2)uf (u)] dH

= 2
m∑

j=1

∫
∂D

Zu Xju < Xj, η > dHN−1−
∫
∂D

|Xu|2 < Z, η > dHN−1

+ 2
∫
∂D

F (u) < Z, η > dHN−1 + (Q− 2)

×
m∑

j=1

∫
∂D

u Xju < Xj, η > dHN−1.

Proof. We obtain from (3.2) and from the divergence theorem

− 2
∫
D

ZuLu dH = 2
∫
D

Z(F(u)) dH

= −2
∫
D

divGZ F(u) dH + 2
∫
∂D

F (u) < Z, η > dHN−1

− 2Q
∫
D

F(u) dH + 2
∫
∂D

F (u) < Z, η > dHN−1,

where in the latter equality we have used(i) of Lemma 3.2. Next, we use the
equation

|Xu|2 = 1

2
L(u2)− uLu

in combination with (2.2) and the divergence theorem to obtain∫
D

|Xu|2 dH =
∫
D

uf (u)dH +
m∑

j=1

∫
∂D

u Xju < Xj, η > dHN−1.

Substitution in Corollary 3.3 completes the proof. ��
Lemma 3.5. LetD ⊂ G be an open set and suppose thatu ∈ Γ

0,α
loc (D) be a

solution to (2.2) for some functionf ∈ C∞(R). Thenu ∈ C∞(D).

Proof. By the assumptions we haveLu ∈ Γ
0,α
loc (D). The local regularity theory

developed by Folland and Stein, see [26], allows to inferu ∈ Γ
2,α
loc . At this point

the conclusion follows from the smoothnes off by a standard iteration argument.
��

To state our next result we introduce a definition.
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Definition 3.6. LetD ⊂ G be a connected open set of classC1 containing the
group identitye.We say thatD is starlike with respect to the identitye (or simply
starlike) along a subsetM ⊂ ∂D, if

< Z, η > (g) ≥ 0

at everyg ∈ M.D is called starlike with respect to the identitye if it is starlike
alongM = ∂D. We say thatD is uniformly starlike with respect toe alongM
if there exists a constantα = αD > 0 such that for everyg ∈ M

< Z, η > (g) ≥ α.

A domain as above is called starlike (uniformly starlike) with respect to one
of its pointsg alongM ⊂ ∂D, if g−1D is starlike (uniformly starlike) along
g−1M with respect toe.

Theorem 3.7. LetD ⊂ G beC∞, bounded and starlike with respect togo ∈ D.
Suppose thatu ∈ Γ 0,α(D) is a non-negative solution of (2.1) withf ∈ C∞(R),
such thatu = 0on∂D. Assume in addition thatXu ∈ L∞(D)andZu ∈ L∞(D).
If

2QF(u)− (Q− 2)uf (u) ≤ 0,(3.3)

thenu ≡ 0. In particular, ifG is of step two (2.1) has no non-trivial such solution
whenf (u) = uq , if q ≥ Q+2

Q−2.

Remark 3.8.The inequality (3.3) is the analogue of the famous Pohoˇzaev con-
dition for Laplace equation, see [67].

Proof. By invariance with respect to left-translation we can assume thatgo = e.
According to Lemma 3.5 we haveu ∈ C∞(D). Recall thatΣ is a compact set.
By Theorem 1 in [81] (see also Theorem 4 in [52] and the results in [22]) for
every bounded open neighborhoodU ofΣ one hasu ∈ C∞(D \U). Using this
observation and Theorem 2.6 we can choose an exhaustion ofD with a family of
C∞, connected, open setsDε ↗ D, asε → 0, such thatu ∈ C∞(Dε), and for
which ∂Dε = Γ 1

ε ∪ Γ 2
ε , with Γ

1
ε ⊂ ∂D \Σ,Γ 1

ε ↗ ∂D \Σ , HN−1(Γ 2
ε )→ 0.

We apply Theorem 3.4 to the setsDε to obtain
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∫
Dε

[2QF(u)− (Q− 2)uf (u)] dH = 2
m∑

j=1

∫
∂Dε

Zu Xju < Xj, η > dHN−1

−
∫
∂Dε

|Xu|2 < Z, η > dHN−1+ 2
∫
∂Dε

F (u) < Z, η > dHN−1 + (Q− 2)

×
m∑

j=1

∫
∂Dε

u Xju < Xj, η > dHN−1 = 2
m∑

j=1

∫
Γ 1
ε

Zu Xju < Xj, η > dHN−1

−
∫
Γ 1
ε

|Xu|2 < Z, η > dHN−1+ 2
∫
Γ 1
ε

F (u) < Z, η > dHN−1 + (Q− 2)

×
m∑

j=1

∫
Γ 1
ε

u Xju < Xj, η > dHN−1+ 2
m∑

j=1

∫
Γ 2
ε

Zu Xju < Xj, η > dHN−1

−
∫
Γ 2
ε

|Xu|2 < Z, η > dHN−1+ 2
∫
Γ 2
ε

F (u) < Z, η > dHN−1 + (Q− 2)

×
m∑

j=1

∫
Γ 2
ε

u Xju < Xj, η > dHN−1.

Sinceu = 0 onΓ 1
ε andu > 0 insideDε , one hasDu(g) = k(g)η(g) for

everyg ∈ Γ 1
ε , for a functionk ≤ 0. This impliesF(u) = 0 onΓ 1

ε and also

Zu
∑
j

Xju < Xj, η >= k < Z, η >
∑
j

Xju < Xj, η >= |Xu|2 < Z, η >,

and the above identity gives∫
Dε

[2QF(u)− (Q− 2)uf (u)] dH −
∫
Γ 1
ε

|Xu|2 < Z, η > dHN−1

= 2
m∑

j=1

∫
Γ 2
ε

Zu Xju < Xj, η > dHN−1−
∫
Γ 2
ε

|Xu|2 < Z, η > dHN−1

+2
∫
Γ 2
ε

F (u) < Z, η > dHN−1 + (Q− 2)
m∑

j=1

∫
Γ 2
ε

u Xju < Xj, η > dHN−1.

(3.4)

By the assumptionXu,Zu ∈ L∞(D), and from the fact thatHN−1(Γ 2
ε )→ 0,

we infer that the boundary integrals in the right-hand side of (3.4) tend to zero.
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On the other hand, in view of the starlikeness ofD we have< Z, η >≥ 0, so
that we obtain from the monotone convergence theorem∫

Γ 1
ε

|Xu|2 < Z, η > dHN−1 →
∫
∂D

|Xu|2 < Z, η > dHN−1,

whereas∫
Dε

[2QF(u)− (Q− 2)uf (u)] dH →
∫
D

[2QF(u)− (Q− 2)uf (u)] dH,

thanks to the assumptionu ∈ Γ 0,α(D). These considerations allow to conclude∫
D

[2QF(u)− (Q− 2)uf (u)] dH −
∫
∂D

|Xu|2 < Z, η > dHN−1 = 0.(3.5)

Using (3.3) we finally obtain∫
∂D

|Xu|2 < Z, η > dHN−1 = 0.(3.6)

The divergence theorem and (i) of Lemma 3.2 give∫
∂D

< Z, η > dHN−1 = Q |D|.

We must thus have< Z, η > > 0 on some subset of∂D of positiveHN−1
measure. From the smoothness ofD we infer the existence of an open setV ⊂ G

such that< Z, η > ≥ α > 0 on∆ = V ∩ ∂D. Since the characteristic set
Σ is compact, we can assume without loss of generality that∆ ∩ Σ = Ω. In
conclusion we see that the horizontal gradient vanishes on∆. By extendingu
across the boundary by setting it equal to zero outside ofD we obtain a weak
solution to (3.1) inV which vanishes in the open setV + = V ∩ (G \ D). By
Theorem 10.6 in the Appendix we conclude that must beu ≡ 0 in D. This
proves the first part of the theorem.

Suppose now thatG is of step two. The non-linearityf (u) = u
Q+2
Q−2 , for

u ≥ 0, f (u) ≡ 0, whenu ≤ 0, is not inC∞(R), since 1< Q+2
Q−2 < 2 when

Q > 6, but only belongs to a classC1,δ
loc (R). Sincef ∈ C∞(0,∞), using the

local regularity theory in [26] we conclude as before thatu ∈ C∞(D). The
assumption (2.8) guarantees the regularityΓ 3,β of u up to the boundary away
from the characteristic setΣ . Since for a group of step two the generator of
dilationsZ involves only theXj ’s and their first commutators, we infer thatZu
is inΓ 1,β up to the boundary in a neighborhood of a non-characteristic point.We
can thus apply the Rellich type identity to the exaustion domainsDε and argue
as in the first part. ��
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4. Regularity at the characteristic set of the horizontal and radial
derivatives

In the previous section we have obtained a uniqueness result for non-negative
solutions of a Yamabe type equation by making the strong a priori assumptions
thatXu,Zu ∈ L∞(D). In practice, the existence of characteristic points on the
boundary of the ground domain imposes serious restrictions to the regularity of
the solution, see [43], [12], and it is not clear that Theorem 3.7 has any content
at all. The purpose of this section is to prove that it does indeed, at least if the
domainD satisfies some very natural and simple geometric requirements. We
start by considering a weak solution to the non-linear Dirichlet problem with
critical exponent in a connected, bounded open setΩ ⊂ G{

Lu = −uQ+2
Q−2

u ∈ o

D 1,2(Ω), u ≥ 0.
(4.1)

By Theorem 10.1 in the appendix we know thatu ∈ L∞(Ω). This crucial
information allows to implement the local regularity theory of Folland and Stein,
[27], [26], as in the proof of Lemma 3.5, to concludeu ∈ C∞(Ω). We next
suppose thatΩ satisfies in addition the following natural condition: There exist
A, ro > 0 such that for everyQ ∈ ∂Ω and every 0< r < r0

|(G \Ω) ∩ B(Q, r)| ≥ A|B(Q, r)|.(4.2)

Such geometric assumption is fulfilled if, e.g.,Ω satisfies the uniform
corkscrew condition, see [10], [12]. These papers contain an extensive study
of examples of domains which, in particular, satisfy (4.2). What counts for us is
that (4.2) allows to adapt to the present setting the classical arguments that lead,
via Moser’s iteration, to obtainu ∈ Γ 0,α(Ω̄) for some 0< α < 1, see, e.g., [35],
Section 8.10. Extendingu with zero outsideΩ, we can assume henceforth that

u ∈ Γ 0,α(G).(4.3)

If we suppose further thatΩ is aC∞ domain, and denote byΣ = ΣΩ,X

the characteristic set ofΩ, then thanks to the assumption (2.8) at every non-
characteristic pointgo ∈ ∂Ω one has in factu ∈ Γ 3,δ(Ω̄ ∩ U) for a suitable

neighborhoodU of go. To see this observe that the non-linearityf (u) = u
Q+2
Q−2 ,

for u ≥ 0, f (u) ≡ 0, whenu ≤ 0, belongs in general to a classC1,δ
loc (R) since

1 < Q+2
Q−2 < 2 whenQ > 6. We note explicitly that thanks to Theorem 2.7 this

regularity is amply fulfilled in the important case of the Heisenberg groupHn.
From these considerations it is clear that the main new obstacle to overcome is
the regularity of a weak solution to(4.1) near the characteristic setΣ . To this
task we now turn.
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Our first objective is the construction of suitable sub-elliptic barriers for
Carnot groups. The existence of such barriers has far reaching implications. We
begin with a simple, yet useful result.

Lemma 4.1. LetG be a Carnot group of stepr. For every bounded setV ⊂ G

there exists a constantC(r, V ) > 0 such that for everyg ∈ V and0 ≤ λ ≤ 1

d(δλ(g), g) ≤ C (1− λ)1/r .

Proof. In view of (2.4) it suffices to prove the above inequality for the pseudo-
distanceρ.We illustrate the proof in the caser = 2, and then indicate the changes
necessary whenr is arbitrary. By (2.3) we have for everyg ∈ G

ρ(δλ(g), g) = |g−1δλ(g)|G = |Y |g,
whereY ∈ g is such thatexp(Y ) = g−1δλg . If g = exp(ξ), with ξ = ξ1 + ξ2,
we obtain from the Baker-Campbell-Hausdorff formula

exp(Y ) = exp(−ξ +∆λ(ξ)− 1/2[ξ,∆λ(ξ)]).
It is now easy to see that[ξ,∆λ(ξ)] = [ξ1 + ξ2, λξ1 + λ2ξ2] = 0. We thus

haveY = −ξ + ∆λ(ξ) = (λ − 1)ξ1 + (λ2 − 1)ξ2. Applying (2.2) for|Y |g one
easily obtains the conclusion ifg belongs to a bounded setV , with a constant
C = C(V ) > 0. This proves the lemmawhenr = 2. In a group of stepr one has
ξ = ξ1+ ...+ ξr and the Baker-Campbell-Hausdorff formula contains, besides,
[ξ,∆λ(ξ)], commutators of higher order. However, one sees easily that

[ξ,∆λ(ξ)] = (λ− 1)
∑
i<j

pi,j (λ)[ξi, ξj ],

wherepi,j (λ) is a polynomial. Using this fact one reaches the conclusion simi-
larly to the caser = 2. ��

Given a pointg ∈ Gwe letx(g) = (x1(g), ..., xm(g)), wherexj (g) is defined
as in (2.1). The following lemma will play a crucial role in the sequel.

Lemma 4.2. The functionψ(g)
def= |x(g)|2 enjoys the following properties:
Lψ = 2m,(4.4)

|Xψ |2 = 4ψ.(4.5)

Furthermore, for anyMo > 0 one has

L(ψ/Mo) ≥ m/Mo + |X(ψ/Mo)|2,(4.6)

at all points of the set{g ∈ G | |x(g)|2 ≤ mMo

4 }.
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Proof. We define the functions

ψj(t) = |ξ1(g exp(tXj ))|2 j = 1, ..., m.

The Baker-Campbell-Hausdorff formula implies

g exp(tXj ) = exp(ξ1(g)+ tXj + ξ2(g)

+...+ ξr(g)+ 1

2
[ξ1(g)+ ...+ ξr(g), tXj ] + ...).

From this one immediately sees that

ψj(t) = |ξ1(g)|2+ 2t < ξ1(g),Xj > +t2.(4.7)

One obtains from (4.7)

ψ ′j (0) = 2< ξ1(g),Xj >= 2xj (g), ψ ′′j (0) = 2.(4.8)

The equation (4.8) gives

Lψ =
m∑

j=1
ψ ′′j (0) = 2m,

|Xψ |2 =
m∑

j=1
ψ ′j (0)

2 = 4
m∑

j=1
< ξ(g),Xj >

2= 4
m∑

j=1
|xj (g)|2 = 4ψ,

which proves the first part of the lemma. The second part follows from the first
by elementary considerations. ��

Henceforth, we denote withψ the function in Lemma 4.2.We next consider a
C∞, connected, bounded open setΩ ⊂ G. Since our assumptions onΩ are of a
local nature, and they involve the geometry of the domain near its characteristic
setΣ , there is no restriction in assuming the existence ofρ ∈ C∞(G) and of
γΩ > 0 such that for someR ∈ R

Ω = {g ∈ G | ρ(g) < R},(4.9)

and for which one has|Dρ(g)| ≥ γΩ > 0, for everyg in some relatively compact
neighborhoodK of ∂D. The outward pointing unit normal to∂Ω is η = Dρ

|Dρ| . In
the next theorem we prove that ifΩ satisfies two natural geometric assumptions
at the charateristic set, then one can construct some sub-elliptic barriers nearΣ .
One such hypothesis is thatΩ be uniformly starlike alongΣ , see Definition 3.6,
with respect to one of its points, which by performing a left-translation we can
take to be the group identitye. We explicitly remark that when this is the case,
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then by the compactness ofΣ we can find a bounded open setU and a constant
δ > 0 such thatΣ ⊂ U and for which, setting∆ = ∂Ω ∩ U , one has

Zρ(go) ≥ δ > 0, for go ∈ ∆.(4.10)

We note that the uniform transversality condition(4.10) implies that the
trajectories ofZ starting from points of∆ fill a full open setω interior toΩ.
This can be seen by locally "straightening out"Z and taking a finite cover. In
each of the neighborhoods whereZ is constant the trajectories are straight lines
transversal to∆. By possibly shrinking the setU we can assume thatω = Ω∩U .
To fix the notation we suppose that there existsλo > 0 such that

δλgo ∈ ω for λo < λ < 1.

Henceforth, we assume that the parameterMo > 0 in (4.6) in Lemma 4.2
has been chosen sufficiently large. Precisely, given the domainΩ, and an open
neighborhoodU of the characteristic set fixed as in the preceding discussion, we
assume thatMo > 0 has been so chosen that it fulfills the condition

U ⊂ {g ∈ G | |x(g)|2 ≤ mMo

4
}.(4.11)

Having made this choice, we will henceforth assume that the inequality (4.6)
in Lemma 4.2 is valid in the wholeU , and therefore inω. This being said, we
will continue to use the symbols∆,ω, λo andMo with the same meaning as
above throughout the rest of the section.

Theorem 4.3. LetΩ ⊂ G be a smooth, connected bounded open set as in (4.9)
which is uniformly starlike alongΣ with respect to one of its points. We assume
in addition that there existsM1 > 0 such that the definining functionρ of Ω
satisfies the differential inequality

Lρ ≥ 2

M1
< Xρ,Xψ > in ω.(4.12)

LetM ≥ max{Mo,M1}. For 0< α ≤ 1we define

Ψα = (R − ρ)αe−ψ/M.

Under the stated hypothesis we obtain for everyg ∈ ω

LΨα(g) ≤ −m

M
Ψα(g).(4.13)

Furthermore, there existC1, C2 > 0 such that for everygo ∈ ∆ andλo ≤
λ ≤ 1 one has

C1(1− λ)α ≤ Ψα(δλgo) ≤ C2(1− λ)α.(4.14)
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Proof. We note that for any functionφ onG and another functionf on the real
line one has

L(f (φ)) = f ′′(φ)|Xφ|2+ f ′(φ)Lφ.
This observation implies

LΨα = (R − ρ)αL(e−ψ/M)+ e−ψ/ML((R − ρ)α)

+ 2< X((R − ρ)α),X(e−ψ/M) >
= [|X(ψ/M)|2− L(ψ/M)

]
Ψα

+
[
α(α − 1)

(R − ρ)2
|Xρ|2− α

(R − ρ)
Lρ
]
Ψα

+ 2α

M(R − ρ)
< Xρ,Xψ > Ψα

=
[
−α(1− α)

(R − ρ)2
|Xρ|2 − α

R − ρ
Lρ

+2αM
−1

R − ρ
< Xρ,Xψ > +|X(ψ/M)|2− L(ψ/M)

]
Ψα.

The first term above is negative and(4.12) gives

− α

R − ρ
Lρ + 2αM−1

R − ρ
< Xρ,Xψ > ≤ 0.

From this it is clear that(4.13) would follow provided that one has onω

|X(ψ/M)|2− L(ψ/M) ≤ −m/M.

The latter inequality is a consequence of the fact that (4.6) holds for all
points inU , withMo replaced byM, thanks to (4.11) and to the trivial inclusion
{g ∈ G | |ξ1(g)|2 ≤ mMo

4 } ⊂ {g ∈ G | |ξ1(g)|2 ≤ mM
4 }.

The proof of (4.14) is obtained as follows. We consider for a fixedgo ∈ ∆

the smooth functionφ(λ) = ρ(δλ(go)). By taking a Taylor expansion about the
point λ = 1, and keeping in mind thatφ(1) = ρ(go) = R, we find for every
go ∈ ∆ andλo ≤ λ ≤ 1

R − ρ(δλ(go)) = Zρ(go)(1− λ)[1+O(1− λ)],(4.15)

whereO(1− λ) denotes a function which is bounded byC(1− λ), uniformly
in go ∈ ∆ andλo ≤ λ ≤ 1. It is clear that from the latter identity (4.14) follows
using (4.10), the smoothness ofρ and the boundedness ofΩ. ��
Remark 4.4.We mention that for the Heisenberg groupHn sub-elliptic barriers
related to those in Theorem 4.3 were found by one of us in [29].
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Theorem 4.5. Consider aC∞ domainΩ in a Carnot groupG satisfying(4.2)
and all the hypothesis in Theorem 4.3, including (4.12). Letu be a weak solution
of (4.1), then there exists a constantC = C(G,Ω, u) > 0 such that for every
go ∈ ∆ and0 ≤ λ ≤ 1 one has

u(δλ(go)) ≤ C (1− λ)(4.16)

Proof. We begin by observing that thanks to (4.3) and to the fact thatu = 0 on
∂Ω, we have for anygo ∈ ∂Ω

u(δλgo) ≤ C d(δλgo, go)
α,(4.17)

whered is as in (2.3). Lemma 4.1 now gives for everygo ∈ ∆ and 0≤ λ ≤ 1

d(δλgo, go) ≤ C (1− λ)1/r ,(4.18)

for some constantC = C(Ω) > 0. Using (4.17), (4.18) and settingα1 = α/r

we infer

u(δλgo) ≤ C (1− λ)α1(4.19)

for everygo ∈ ∆, λo < λ < 1. Clearly, 0< α1 < 1. We now letσ = 2* − 1 =
(Q+ 2)/(Q− 2) and notice thatσ > 1. Choosen ∈ N such thatσ−n ≤ α1 and
let αo = σ−n so that

σn αo = 1.(4.20)

Observe that (4.19) implies trivially

u(δλgo) ≤ C (1− λ)αo(4.21)

for everygo ∈ ∆, λo < λ < 1. We next use the barriers constructed in Theorem
4.3. For any pointδλgo ∈ ω we have from (4.1), (4.21), (4.14) and from (4.13)

− Lu(δλgo) = u(δλgo)
σ

≤ C(1− λ)σαo ≤ CC−11 Ψσαo(δλgo) ≤ −CC−11 Mm−1LΨσαo(δλgo)

= −L(C∗Ψσαo)(δλgo).

Keeping in mind that asgo varies in∆ andλ in the interval(λo,1), the point
δλgo coversω, we have proved

L(C∗Ψσαo − u) ≤ 0 in ω.

At this point we observe that (possibly using a constant larger thanC∗) we
also have the estimate

C∗Ψσαo ≥ u on ∂ω.(4.22)
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To see that (4.22) holds we argue as follows. It is clear that (4.22) holds
on ∂ω ∩ ∂Ω, since bothu andΨσαo vanish there. On the other hand, the set
Λ = (

∂ω ∩Ω
) \ ∆ is at a fixed distance away from the characteristic setΣ ,

therefore for everygo ∈ Λ there existsj ∈ {1, ..., m} such thatXjρ(go) "= 0.By
continuity, the trajectories ofXj fill a (sufficiently small) full neighborhoodVgo

of go. This means that there existsto = to(go) > 0 such that everyg ∈ Ω ∩ Vgo

can be written asg1 exptXj for someg1 ∈ ∂Ω ∩ Vgo and some 0< t < to.
Using the uniform transversality ofXj to ∂Ω in Ω ∩ Vgo and Taylor’s formula
we infer the existence ofC = C(go) > 0 such that

|R − ρ(g1 exptXj )| ≥ C |t |,(4.23)

for everyg1 ∈ ∂Ω ∩ Vgo and 0< t < to. We now use the assumption (2.8) to
conclude the existence of a constantC∗ = C∗(u, go) > 0 such that

u(g1 exptXj ) ≤ C∗ |t | ≤ C∗ |t |ασo

for everyg1 ∈ ∂Ω ∩ Vgo and 0< t < to. The latter inequality and (4.23) allow
to conclude that (4.22) does hold, for a constant depending onu andgo, in the
setΩ ∩ Vgo . By a finite covering we see that (4.22) continues to hold in the
intersection of a small neighborhood of∂Ω with Λ. We can thus detach from
∂Ω. Once insideΩ we can use theC∞ smoothness ofu to conclude that (4.22)
holds on t he remaining portion of∂ω ∩Ω as well. This completes the proof of
(4.22). We can now apply Bony’s maximum principle Theorem 2.1 toω to infer
that a similar estimate also holds inω. From this result and from the right-hand
side of (4.14) we conclude for everygo ∈ ω andλo < λ < 1

u(δλgo) ≤ C (1− λ)σαo,(4.24)

which shows that we have improved on (4.21). It is now clear that repeating the
above argumentsn times, wheren is as in (4.20), we reach the desired conclusion
(4.16). ��

We are now ready to state the two main results of this section. We start with
the boundedness of the horizontal gradient of a solution of (4.1) at characteristic
points.

Theorem 4.6. Consider aC∞ domainΩ in a Carnot groupG satisfying(4.2)
and all the hypothesis in Theorem 4.3, including (4.12). Letu be a weak solution
of (4.1), then

Xu ∈ L∞(Ω).

Proof. Due to the left-invariance of the problem (4.1) we can assume thatΩ is
uniformly starlike alongΣ with respect toe. Since by the results in [52], [22]
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we know thatu is smooth away fromΣ , in order to prove the theorem it will be
enough to show that

Xu ∈ L∞(ω),(4.25)

whereω is fixed as before. We begin by introducingv = u2*−1 ∗ Γ , whereΓ is
the positive fundamental solution ofL, i.e.,LΓ = −δ. According to Corollary
2.8 in [26],v satisfies the equationLv = −u2*−1 in G. Since by (4.3)u2*−1 is
in Γ 0,β(G) for some 0< β < 1 (andu is compactly supported inG), we have

v ∈ Γ
2,β
loc (G)(4.26)

from [26], Theorem 6.1. Therefore, if we letw
def= u− v, in order to prove (4.25)

it is enough to show it forw, i.e., thatXw ∈ L∞(ω). We notice thatw is
L-harmonic, i.e.,Lw = 0 inΩ.

Let g ∈ ω, then there existgo ∈ ∆ andλ ∈ (λo,1) such thatg = δλ(go).
We now note that, as in the proof of (4.15), assumption (4.10) implies for every
go ∈ ∆, λo < λ < 1, and everyg1 ∈ ∂Ω

(1− λ) ≤ C (ρ(go)− ρ(δλgo)) = C (ρ(g1)− ρ(δλgo)).(4.27)

This allows to obtain, in view of (4.16) in Theorem 4.5,

u(δλgo) ≤ C (ρ(g1)− ρ(δλgo)).(4.28)

At this point we apply Theorem 2.3 to the defining functionρ ofΩ to obtain
for everyg1, g2 ∈ Ω

|ρ(g1)− ρ(g2)| ≤ C ||Xρ||L∞(Ω) d(g1, g2).

Using the latter inequalitywithg2 = δλgo in (4.28) onefinds for everygo ∈ ∆,
λo < λ < 1, and everyg1 ∈ ∂Ω

u(δλgo) ≤ C∗ d(g1, δλgo).(4.29)

For g = δλgo ∈ ω we now chooseg1 ∈ ∂Ω in (4.29) in such a way that
d(g1, δλgo) = dist (g, ∂Ω). This gives

u(g) ≤ C d(g, ∂Ω) for every g ∈ ω.

Since we know thatu ∈ C∞(Ω \ω) we can use a similar argument based on
the use of Theorem 2.3 to conclude

u(g) ≤ C d(g, ∂Ω) for every g ∈ Ω.(4.30)
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We now fix a pointg ∈ ω and, withr = dist (g, ∂Ω)/2, consider the ball
B(g, r) ⊂ B(g, r) ⊂ Ω. Applying the interior Schauder estimates in Theorem
2.2 to theL- harmonic functionw − w(g) one has

|Xw(g)| ≤ C

r
sup
B(g,r)

|w − w(g)|.(4.31)

Note that (4.30) gives forg′ ∈ B(g, r)

u(g′) ≤ C dist (g′, ∂Ω) ≤ C [d(g′, g)+ dist (g, ∂Ω)] ≤ C r.(4.32)

Sincew = u− v, one has forg′ ∈ B(g, r) in view of (4.32), (4.30)

|w(g′)− w(g)| ≤ [u(g′)
+u(g)] + |v(g′)− v(g)| ≤ C [r + |v(g′)− v(g)|].(4.33)

Finally, we observe that (4.26) impliesv ∈ L1,∞(Ω), and therefore applying
Theorem 2.3 once more we conclude forg, g′ ∈ Ω

|v(g)− v(g′)| ≤ C d(g, g′).

Substitution of this information in (4.33) gives

sup
B(g,r)

|w − w(g)| ≤ C r.

Combining the latter inequality with (4.31) brings the sought for conclusion
Xw ∈ L∞(ω). This finishes the proof of Theorem 4.6. ��

In the next result we establish the boundedness of theZ−derivative of the
solution of (4.1) near the characteristic set.We stress that such derivative involves
commutators of the vector fieldsXj up to maximum order. Although we suspect
the result to be true for groups of any step, we have been able to establish it only
for groups of step two.

Theorem 4.7. LetG be a Carnot group of step two. Consider aC∞ connected,
bounded open setΩ ⊂ G satisfying(4.2)and all the hypothesis in Theorem 4.3,
including (4.12). Under these assumptions, ifu is a weak solution of (4.1) one
has

Zu ∈ L∞(Ω).(4.34)

Proof.
We proceed as in the proof of Theorem 4.6 and note that in order to prove the

theorem it is enough to show that

Zw ∈ L∞(ω),(4.35)

whereω is fixed as before andv,w have the same meaning as in Theorem 4.6.
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Forλ very close to 1, we defineωλ = δλ(ω) ∩ ω,∆λ = δλ(∆) and consider
the difference quotient

φλ(g) = w(g)− w(δλ−1g)

1− λ−1
, g ∈ ωλ.(4.36)

We claim that there exists a constantC > 0 such that for allλ sufficiently
close to 1 one has forg ∈ ωλ

|φλ(g)| ≤ C.(4.37)

Suppose the claim (4.37) true, then passing to the limit asλ→ 1we conclude
|Zw(g)| ≤ C for everyg ∈ ω, which proves (4.35), thus establishing the
theorem. We then turn to the proof of (4.37). The key observation is thatφλ is
L-harmonic inωλ since

Lφλ(g) = Lw(g)− L(w(δλ−1g))
1− λ−1

= Lw(g)− λ−2Lw(δλ−1g)
1− λ−1

= 0.(4.38)

FromTheorem2.1 it is thereforeenough toprove that (4.37)holds forg ∈ ∂ωλ

andλ ∈ (λ1,1), for someλ1 close to 1. We note that∂ωλ = ∆λ ∪ (∂ωλ \ ∆λ).
We analyze the two portions separately. Since any pointg ∈ ∆λ can be written
asg = δλgo for somego ∈ ∆ we have

φλ(g) = −λw(δλgo)− w(go)

1− λ
.(4.39)

Recalling thatw = u− v we find

|φλ(g)| = | − λ
u(δλgo)− u(go)− v(δλgo)+ v(go)

1− λ
|

≤ u(δλgo)

1− λ
+ |v(δλgo)− v(go)

1− λ
|,(4.40)

sinceu = 0 on∆. At this point we use Theorem 4.5 to conclude

|φλ(δλgo)| ≤ C + |v(δλgo)− v(go)

1− λ
|, go ∈ ∆, λo < λ < 1.(4.41)

Next, we remember that (4.26) holds. The embedding Theorem 5.25 in [26]
implies that

Γ
2,β
loc (G) ⊂ Λ

1, β2
loc (G) = C

1, β2
loc (G),(4.42)

where the latter space denotes the standard H¨older class with respect to the
Riemannian distancedR(·, ·) onG. We conclude, in particular, thatv is locally
Lipschitz continuous with respect todR(·, ·), and therefore

|v(g)− v(h)| ≤ dR(g, h), g, h ∈ Ω.
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One easily sees that

dR(δλgo, go) ≤ C (1− λ).

The latter two inequalities imply the uniform boundedness of the difference
quotient ofv in (4.41) for go ∈ ∆ andλ betweenλo and 1. This shows that (4.37)
holds on∆λ. Finally, to obtain the same inequality on∂ωλ \∆λ it is enough to
observe that forλ close to 1 such sets are uniformly away from the characteristic
setΣ , so that the desired conclusion follows from theΓ 2,α regularity ofu in
a uniform neighborhood of such sets. In conclusion, we have proved the claim
(4.37), and therefore the theorem. ��
Remark 4.8.We emphasize that the step two hypothesis onG has been used
only in the embedding in (4.42).

5. Non-existence of positive solutions to the Yamabe equation in bounded
domains

In this section we apply the results of sections four and five to obtain non-
existence theorems for a class of bounded domains which play a basic role in the
analysis of Carnot groups. Such class contains the gauge pseudo-balls defined
via (2.3), as well as, when the group is of Heisenberg type, the level sets of the
entire solutions (1.4) to the CRYamabe problem (1.2) inΩ = G . We begin by
stating a corollary of Theorems 4.6, 4.7 and 3.7.

Theorem 5.1. Let G be a Carnot group of step two. LetΩ ⊂ G be aC∞
bounded domain, starlike with respect togo ∈ Ω and uniformly starlike with
respect togo along the characteristic setΣ . Suppose in addition that condition
(4.2)holds and that a defining functionρ ofΩ fulfills (4.12)for some constant
M1 > 0 in a neighborhood ofΣ . Under these hypothesis,u ≡ 0 is the only weak
solution of(4.1).

In order to produce interesting geometric examples to which Theorem 5.1
can be applied we establish a useful lemma, which is a simple consequence of
the Baker-Campbell- Hausdorff formula. This result shows in particular that in
a Carnot group the coordinates in the first and second layers of the Lie algebra
g areL-harmonic. We will use the notations of section two, see the definitions
(2.1), (2.5).

Lemma 5.2. LetG be a Carnot group. One has

Lxj = 0, j = 1, . . . , m, Lyi = 0, i = 1, . . . , k.
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From the latter equation we infer, in particular, that the functiong→ |y(g)|2
isL-subharmonic and in fact

L(|y|2) = 2
k∑

i=1
|X(yi)|2 ≥ 0.

There exists a constantC = C(G) > 0 such that

|X(|y|2)|2 ≤ C |x|2 |y|2.
Proof. Let g = exp(ξ) with ξ = ξ1 + ...+ ξr . For t ∈ R the Baker-Campbell-
Hausdorff formula and the stratification ofg give for l = 1, ..., m

xj (g exptXl) = xj (g)+ tδjl,

yi(g exptXl) = yi(g)+ t

2
< [ξ1, Xl], Yi > .(5.1)

From (5.1) theL-harmonicity ofxj (g) andyi(g) is obvious. Using (5.1) we
now define forl = 1, ..., m

φl(t) = |y(g exptXl)|2 =
k∑

i=1

(
y2i

+t < [ξ1, Xl], Yi > yi + t2

4
< [ξ1, Xl], Yi >2

)
.(5.2)

Differentiating with respect tot we find

φ′l (0) =
k∑

i=1
< [ξ1, Xl], Yi > yi,(5.3)

hence

φ′l (0)
2 ≤ |y|2

k∑
i=1

(< [ξ1, Xl], Yi >)2.

Keeping in mind thatξ1 =∑m
j=1 xjXj we easily obtain

k∑
i=1

(< [ξ1, Xl], Yi >)2 ≤ |x|2
m∑

j=1

k∑
i=1

(< [Xj,Xl], Yi >)2.

In conclusion

|X(|y|2)|2 =
m∑
l=1

φl(0)
2 ≤ C |x|2 |y|2,
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where

C =
m∑

j,l=1

k∑
i=1

(< [Xj,Xl], Yi >)2.

��
Let nowG be a Carnot group of step two. We define the function

fε(g) =
(
(ε2+ |x(g)|2)2+ 16|y(g)|2)1/4 , ε ∈ R.(5.4)

ForR > 0 andε ∈ R, with ε2 < R2, consider theC∞ bounded open set

ΩR,ε = {g ∈ G | fε(g) < R}.(5.5)

Whenε = 0 it is clear thatΩR,ε is nothing but a gauge pseudo-ball centered
at the group identitye, except that the natural gauge was defined in (2.2) without
the factor 16. Here we have introduced such factor for the purpose of keeping a
consistent definition with the case of groups of Heisenberg type, studied in the
next sections. For all practical purposes the reader can neglect it and identifyf0
in (5.4) with (2.2). Forg ∈ G, we letΩR,ε(g) = {h ∈ G | fε(g−1h) < R} =
g ΩR,ε .

Theorem 5.3. LetG be a Carnot group of step two. Given anyg ∈ G, R ∈ R

and ε ∈ R with ε2 < R2, the functionu ≡ 0 is the only non-negative weak
solution of (4.1) inΩR,ε(g).

Proof. We need to show that the setΩR,ε(g) fulfills the conditions of Theorem
5.1. By left translation it is enough to considerΩR,ε . Sinceρ = f 4

ε is also a
defining function for the domain, we will work with this function. Noting that
|x|2 is homogeneous of degree two and that|y|2 is homogeneous of degree four,
we find

Zρ(g) = 4[(ε2+ |x(g)|2)|x(g)|2+ 16|y(g)|2].(5.6)

On ∂ΩR,ε we have(ε2 + |x(g)|2)2 + 16|y(g)|2 = R4, it is thus easy to
recognize from (5.6) thatΩR,ε is uniformly starlike. Furthermore, according
to the Definition 7 in section 5.2 of [10], the domain isCS − Σ , i.e., it has
cylindrical symmetry near the characteristic setΣ and therefore asa consequence
of Theorem 15 in [10], section 5.2,ΩR,ε is aX-NTA domain. In particular, the
existence of a uniform exterior corkscrew guarantees that (4.2) is satisfied. Let
ψ = |x(g)|2 andψ2 = |y(g)|2, so thatρ = ψ2+ 16ψ2. One has

Lρ = 2|Xψ |2+ 2ψLψ + 16Lψ2,

Xρ = 2ψXψ + 16Xψ2.
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Using Lemmas 4.2 and 5.2 we obtain

Lρ ≥ 4(m+ 2)ψ.

On the other hand

< Xρ,Xψ >= 2ψ2+ 16< Xψ,Xψ2 >,(5.7)

and using again Lemmas 4.2 and 5.2 we see that

< Xψ,Xψ2 > ≤ C ψ |y|,(5.8)

whereC > 0 is a universal constant. This shows that

< Xρ,Xψ > ≤ 2ψ2+ C∗ψ ≤ M1

2
ψ ≤ Lρ,

for a sufficiently large constantM1, which exists sinceΩR,ε is a bounded do-
main. We have proved that all the hypothesis in Theorem 5.1 are satisfied. This
completes the proof. ��

6. Existence of global minimizers

In their paper [44] on the CR Yamabe problem D. Jerison and J. Lee observed
that using the concentration compactness method of P. L. Lions, see [60], [61]
and also [74], one can see that the best constant in the Folland- Stein embedding
(1.1) for the Heisenberg group in the casep = 2 is achieved and thus (1.2)
admits an entire non-negative solution. P. L. Lions’method is very powerful and
general and can, in fact, be suitably adapted to the homogeneous setting of a
Carnot groupG to prove that for any 1< p < Q the best constant in (1.1)
is achieved. Consequently, for any suchp the quasi-linear equation with critical
exponent

Lpu =
m∑

j=1
Xj(|Xu|p−2Xju) = −up∗−1 in G(6.1)

possesses an entire non-negative solution. The purpose of this section is to record
these basic results without presenting the proofs, which will appear elsewhere
[79].

Two crucial aspects of the equation (6.1) are its invariance with respect to the
group translations and dilations. The former is obvious, since the vector fieldsXj

are left- invariant. The latter must be suitably interpreted and follows from the
observation that for everyc > 0 one hasLp(cu) = cp−1u, and that furthermore

Lp(u ◦ δλ) = λp δλ ◦ Lpu.(6.2)
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If we thus define, for a solutionu of (6.1) and forλ > 0, the rescaled
function uλ = λαu ◦ δλ, then it is clear thatuλ satisfies (6.1) if and only if
α = Q/p∗ = (Q−p)/p. These consideration lead to introduce foru ∈ C∞o (G)

two new functions

τhu
def= u ◦ τh, h ∈ G,(6.3)

whereτh : G→ G is the operator of left-translationτh(g) = hg,

uλ
def= λQ/p* u ◦ δλ, λ > 0.(6.4)

It is easy to see that the norms in (1.1) are invariant under (6.3) and (6.4).
The problemof finding the best constant in theFolland-Stein embedding (1.1)

leads to the following variational problem

I ≡ I1
def= inf



∫
G

|Xu|p | u ∈ C∞o (G),

∫
G

|u|p* = 1


 .(6.5)

Aminimizing sequence{um} ∈ C∞o (G) is thus characterizedby theproperties∫
G

|um|p* = 1 and
∫

G

|Xum|p →
m→∞ I.(6.6)

The following is the main result about existence of global minimizers.

Theorem 6.1. LetG be a Carnot group and consider the minimization problem

(6.5). Everyminimizing sequence{um} of (6.5) is relatively compact in
o

D 1,p(G),
after possibly translating and dilating each of its elements using(6.3)and (6.4).
In particular, there exists a minimum of (6.5) and the equation

Lpu = −up*−1(6.7)

admits a non-trivial, non-negative solutionu ∈ o

D 1,p(G).

The proof of Theorem 6.1 is based on an adaptation of the method of concen-
tration of compactness of P. L. Lions [60], [61], [62], [63]. In such adaptation
the Euclidean spaceRn is replaced by a Carnot groupG with its homogeneous
structure and Carnot-Carath´eodory distance. Similarly to Lions’ cited works, in
particular [62] and [63], the crucial ingredients are the following lemmas.

Lemma 6.2. Supposeνm is a sequence of probability measures onG. There
exists a subsequence, which we denote bydνm, such that exactly one of the
following three conditions holds:
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(1)(compactness) There is a sequence(gm) ∈ G such that for everyε > 0
there existsR > 0 for which, for everym,∫

B(gm,R)

dνm ≥ 1− ε.

(2)(vanishing) For allR > 0we have

lim
m→∞

(
sup
g∈G

∫
B(g,R)

dνm

)
= 0.

(3)(dichotomy) There existsλ,0 < λ < 1 such that for everyε > 0 there
existR > 0 and a sequence(gm) with the following property: GivenR′ > R

there exist non-negative measuresν1m andν
2
m for which

0 ≤ ν1m + ν2m ≤ νm(6.8)

supp ν1m ⊂ B(gm,R), supp ν2m ⊂ G � B(gm,R
′)(6.9) ∣∣∣λ− ∫ ν1m

∣∣∣+ ∣∣∣(1− λ)−
∫

ν2m

∣∣∣ ≤ ε.(6.10)

Lemma 6.3. Supposeum ⇁ u in
o

D 1,p(G), µm = |Xum|pdH ⇁ µ, and
νm = |um|p*dH ⇁ ν weak-∗ in measure, whereµ and ν are bounded, non-
negative measures onG. There exist at most countable pointsgj ∈ G and real
numbersdj > 0, ej > 0, such that

ν = |u|p* +
∑
j

dj δgj(6.11)

µ ≥ |Xu|pdH +
∑
j

ej δgj(6.12)

Idj
p/p* ≤ ej ,(6.13)

whereI is the constant in (6.5). In particular,∑
dj

p/p* <∞.(6.14)

We mention that the implementation of Lions’ program relies, among other
things, on theRellich-Kondrachovcompact embedding. In thesub-elliptic setting
the proof of this result requires a substantial amount of work. A general version
of it was proved in [32]. It states that ifΩ denotes a boundedX-PS domain
(Poincaré-Sobolev domain) in aCarnot-Carath´eodory space, then the embedding

L1,p(Ω) ⊂ Lq(Ω)
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is compact provided that 1≤ q < p∗ = pQ/(Q− p). Here,L1,p(Ω) indicates
the Sobolev space of those functionsf ∈ Lp(Ω) such thatXf ∈ Lp(Ω),
endowed with the natural norm. Carnot groups are the basic models of Carnot-
Carathéodory spaces. We need to apply such result to an increasing sequence
of bounded domainsΩk ⊂ Ωk+1 ⊂ G, such thatΩk ↗ G. We can take as
Ωk the Carnot-Carath´eodory ball centered at the identitye ∈ G with radiusk,
since it was proved in [28], [32] that such sets areX-PS domains in any Carnot-
Carathéodory space.

For the proof of Lemmas 6.2 and 6.3, and that of Theorem 6.1, we refer the
reader to [79].

7. Existence of explicit entire solutions to the Yamabe equation on groups
of Heisenberg type

In this section we consider a special class of Carnot groups, those so-called of
Heisenberg type. Such groups were introduced by Kaplan [48] and have been
subsequently intensively studiedby several authors, see the references cited in the
introduction. We list only some of the basic properties of groups of Heisenberg
type and refer the reader to the cited references for further details.

LetG be aCarnot group of step twowhose Lie algebrag = V1⊕V2. Consider
the mapJ : V2→ End(V1) defined by

< J(ξ2)ξ
′
1, ξ

′′
1 >=< ξ2, [ξ ′1, ξ ′′1 ] >, for ξ2 ∈ V2 and ξ ′1, ξ

′′
1 ∈ V1.

(7.1)

G is said ofHeisenberg typeif for every ξ2 ∈ V2, with |ξ2| = 1, the map
J (ξ2) : V1 → V1 is orthogonal. The definition ofJ and the orthogonality
assumption respectively imply

< J(ξ2)ξ1, ξ1 >= 0, |J (ξ2)ξ1| = |ξ2| |ξ1|.(7.2)

The next properties of groups of Heisenberg type can be found in [48], [9].
For the reader’s convenience we have collected them in a lemma, whose proof
has been included for completeness.

Lemma 7.1. LetG be a group of Heisenberg type. The following formulas hold

L(|y(g)|2) = k

2
|x(g)|2(7.3)

|X(|y|2)|2 = |x|2 |y|2(7.4)

< X(|x(g)|2),X(|y(g)|2) >= 0.(7.5)
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Proof. Recalling(5.2) one sees

φ′′l (0) =
1

2

k∑
i=1

(< Yi, [ξ1, Xl] >)2 = 1

2

k∑
i=1

(< J (Yi)ξ1, Xl >)
2.

This implies in view of (7.1), (7.2)

L(|y|2) =
m∑
l=1

φ′′l (0) =
1

2

m∑
l=1

k∑
i=1

(< J (Yi)ξ1, Xl >)
2

= 1

2

k∑
i=1
|J (Yi)ξ1|2 = k

2
|x|2.(7.6)

From(5.3) one has

φ′l (0) =
k∑

i=1
< [ξ1, Xl], Yi >< ξ2, Yi >=< ξ2, [ξ1, Xl] > .(7.7)

Using (7.2) we obtain from the latter equality

|X(|y|2)|2 =
m∑
l=1

φ′l (0)
2 =

m∑
l=1

(< J (ξ2)ξ1, Xl >)
2 = |J (ξ2)ξ1|2 = |x|2 |y|2.

Finally, (4.7), (7.7), (7.1) and (7.2) imply

< X(|x|2),X(|y|2) > = 2
m∑
l=1

< ξ1, Xl >< ξ2, [ξ1, Xl] >

= 2 < J(ξ2)ξ1, ξ1 >= 0.(7.8)

This completes the proof. ��
We consider next the function introduced in (5.4)

fε(g) =
(
(ε2+ |x(g)|2)2+ 16|y(g)|2)1/4 , ε ∈ R.

Lemma 7.2. LetG be a group of Heisenberg type, then forg ∈ G one has

|Xfε(g)|2 = |x(g)|
2

fε(g)2
,

Lfε(g) = Q− 1

fε(g)
|Xfε(g)|2+ mε2

fε(g)3
.
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Proof. For ease of notation we letf = fε . Settingρ = f 4 as in the proof of
Theorem 5.3, one easily finds

|Xf |2 = 1

16f 6
|Xρ|2,(7.9)

Lf = 1

4f 3

[
Lρ − 3

4f 4
|Xρ|2

]
.(7.10)

Since

Xρ = 2(ε2+ |x|2)X(|x|2)+ 16X(|y|2),
using Lemmas 4.2 and 7.1 we obtain

|Xρ|2 = 4(ε2+ |x|2)2|X(|x|2)|2+ 162|X(|y|2)|2(7.11)

+ 64(ε2+ |x|2) < X(|x|2),X(|y|2) >
= 16(ε2+ |x|2)2|x|2+ 162|x|2|y|2
= 16|x|2 [(ε2+ |x|2)2+ 16|y|2] = 16|x|2f 4

Substitution in (7.9) gives the first part of the lemma. We compute nextLρ.
Applying Lemma 7.1 again one finds

Lρ = L ((ε2+ |x|2)2)+ 16L(|y|2) = L ((ε2+ |x|2)2)+ 8k|x|2.
On the other hand, Lemma 4.2 gives

L ((ε2+ |x|2)2) = 2|X(|x|2)|2+ 2(ε2+ |x|2)L(|x|2)
= 4(m+ 2)|x|2+ 4mε2.

Recalling that the homogeneous dimension ofG isQ = m+2k, we conclude
Lρ = 4(Q+ 2)|x|2+ 4mε2.(7.12)

Finally, replacing (7.11) and (7.12) in (7.10) we obtain the second part of the
lemma. ��

We can now give the

Proof of Theorem1.1. Withf = fε as above andε > 0, we consider the function
w = h(f ), whereh ∈ C2(R), and look for conditions onh for whichw satisfies
theYamabe type equation

Lu = −uQ+2
Q−2 .(7.13)

Using Lemma 7.2 we find
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Lw = h′′(f )|Xf |2+ h′(f )Lf(7.14)

= h′′(f )
|x|2
f 2

+ h′(f )
[
Q− 1

f
|Xf |2+ mε2

f 3

]

=
[
h′′(f )+ Q− 1

f
h′(f )

]
|Xf |2+ mε2

f 3
h′(f )

Formula (7.14) suggests that we chooseh such that

h′′(t)+ Q− 1

t
h′(t) = 0,

for eacht ∈ R. The choiceh(t) = λt2−Q, λ ∈ R, accomplishes this. Having
takenw = λf 2−Q we must now wonder whether we can satisfy (7.13) for some
value ofλ. In view of (7.14) this amounts to satisfy the equation

mε2

f 3
h′(f ) = −λ(Q+2)/(Q−2)

f (Q+2) ,

which reduces to

λ = (m(Q− 2)ε2
)(Q−2)/4

.

This completes the proof. ��

8. The Kelvin transform

In [53] Korányi introduced an inversion on the Heisenberg group and used it
to define an analogue of the Kelvin transform in such setting. Subsequently,
such inversion formula, as well as the Kelvin transform, were generalized in
[16] and [15] to all groups of Heisenberg type. The purpose of this section is
to recall the relevant definitions and establish some more properties of the CR
Kelvin transform. Such properties are particularly far reaching in the context
of Iwasawa groups, where we show that the Kelvin transform is an isometry

between the spaces
o

D 1,2(Ω) and
o

D 1,2(Ω*), whereΩ* denotes the image of
Ω under the CR inversion. This will be a useful fact in the next section when
we study equations on unbounded domains. Using the Kelvin transform, we
have obtained explicit formulas for the Poisson kernel with singularity on the
characteristic set for the gauge balls. We have also found explicit formulas for
the Poisson kernel for the bounded regions which are the conformal images of
the non-characteristic “hyperplanes" in the groupG. An interesting observation
is the different asymptotic behavior of the Poisson kernel with pole at a point on
the characteristic set and at a point outside of it.

Recall that Iwasawa type groups arise naturally as the nilpotent component
in the Iwasawa decompositionKAN of any simple group of rank one. Every
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Iwasawa group is a group of Heisenberg type. We refer the reader to [16] and
[15] for more details.

Definition 8.1. Let G be a group of Heisenberg type with Lie algebrag =
V1 ⊕ V2. For g = exp(ξ) ∈ G, with ξ = ξ1 + ξ2, the inversionσ : G∗ → G∗,
whereG∗ = G \ {e} is defined by

σ(g) =
(
−(|x(g)|2 I + 4J (ξ2)

)−1
ξ1,− ξ2

|x(g)|4+ 16|y(g)|2
)
,

where the mapJ is as in (7.1), andI denotes the identity map onV1. One easily
verifies that

σ 2(g) = g, g ∈ G∗.

As in the previous two sections, in the sequel we will use, instead of (2.2),
the renormalized gauge

N(g) = (|x(g)|4+ 16|y(g)|2)1/4,(8.1)

Kaplan proved in [48] that in a group of Heisenberg type the fundamental
solutionΓ of the sub-LaplacianL is given by the formula

Γ (g, h) = CQ N(h−1g)−(Q−2), g, h ∈ G, g "= h,(8.2)

whereCQ is a suitable constant. Equation (8.2) will play a key role in Definition
8.3 below. Writingσ(g) = exp(η), with η = η1 + η2, for the image ofg, we
easily obtain from Definition 8.1 and(7.2) that

|η1| = |ξ1|
N(g)2

, and |η2| = |ξ2|
N(g)4

(8.3)

An immediate consequence of (8.3) is that

N(σ(g)) = N(g)−1, g ∈ G∗.(8.4)

A direct verification, using (7.1) and the definition of the group dilations,
shows that the inversion anticommutes with the group dilations, i.e.,

σ(δλ(g)) = δλ−1(σ (g)), g ∈ G∗.(8.5)

A corollary of (8.5) is that starlikeness behaves well under inversion. This is
contained in the following result.

Proposition 8.2. Letρ ∈ C∞(G). The following formula holds

Z(ρ ◦ σ) = −(Zρ) ◦ σ.
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Proof. Seth(g) = ρ(σ(g)).Applying (8.5) we obtain

h(δλg)− h(g)

λ− 1
= −λρ(δλ−1σ(g))− ρ(σ(g))

λ−1− 1
, g ∈ G∗,

and taking the limitλ→ 1 finishes the proof. ��
Definition 8.3. LetG be a group of Heisenberg type, and consider a functionu

onG. The CR Kelvin transform ofu is defined by the equation

u*(g) = N(g)−(Q−2) u(σ (g)), g ∈ G∗.

WhenG is a group of Iwasawa type, then it was proved in [15] that the inver-
sion and the Kelvin transform possess various basic properties. In the following
theorem we collect the two which will be needed in the sequel.

Theorem 8.4 (see [15]).
LetG be a group of Iwasawa type. The Jacobian of the inversion is given by

d(H ◦ σ)(g) = N(g)−2Q dH(g), g ∈ G∗.

The Kelvin transformu∗ of a function satisfies the equation

Lu*(g) = N(g)−(Q+2)(Lu)(σ (g)), g ∈ G∗.

Remark 8.5.In the sequel we denote byΩ* the image of a generic domainΩ
under the inversionσ . We stress that, since we have chosen not to define the
inversion of the point at infinity, in the case in whichΩ is a neighborhood of∞,
by which we mean that there exists a ballB(e, R) such that(G \B(e, R)) ⊂ Ω,
thenΩ∗ is a punctured neighborhood of the identity, i.e.,Ω∗ = D \ {e}, for an
open setD such thate ∈ D. The reader should keep this point in mind for the
proof of the next result, as well as for the results in section nine. The following
theorem is a consequence of the conformal properties of the inversion and of
the Kelvin transform. Such result will be used in the next section in combination
with the conformal invariance of theYamabe type equation expressed by Lemma
9.1.

Theorem 8.6. TheKelvin transform isan isometrybetween
o

D 1,2(Ω)and
o

D 1,2()
Ω*.

Proof. Letu, v ∈ o

D 1,2(Ω) andu* , v* ∈ o

D 1,2(Ω*) be their Kelvin transforms.
We begin by observing that thanks to Theorem 8.4 and (8.4)∫

Ω∗
(u∗(g′))2

∗
dH(g′)

=
∫
Ω∗

[
N(g′)−(Q−2)u(σ (g′))

]2Q/(Q−2)
dH(g′)

=
∫
Ω

[
N(σ(g))−(Q−2)u(g)

]2Q/(Q−2)
N(g)−2QdH(g) =

∫
Ω

u(g)2
∗
dH(g).
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We want to show next that∫
Ω

< Xu(g),Xv(g) > dH(g) =
∫
Ω*

< Xu*(g′),Xv*(g′) > dH(g′).(8.6)

By an easy density argument it suffices to assume thatu, v ∈ C∞o (Ω). An
integration by parts shows that (8.6) is equivalent to∫

Ω

u(g) Lv(g) dH(g) =
∫
Ω*

u*(g′) Lv*(g′) dH(g′).

Using again Theorem 8.4 and (8.4) we obtain∫
Ω*

u*(g′) Lv*(g′) dH(g′)

=
∫
Ω*

N(g′)−(Q−2) u(σ (g′)) N(g′)−(Q+2) (Lv)(σ (g′)) dH(g′)

=
∫
Ω

u(g) Lv(g) N(g)(Q−2) N(g)(Q+2) N(g)−2Q dH(g)

=
∫
Ω

u(g) Lv(g) dH(g).

This completes the proof. ��
Our next task is to investigate how the CR inversion acts on various domains

which play a basic role in the geometry of Carnot groups of Heisenberg type.
Given the ubiquitous role of the Heisenberg groupHn in analysis, we begin
by deriving various explicit formulas in this special setting and then generalize
them to groups of Heisenberg type. We recall thatHn is the Lie group whose
underlying manifold isCn × R with group law

(z, t) (z′, t ′) = (z+ z′, t + t ′ + 2Im(z · z′)),(8.7)

where forz, z′ ∈ Cn we have letz · z′ = ∑n
j=1 zjz

′
j . In real coordinates a basis

for the Lie algebra of left-invariant vector fields onHn is given by

Xj = ∂

∂xj
+ 2yj

∂

∂t
, Xn+j = ∂

∂yj
− 2xj

∂

∂t
, j = 1, ..., n,

∂

∂t
.

Here, we have identifiedz = x + iy ∈ C
n, with the real vector(x, y) ∈ R2n.

Since[Xj,Xn+k] = −4δjk ∂
∂t
, the Lie algebra is generated by the systemX =

{X1, ..., X2n}. The relative sub- LaplacianL = ∑2n
j=1X

2
j is the real part of the

Kohn complex Laplacian. We recall that the exponential map is the identity and
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that, as for any group of step two, the dilations are the parabolic onesδλ(z, t) =
(λz, λ2t). The corresponding homogeneous dimension isQ = 2n + 2. The
natural gauge forHn is obtained by specializing (2.2)

|(z, t)| = (|z|4+ t2)1/4.

Wenext write the formulas for the inversion inHn, see [53]. LetA = |z|2+ it

so thatAĀ = |(z, t)|4. The inversion of a point(z, t) is given by

(w, τ) = σ(z, t)
def= (− z

Ā
, − t

AĀ

)
.

The expression of the inversion in the real variables is

u = −|z|
2x − ty

|z|4+ t2
, v = −|z|

2y + tx

|z|4+ t2
, τ = − t

|z|4+ t2
,(8.8)

wherew = u + iv. We now introduce some unbounded regions which play an
interesting role in the analysis ofHn.

Definition 8.7. GivenM,b ∈ R, we call the open sets

C+M,b = {(z, t) ∈ H
n | t > M|z|2+ b}

and

C−M,b = {(z, t) ∈ H
n | t < −M|z|2+ b}

characteristic cones. The cone is called convex ifM ≥ 0, concave ifM < 0.
WhenM = 0we use the notationH±

b to indicate the characteristic half-spaces

C+0,b = {(z, t) ∈ H
n | t > b}, C−0,b = {(z, t) ∈ H

n | t < b}.

The boundaries of such half-spaces are called characteristic hyperplanes.

A simple computation shows that a characteristic coneC±M,b has the isolated
characteristic point(0, b) on the group center. Using the left-translations (8.7)
one sees thatC±M,b = (0, b) C±M,0. It is worth mentioning that the concave cone
C±M,0, withM < 0 suitably chosen, is precisely the region for which D. Jerison
[43] produced the counterexample to the boundedness of the horizontal gradient
referred to in the introduction. We will further comment on this example subse-
quently, when we prove Theorem 9.5. Our next task is to compute the images of
the convex characteristic cones inHn under the inversion. We only consider the
conesC+M,b, the obvious modifications forC

−
M,b being left to the reader.
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Proposition 8.8. Letσ be the inversion onHn definedby (8.8). For everyM ≥ 0,
b > 0, defineε = √M/2b, R = ((M2+ 1)/4b2)1/4, and consider the set

ΩR,ε = {(z, t) ∈ H
n | (|z|2+ ε2)2+ t2 < R4}.

One has

σ(C+M,b) = (0,− 1

2b
) ΩR,ε = {(z, t) ∈ H

n | (|z|2+ ε2)2+ (t + 1

2b
)2 < R4}.

In particular, the image through the inversion of the characteristic half-space
H+

b = {(z, t) ∈ H
n | t > b} is the gauge ballB((0,− 1

2b )) = {(z, t) ∈ H
n |

|z|4+ (t + 1
2b )

2 < R4}.
Remark 8.9.Several comments are in order. First, it is obvious from the defi-
nition thatε2 < R2. Secondly, the setsΩR,ε are precisely the level sets of the
Jerison-Lee minimizers (1.3) and of their generalizations introduced in (5.5), if
in the latter we neglect the immaterial factor 16. In the statement of the proposi-
tion we deliberately did not consider the caseb ≤ 0. The reason for this is that
whenb ≤ 0, then the group identity is either contained inΩR,ε (b < 0), or it
belongs to its boundary (b = 0). The image through the inversion would not be
a bounded domain and we are not interested in such situation.

Proof. It follows from straightforward computations using (8.8). ��
We next use the Kelvin transform and Proposition 8.8 to derive an explicit

formula for the Poisson kernel of the gauge ball inH
n with singularity at one of

the two characteristic points on the boundary. We thank A. Koran´yi for bringing
to our attention that a similar formula already appeared in [40] and that related
(but different) formulas are contained in [56] and also in the unpublished notes
[55].

Theorem 8.10.Consider that gauge ballB(e, R) ⊂ Hn centered ate = (0,0)
with radiusR > 0 and denote byg±o = (0,±R2) the only two characteristic
points. The Poisson kernel for the Kohn sub-Laplacian with singularity at the
pointg±o is given by

P(g, g±o ) = RQ−2 R4− |g|4
|g−1 g±o |(Q+2)

, where g = (z, t).

Proof. We only prove the formula for the pointg+o = (0, R2), the other case
being treated similarly. Consider the gauge ballB((0,−R2), R). In view of
Proposition 8.8 such ball is the image through the inversion of the characteristic
half-spaceH+

b = {(z, t) ∈ Hn | t > b} with b = 1
2R2 . The functionw(z, t) =

t − b is a non- negativeL-harmonic function inH+
b which vanishes on the

boundary. Since the point at infinity inH+
b is mapped into the characteristic
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point e ∈ ∂B((0,−R2), R), in virtue of Theorem 8.4 we conclude that the
Kelvin transformw∗ of w is non-negative andL-harmonic inB((0,−R2), R).
A simple calculation gives

w∗(z, t) = 1

2R2

R4− (|z|4+ (t + R2)2)

|(z, t)|Q+2 , (z, t) ∈ B((0,−R2), R).

Left-translating by(0,−R2) we obtain a non-negativeL-harmonic function
in B(e, R)

u(z, t) = 1

2R2

R4− (|z|4+ t2)

|(z, (t − R2))|Q+2 ,
which vanishes everywhere on∂B(e, R) except atg+o . Using the notationg =
(z, t) we consider the normalized function

P(g, g+o ) = RQ−2 R4− |g|4
|g−1g+o |Q+2

which has the same properties ofu plus the additional oneP(e, g+o ) = 1. Ac-
cording to the definition introduced in [10],P(g, g+o ) is thus a kernel function
for L andB(e, R), normalized ate and with pole atg+o . On the other hand it was
proved in [10], Corollary 1.1, that the gauge balls areX-NTA domains, and that
moreover, Theorem 4.11, for such domains there is uniqueness of the normalized
kernel function. This concludes the proof of the theorem. ��
Remark 8.11.The explicit representation ofP(g, g+o ) sheds light on a striking
new phenomenon. As it is well known, the standard Poisson kernelP(x, xo)

for the unit ballB ⊂ Rn has the following property: If one considers a non-
tangential region (a Euclidean cone) with vertex atxo ∈ ∂B, Γα(xo), then there
exist constantsC1, C2 > 0, depending onn, α, such that forx ∈ Γα(xo)

C1

|x − xo|n−1 ≤ P(x, xo) ≤ C2

|x − xo|n−1 .
Guided by these considerations one might be led to conjecture that an analo-

gous asymptotic behavior should hold, wheren−1 be replaced byQ−1 and the
Euclidean distance by the Carnot- Carath´eodory one. Such intuition, however,
is only correct away from the characteristic set. As Theorem 8.10 shows, there
exist non-negativeL-harmonic functions in the gauge ballB(e, R)which vanish
everywhere on the boundary but at one single characteristic pointg+o , and whose
non-tangential behavior nearg+o is

C1

d(g, g+o )Q
≤ P(g, g+o ) ≤

C2

d(g, g+o )Q
.(8.9)

This shows that the presence of characteristic points causes a sudden jump
in the rate of blow-up near a singular boundary point forL-harmonic functions.
We plan to return to these and related questions in a forthcoming paper.
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We next consider thePoisson kernel for another family of domains of interest,
namely thenon-characteristic half-spaces. Similarly to what was done in Defini-
tion 8.7, these domains are introduced in a natural way in the Heisenberg group.
Their definition can then be extended to any Carnot group of step two. Since
in this paper we are not concerned with non- characteristic domains, in what
follows we confine ourselves to describe one particular, yet significant, example.
We consider in the Heisenberg group the half-space parallel to the center

Πa,b = {(x, y, t) ∈ H
n | < x,a> + < y,b > > 1},

wherea,b ∈ R
n are fixed so that|a|2 + |b|2 "= 0. Denoting withρ(x, y, t) =

1− < x,a > + < y,b > the defining function ofΠa,b one easily sees that
|Xρ(x, y, t)|2 = |a|2 + |b|2 "= 0, hence this half-space has no characteristic
points on its boundary. We indicate withΠ∗

a,b the image ofΠa,b through the
inversion (8.8). Since the point at infinity is on∂Πa,b, the group identitye belongs
to ∂Π∗

a,b. If we consider the function

w(x, y, t) =< x,a> + < y,b > −1,
then by Lemma5.2w isL-harmonic inΠa,b, and non-negative.As a consequence
of Theorem 8.4 the Kelvin transform ofw,w∗, has the same properties. Further-
more, it vanishes everywhere on∂Π∗

a,b except ate. An elementary computation
gives

w∗(x, y, t)

= −|z|
4+ t2+ |z|2(< x,a> + < y,b >)+ t (< x,b > − < y,a>)

|(z, t)|Q+2 .

From this formula one easily obtains forg = (z, t) = (x, y, t) for a constant
C = C(a,b) > 0

w∗(g) ≤ C
d(g, e)3(1+O(d(g, e))

d(g, e)Q+2
≤ C

d(g, e)Q−1
,(8.10)

asd(g, e)→ 0, g ∈ Π∗
a,b. A comparison of this estimates with (8.9) underlines

the strikingly different behavior of non-negativeL−harmonic functions near a
singular boundary point, depending on whether the latter is characteristic or not.

After this excursion into the Heisenberg group we return to the setting of
groups of Heisenberg type. Our first objective is to introduce an appropriate
notion of cones and half-spaces in a Carnot group. This can be done in a natural
waybymeansof theexponentialmap, or insteadworkingdirectly on thegroupby
exploiting its homogeneous structure. This latter approach was fully developed
in [10]. Below, we will use the former approach. Given a pointg ∈ G we will
continue to denotewithx(g) = (x1(g), ..., xm(g)) andy(g) = (y1(g), ..., yk(g))

the projection of the exponential coordinates ofg on the first and second layer of
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the Lie algebrag. We indicate withRk+ the cone{(y1, ..., yk) ∈ R
k | yi ≥ 0, i =

1, ..., k}.
Definition 8.12. LetG be a Carnot group of step two. GivenM,b ∈ R, and
a ∈ Rk \ {0}, we call the open sets

C+M,b,a = {g ∈ G |< y(g),a > > M|x(g)|2+ b}
and

C−M,b,a = {g ∈ G |< y(g),a > < −M|x(g)|2+ b}
characteristic cones. In the case in whicha ∈ R

k+ \ {0}, then we call the cone
convex ifM ≥ 0, concave ifM < 0. WhenM = 0 we use the notationH±

b,a to
indicate the characteristic half-spaces

C+0,b,a = {g ∈ G |< y(g),a > > b}, C−0,b,a = {g ∈ G |< y(g),a > < b}.
The boundaries of such half-spaces are called characteristic hyperplanes.

We next consider the analogue of Proposition 8.8 for convex cones in groups
of Heisenberg type. Again, we only describe the images ofC+M,b,a.

Proposition 8.13. LetG be a group of Heisenberg type with the inversion as
in Definition 8.1. For everyM ≥ 0, b > 0,a ∈ Rk+ \ {0}, defineε =

√
M/2b,

R2 = √16M2+ |a|2/8b, and consider the set
ΩR,ε = {g ∈ G | (|x(g)|2+ ε2)2+ 16|y(g)|2 < R4}.

One has

σ(C+M,b,a) = (0,− a
32b

) ΩR,ε

=
{
g ∈ G | (|x(g)|2+ ε2)2+ 16|y(g)+ a

32b
|2 < R4

}
.

In particular, the image through the inversion of the characteristic half-space
H+

b,a = {g ∈ G |< y(g),a > > b} is the gauge ballB((0,− a
32b ), R) = {g ∈

G | |x(g)|4+ ∣∣y(g)+ a
32b

∣∣2 < R4}.
Proof. We begin by observing that from their definitions one immediately sees
that ε2 < R2. Let g = (x, y) andh = σ(g) = (x∗, y∗). If h ∈ C+M,b,a, from
Definition8.1and (8.3)wesee that thecoordinatesofgmust satisfy the inequality

|x|4+ 16|y|2+ M

b
|x|2+ 1

b
< y,a> < 0.
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By elementary calculations the latter is easily seen equivalent to(
|x|2+ M

2b

)2

+ 16
∣∣∣y + a

32b

∣∣∣2 <
16M2+ |a|2

64b2
.

From this the theorem easily follows. One only needs to remember that the
Baker-Campbell-Hausdorff formula gives for the group law in exponential co-
ordinatesg = (x, y), g′ = (x ′, y ′)

g g′ = (x + x ′, y + y ′)+ 1/2[(x, y), (x ′, y ′)].
This gives in particular

(0, y) g′ = (x ′, y + y ′).

��
We next obtain an analogue of Theorem 8.10 for groups of Iwasawa type.

Theorem 8.14.LetG be a group of Iwasawa type and consider a gauge ball
B(e, R). The characteristic setΣ of B(e, R) is a sphere contained in the sub-
manifold{g ∈ G | x(g) = 0}. Furthermore, for anygo = (0,a) ∈ Σ , a ∈ Rk,
the Poisson kernel with singularity atgo is given by

P(g, go) = RQ−2 R4−N(g)4

N(g−1go)(Q+2)
(8.11)

Proof. Let ρ(g) = |x(g)|4+ 16|y(g)|2 so thatB(e, r) = {g ∈ G | ρ(g) < R4}.
Settingε = 0 in (7.11) we obtain

|Xρ(g)|2 = 16|x(g)|2 ρ(g) = 16R4 |x(g)|2.
The latter equation implies the claim aboutΣ since

Σ = {g ∈ ∂B(e, R) | |Xρ(g)| = 0} = {g ∈ G | x(g) = 0, |y(g)|2 = R4

16
}.

Consider nowgo ∈ Σ , so thatgo = (0,a)with |a|2 = R4

16 . The left-translation
by (0,−a) sendsB(e, R) to the gauge ballB((0,−a), R), and the pointgo to
the group identitye. According to Proposition 8.13 the ballB((0,−a), R) is the
image through the inversion of the characteristic hyperplaneH+

b,a, with b = 1
32.

Thanks to Lemma 5.2 the supporting function

w(g) =< y(g),a> −b
of H+

b,a is a non-negativeL-harmonic function which vanishes on the boundary.
Consider the Kelvin transform ofw,

w∗(g) = −N(g)−(Q+2) [< y(g),a> +bN(g)4]
= 1

32

R4− (|x(g)|4+ 16|y(g)+ a|2)
N(g)Q+2

,
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see Definition 8.3. Due to Theorem 8.4w∗ is L-harmonic and non-negative in
B((0,−a), R).We left-translate this function toB(e, R) usinggo and normalize
the resulting function, denoted byP(g, go), so that it has value one ate. One
easily finds

P(g, go) = RQ−2 R4− (|x(g)|4+ 16|y(g)|2)
(|x(g)|4+ 16|y(g)− a|2)Q+2 .

At this point the conclusion of the proof follows the same argument of the
proof of Theorem 8.10. ��

9. Non-existence of positive solutions to the Yamabe equation in
unbounded domains

We are interested in deriving some non-existence results for{
Lu∗ = −(u∗)(Q+2)/(Q−2)
u∗ ∈ o

D 1,2(Ω∗), u∗ ≥ 0,
(9.1)

with Ω∗ an unbounded open set in an Iwasawa type groupG. As in the case
of bounded domains, in order to show non-existence of positive solutions some
assumption on the domain are needed.

Let G be an Iwasawa group andΩ* be an unbounded open set. Using the
Kelvin transform we will reduce the problem to one on a bounded domain,
where we can apply Theorem 5.1. ByΩ we denote the image of the open setΩ*
under the inversion with center at the identitye. We recall Remark 8.5. We also
note that since problem (9.1) is translation invariant we can by left- translation
sendΩ∗ to another conveniently chosen unbounded domain. If the complement
of Ω∗ contains a ball we can thus suppose from the beginning that such ball
is centered at the group identitye. Furthermore, by a simple rescaling we can
without restriction assume that the radius of the ball be one. We start with a
simple, yet crucial, lemma.

Lemma 9.1. Letu be a solution of{
Lu = −up
u ∈ o

D 1,2(Ω), u ≥ 0,
(9.2)

and denote byu* its Kelvin transform. Thenu* satisfies

Lu∗(g) = −N(g)p(Q−2)−(Q+2) u∗(g)p g ∈ Ω∗.(9.3)

In particular, whenp = Q+2
Q−2 we conclude that ifu satisfies problem (4.1),

thenu* is a solution of (9.1) inΩ*.
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Proof. Letu be a solution to (9.2). FromTheorem 8.6 we knowu∗ ∈ o

D 1,2(Ω∗).
Consider an arbitrary functionψ ∈ C∞o (Ω∗), then we can writeψ = φ∗, for
someφ ∈ C∞o (Ω). Integrating by parts and applying Theorem 8.4 gives∫

Ω*

< Xu*(g′),Xψ(g′) > dH(g′) =
∫
Ω*

< Xu*(g′),Xφ*(g′) > dH(g′)

= −
∫
Ω*

u*(g′)Lφ*(g′)dH(g′)

= −
∫
Ω*

N(g′)−2Qu(σ(g′))Lφ*(σ (g′))dH(g′)

= −
∫
Ω

u(g)Lφ(g)dH(g) =
∫
Ω

< Xu(g),Xφ(g) > dH(g)

=
∫
Ω

u(g)pφ(g)dH(g),

where in the last equality we have used the fact thatu is a solution to (9.2). We
now make the change of variableg = σ(g′), g′ ∈ Ω∗, and use Theorem 8.4
again to obtain∫

Ω

u(g)pφ(g)dH(g) =
∫
Ω*

u(σ(g′))pφ(σ (g′))N(g′)−2QdH(g′)∫
Ω*

u*(σ (g′))pφ*(σ (g′))N(g′)(Q−2)p−(Q+2)dH(g′).

In conclusion we have found∫
Ω*

< Xu*(g′),Xψ(g′) > dH(g′)

=
∫
Ω*

u*(σ (g′))pφ*(σ (g′))N(g′)(Q−2)p−(Q+2)dH(g′).

By the arbitrariness ofψ ∈ C∞o (Ω∗), (9.3) follows. ��
In the following theorem we show that ifu∗ is a solution to (9.1) in a neigh-

borhood of infinity (see Remark 8.5), then the Kelvin transform ofu∗ has a
removable singularity at the group identitye.

Theorem 9.2. LetG be an Iwasawa group. Suppose thatu* is a solution of (9.1)
in Ω*, with Ω* a neighborhood of infinity. Letu be the Kelvin transform ofu*
defined inΩ, then the group identitye is a removable singularity, i.e.,u can
be extended as a smooth function in a neighborhood ofe where the equation is
satisfied.
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Proof. Due to the assumptions onΩ∗ we can writeΩ = D \ {e}, whereD
is a bounded open set containinge. Theorem 8.6 implies thatu ∈ o

D 1,2(Ω),
moreover from Lemma 9.1 (with the roles ofu andu∗ reversed) we know thatu
satisfies (4.1) inΩ, hence for everyψ ∈ C∞o (D \ {e}) one has∫

D

< Xu,Xψ > dH =
∫
D

u2*−1ψdH.(9.4)

According to Theorem2.4we havecap2({e}) = 0, therefore thanks to Propo-
sition 2.5 we can find a sequence of functionsζk ∈ C∞o (D \ {e}) such that
0 ≤ ζk ≤ 1, ζk(g)→ 1 for everyg ∈ D \ {e}, and for which∫

D

|Xζk|2dH → 0,(9.5)

ask → ∞. We fix φ ∈ C∞o (D) arbitrarily. For everyk ∈ N one hasφζk ∈
C∞o (D \ {e}), and therefore we obtain from (9.4)∫

D

u2*−1φζkdH =
∫
D

< Xu,X(φζk) > dH

=
∫
D

ζk < Xu,Xφ > dH +
∫
D

φ < Xu,Xζk > dH.

Sinceu ∈ o

D 1,2(Ω) ⊂ D1,2(D) we can apply Lebesgue dominated conver-
gence theorem to conclude, using (9.5),∫

D

< Xu,Xφ > dH =
∫
D

u2*−1φdH.(9.6)

The arbitrariness ofφ ∈ C∞o (D) shows that the identity is a removable
singularity. This completes the proof. ��

The above results imply non-existence of positive solutions for unbounded
domainsΩ∗ whose image through the inversion,Ω, is a bounded punctured
domain which fulfills the geometric assumptions in Theorem 3.7.

Theorem 9.3. LetG be a group of Iwasawa type. Consider aC∞ unbounded
open setΩ∗ ⊂ G and denote byΩ its image through the inversion. Suppose
that Ω = D \ {e}, whereD is a bounded open set, containing the identity,
which satisfies all the hypothesis in Theorem 5.1. In this situation there exists no
solution to problem (9.1) inΩ∗, other thanu∗ ≡ 0.
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Proof. We argue by contradiction and suppose the existence of a non- trivial
solutionu∗ to (9.1) inΩ∗. Consider the Kelvin transformu defined inΩ. By

Theorem 8.6 we know thatu ∈ o

D 1,2(Ω). Moreover, Lemma 9.1 guarantees that
u is a non-trivial solution to problem (4.1) inΩ.At this point we invokeTheorem
9.2 to conclude thatu has a removable singularity ate. We can thus extendu to
a non-trivial solution to (4.1) in the wholeD. But this is in contradiction with
Theorem 5.1, therefore we must haveu∗ ≡ 0. ��

To illustrate the scope of Theorem 9.3 we present an interesting application
of it.

Corollary 9.4. LetG be a group of Iwasawa type and consider the unbounded
domainΩ∗ = {g ∈ G | N(gg−1o ) > R}, whereN is the gauge in (8.1),go ∈ G

andR > 0 are fixed. There exist no non-trivial solution to (9.1) inΩ∗.
Proof. By left-translation and rescaling we can suppose thatgo = e, R = 1. In
this situation, it is easy to verifyΩ∗ is mapped by the inversion inD = Ω \ {e},
whereΩ = {g ∈ G | N(g) < 1}. To complete the proof it is enough to observe
that, as it was proved in Theorem 5.3 (caseε = 0), the domainΩ fulfills the
assumptions in Theorem 5.1. ��

We finally consider a notable class of unbounded domains with non- compact
boundary, the convexcharacteristic cones, andprove that thesesetsdonot support
non-trivial solutions to theYamabe problem(9.1).

Theorem 9.5. Consider a group of Iwasawa typeG. Let C±M,b,a ⊂ G be a
convex characteristic cone as in Definition 8.12. There exists no solution to(9.1)
in Ω∗ = C+M,b,a, other thanu ≡ 0. In particular, there exist no non-trivial
solutions for the characteristic half-spacesH±

b,a.

Proof. Supposeu∗ is a non-trivial solution to (9.1) inC+M,b,a and denote byu its
Kelvin transform. In view of Proposition 8.13,u is defined in(0,− a

32b ) ΩR,ε ,
whereΩR,ε is the domain in (5.5), withR andε specified as in Proposition 8.13.
By left- translation we obtain a new non-trivial function, which for simplicity we
continue to denote withu, defined in the bounded open setΩR,ε . From Theorem

8.6 we infer thatu ∈ o

D 1,2(ΩR,ε). Thanks to Lemma 9.1 we know thatu is a
non-trivial solution to problem (4.1) inΩR,ε . At this point we invoke Theorem
5.3 to reach a contradiction. The proof is thus completed. ��
An open problem.In closing, we remark an interesting open question connected
with Theorem 9.5. We do not know whether the concave characteristic cones
introduced in Definition 8.12 admit non-trivial solutions to the problem (9.1).
We emphasize that, interestingly, the approach taken in this paper brakes down
for these unbounded regions. To illustrate why, we focus on the model case of
the Heisenberg groupHn, and consider the concave characteristic cone

C−M,1 = {(z, t) ∈ H
n | t > −M|z|2+ 1},
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with M > 0. Using (8.8) one easily sees thatC−M,1 is mapped through the
inversion into the bounded region

ΛM = {(z, t) ∈ H
n | (|z|2− M

2
)2+ (t + 1

2
)2 <

M2+ 1

4
}.

Letting ε2 = M
2 , R

4 = M2+1
4 , it is then clear that

ΛM = (0,−1

2
) ΛR,ε,

whereΛR,ε denotes theC∞ bounded open set

ΛR,ε = {(z, t) ∈ H
n | (|z|2− ε2)2+ t2 < R4}, 0< ε < R.

Performing a left-translation we are thus reduced to analyzingΛR,ε . Such
set differs fromΩR,ε defined in (5.5) since its defining function contains the
term−ε2, instead of+ε2. Elementary calculations prove that, lettingρ(z, t) =
(|z|2− ε2)2+ t2, then

|Xρ(z, t)|2 = 16R4|z|2,
on ∂ΛR,ε , so that the characteristic set ofΛR,ε is given byΣ = {(0,±√
R4− ε4)}. SinceΛR,ε has cylindrical symmetry by Theorem 5 in [10] we

infer that it is aX-NTA domain and therefore, in particular, condition (4.2) is
satisfied. Denoting byZ the infinitesimal generator of the group dilations one
easily finds for(z, t) ∈ ∂ΛR,ε

Zρ(z, t) = 4(R4− ε4)+ 4ε2|x|2 ≥ 4(R4− ε4) > 0,

which proves thatΛR,ε is uniformly starlike according to Definition 3.6. At this
point suppose for a moment thatΛR,ε satisfy the condition (4.12) in a neighbor-
hood of the two isolated characteristic points. We could then apply the theory
developed in section four and conclude in view of Theorem 5.1 that there exists
no non-trivial solution to (4.1) inΛR,ε . Via inversion and Kelvin transform, such
result would imply an analogous non-existence result for the concave character-
istic coneC−M,1. However, as we will now show, the assumption (4.12) cannot be
fulfilled for the domainΛR,ε . This amounts to say that we cannot prove, follow-
ingTheorems 4.6 and 4.7, that for a solutionu to (4.1) inΛR,ε one hasXu andZu
bounded near a characteristic point. The counterexample of D. Jerison referred
to in the introduction provides evidence that this obstruction is not merely a fault
of our method, but rather is deeply connected with the lack of “convexity" near
the characteristic set. Our condition (4.12) thus rule out the non-convex cones.

To complete our discussion we then turn to proving that (4.12) fails. The
following calculations are a special case of those in the proof of Theorem 5.3
and we thus omit all details. Withρ as above we find

Lρ(z, t) = (8n+ 12)|z|2− 8nε2.
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On the other hand we have withψ(z, t) = |z|2
< Xρ,Xψ > (z, t) = 8|z|2(|z|2− ε2).

Sinceε > 0 from these formulas one easily verifies that for noM1 > 0 and
δ > 0 it is possible to satisfy the inequality

Lρ ≥ 2

M1
< Xρ,Xψ >

in a δ-neighborhood of one of the two characteristic points ofΛR,ε .

10. Appendix: A priori estimates in Lebesgue spaces

In this section we establish those basic regularity results on which the work of
the previous sections rests.Although we could have worked in a far more general
setting we have chosen to confine the attention to the model problem{

Lpu =∑m
i=1Xj(|Xu|p−2Xju) = −up∗−1

u ∈ o

D 1,p(Ω), u ≥ 0.
(10.1)

since the latter is particularly interesting from thegeometric viewpoint.Hereafter,
Ω indicates an open set (not necessarily bounded) in a Carnot groupG. By a

weak solution to (10.1) we mean a functionu ∈ o

D 1,p(Ω) such that for every
φ ∈ C∞o (Ω) ∫

Ω

|Xu|p−2 < Xu,Xφ > dH =
∫
Ω

up
∗−1φdH.(10.2)

Thanks to the embedding (1.1), in definition (10.2) it is possible to replace

the requestφ ∈ C∞o (Ω)with the weaker oneφ ∈ o

D 1,p(Ω).Wewant to establish
the following regularity result.

Theorem 10.1.Let 1 < p < Q and suppose thatu be a weak solution to the
problem (10.1), thenu ∈ L∞(Ω).

The proof of Theorem 10.1 is based on the following global result which
extends the localL∞ estimates in [7].

Lemma 10.2. Letu ∈ o

D 1,p(Ω) be a weak solution to the equation

m∑
i=1

Xi(|Xu|p−2Xiu) = −V |u|p−2u in Ω,(10.3)

whereV ∈ LQ/p(Ω) ∩ Lt(Ω) for somet > Q

p
. Thenu ∈ L∞(Ω).
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Remark 10.3.We note explicitly that thanks to the embedding (1.1), even when

V ∈ L
Q
p (Ω) in Lemma 10.2, it is still possible to allow test functionsφ ∈

o

D 1,p(Ω) in the weak formulation (10.2). It is clear that whenΩ is bounded the
hypothesisV ∈ LQ/p(Ω) in Lemma 10.2 is superfluous.

We do not present the proof of Lemma 10.2 since it consists essentially
in a suitable modification of the test function and truncation ideas introduced
in Serrin’s seminal paper [70], and subsequently generalized to the subelliptic
setting in [7], and also in different forms in [37], [38], [64], [80]. The reader can
consult the paper [36] for the proof of a related result in the Euclidean setting.
With Lemma 10.2 in hands we turn to the

Proof of Theorem 10.1. We rewrite the equation in the form (10.3), withV =
up

∗−p. Since by (1.1) one hasV = up
∗−p ∈ LQ/p(Ω), in order to apply Lemma

10.2 it suffices to prove that there existst > Q

p
such thatV ∈ Lt(Ω), which is

equivalent to proving thatu ∈ Ls(Ω) for somes > p∗. To establish this we let
α = p∗

p′ and notice that
α

p−1 = p∗
p
> 1. For everyj ∈ Nwe consider the function

Hj(t) =
{
sign t |t | α

p−1 if |t | ≤ j,
α

p−1j
α

p−1−1t + (1− α
p−1)j

α
p−1 if |t | > j,

and define

φj (t) =
∫ t

0
H ′
j (s)

pds.

It is easy to verify thatφj ∈ C1(R), and that there exists a constantΦ > 0,
independent ofj , such that for everyt ∈ R

0 ≤ φ′j (t) ≤ Φ, ||t |p−1φj (t)| ≤ Φ|Hj(t)|p.(10.4)

Since by assumptionu ∈ Lp∗(Ω), there exists a numberM > 0 such that

ΦSp

(∫
ΩM

up
∗
dH

) p∗−p
p∗ ≤ 1

2
,(10.5)

whereΩM = {x ∈ Ω | u(x) > M}. The chain rule in [32] givesHj(u), φj (u) ∈
o

D 1,p(Ω). We thus obtain from (1.1) and (10.2)(∫
Ω

|Hj(u)|p∗dH
) p

p∗ ≤ Sp

∫
Ω

|X(Hj(u))|pdH

= Sp

∫
Ω

|Xu|p−2 < Xu,X(φj (u)) > dH = Sp

∫
Ω

up
∗−1φj (u)dH

≤ SpΦ

∫
ΩM

up
∗−p|Hj(u)|pdH + SpΦMp∗−p

∫
Ω\ΩM

|Hj(u)|pdH,
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where in the last inequality we have used (10.4). We next exploit (10.5) to find

SpΦ

∫
ΩM

up
∗−p|Hj(u)|pdH

≤ SpΦ

(∫
ΩM

up
∗
dH

) p∗−p
p∗

(∫
Ω

|Hj(u)|p∗dH
) p

p∗

≤ 1

2

(∫
Ω

|Hj(u)|p∗dH
) p

p∗
.

Substitution in the previous inequality finally gives

(∫
Ω

|Hj(u)|p∗dH
) p

p∗ ≤ 2SpΦMp∗−p
(∫

Ω

|Hj(u)|pdH
) 1

p

SinceHj(u) converges increasingly anda.e. tou
α

p−1 , by Fatou and Lebesgue
dominated convergence theorems we infer lettingj →∞

(∫
Ω

u
αp∗
p−1dH

) p

p∗ ≤ 2SpΦMp∗−p
(∫

Ω

uαp
′
dH

) 1
p

By our choice,αp′ = p∗, so that the right-hand side of the latter inequality
is finite. We have thus proved thatu ∈ Ls(Ω) with s = αp∗

p−1 = (p∗)2
p

> p∗. This
completes the proof. ��

The next result is an interesting consequence of Theorem 10.1. It provides a
delicateL∞ estimate on metric balls for weak solutions to (10.1). Such estimate
is achieved by combining several ideas which, in the casep = 2 are present
in the works of Moser [65] and Trudinger [76]. Although we do not make any
direct use of Theorem 10.4 in this paper, we have nonetheless decided to insert
such result in this appendix because of its independent interest.

Theorem 10.4.Letubeanonnegative solution to theproblem (10.1).Weassume
thatu has been extended with zero outsideΩ. Suppose thats ≥ p is an exponent
such thatu ∈ Ls(Ω), with ||u||Ls(Ω) depending only on||u||D1,p(Ω). There exists
C = C(G, p, ||u||D1,p(Ω)) > 0 such that for everyx ∈ G

ess sup u
B(x,1)

≤ C

(
1

|B(x,2)|
∫
B(x,2)

usdH

) 1
s

.(10.6)

In particular, we can takes = p∗ in the above inequality.
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Proof. Given a functionα ∈ C∞o (G), α ≥ 0, forγ ≥ 1 we consider the function

φ = αpuγ ∈ o

D 1,p(Ω). Usingφ as a test function in (10.2) we find∫
Ω

αpuγ+p
∗−1dH = γ

∫
Ω

αpuγ−1|Xu|pdH

+p
∫
Ω

αp−1uγ |Xu|p−2 < Xu,Xα > dH.

At this point we chooseγ = s − p + 1 to obtain∫
Ω

αpus+p
∗−pdH = (s − p + 1)

∫
Ω

αpus−p|Xu|pdH

+p
∫
Ω

αp−1us−p+1|Xu|p−2 < Xu,Xα > dH

≥
∫
Ω

αp|Xu|p−2 < Xu,X(us−p+1) > dH

−p
∫
Ω

αp−1us−p+1|Xu|p−1|Xα| dH.(10.7)

NowYoung’s inequality gives∫
Ω

αp−1us−p+1|Xu|p−1|Xα| dH(10.8)

=
∫
Ω

αp−1u
s−p
p′ |Xu|p−1u s

p |Xα| dH

≤
(∫

Ω

us−pαp|Xu|pdH
) 1

p′
(∫

Ω

us |Xα|pdH
) 1

p

≤ ε

p′

∫
Ω

αpus−p|Xu|pdH + 1

εp

∫
Ω

us |Xα|pdH,

whereε > 0 is arbitrary. Substituting (10.8) in (10.7), and choosingε = 1
p
, we

find ∫
Ω

αpus+p
∗−pdH ≥ (s − p + 1)

∫
Ω

αpus−p|Xu|pdH(10.9)

− ε(p − 1)
∫
Ω

αpus−p|Xu|pdH − 1

ε

∫
Ω

us |Xα|pdH

≥ [s − p + 1

p
]
∫
Ω

αpus−p|Xu|pdH − p

∫
Ω

us |Xα|pdH

≥ 1

p

∫
Ω

αpus−p|Xu|pdH − p

∫
Ω

us |Xα|pdH.

Let nowψ = u
s
p , so that|Xψ |p =

(
s
p

)p
us−p|Xu|p. We obtain from (10.9)
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∫
Ω

αp|Xψ |pdH ≤ p

∫
Ω

αpup
∗−p+sdH + p2

∫
Ω

us |Xα|pdH.(10.10)

For x ∈ G we now consider 1≤ r < R ≤ 2 and letα ∈ C∞o (B(x, R))

be such thatα ≡ 1 in B(x, r) and |Xα| ≤ C
R−r . Applying (1.1) one has with

θ = p∗
p
> 1

(∫
B(x,r)

uθsdH

) 1
θ

=
(∫

B(x,r)

ψp∗dH

) p

p∗ ≤ Sp

∫
B(x,R)

|X(αψ)|pdH
(10.11)

≤ 2p
(∫

B(x,R)

αp|Xψ |pdH +
∫
B(x,R)

ψp|Xα|pdH
)

≤ 2p
(
p

∫
Ω

αpup
∗−p+sdH + (p2+ 1)

∫
Ω

us |Xα|pdH
)

≤ 2p
(
p||u||p∗−pL∞(Ω)

∫
Ω

αpusdH + (p2+ 1)
∫
Ω

us |Xα|pdH
)

In the second to the last inequalitywehave inserted (10.10),whereasTheorem
10.1 has been used in the last. From (10.11) we conclude the existence ofK =
K(G,p, ||u||L∞(Ω)) > 0 such that

(∫
B(x,r)

uθsdH

) 1
θ

≤ K

(R − r)p

∫
B(x,R)

usdH.

Assuming the finiteness of the integral in the right-hand side of the latter
inequality, Moser’s iteration procedure finally gives (10.6). ��

Theorem 10.4 has several interesting consequences. We only list the most
direct one.

Corollary 10.5. LetΩ ⊂ G be an unbounded open set. Ifu is a solution to
(10.1), then

lim
g∈G, d(g,e)→∞

u(g) = 0.

Proof. Immediate consequence of Theorem 10.4 and of the assumptionu ∈
Lp∗(Ω). ��

The next result is a theorem of unique continuation for non- negative weak
solutions to equations with critical growth. In the Euclidean setting and for lin-
ear equations a result of this kind was first observed in [13]. A version for the
Heisenberg group was obtained in [31].
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Theorem 10.6.LetΩ ∈ G be an open set and for1< p < Q let u ∈ L1,p
loc (Ω)

be a nonnegative weak solution of the equation

m∑
i=1

Xi(|Xu|p−2Xiu) = −V up−1 in Ω,

with V ∈ LQ/p(Ω). There exist δ = δ(G, ||V ||LQ/p(Ω))

> 0 and C = C(G, ||V ||LQ/p(Ω)) > 0 such that for everyB(g,2r) ⊂ Ω

one has ∫
B(g,2r)

uδdH ≤ C

∫
B(g,r)

uδdH.

Proof. By assumption we have for everyφ ∈ o

S 1,p(Ω)∫
Ω

|Xu|p−2 < Xu,Xφ > dH =
∫
Ω

V up−1φdH.

We consider the test functionφ = αp(u+ ε)−p+1, ε > 0, with α ∈ C∞o (Ω),
0 ≤ α ≤ 1,α ≡ 1 inB(g, r), α ≡ 0 outsideB(g,2r), |Xα| ≤ C/r. Substituting
φ in the equation we find

(p − 1)
∫
Ω

αp(u+ ε)−p|Xu|pdH

≤ p

∫
Ω

αp−1(u+ ε)−p+1|Xu||Xα| dH +
∫
Ω

|V |αpdH.

We obtain

(p − 1)
∫
Ω

αp(u+ ε)−p|Xu|pdH

≤ p

∫
Ω

αp−1(u+ ε)−p+1|Xu|p−1|Xα|dH +
∫
Ω

|V |αpdH,

which, lettingv = log(u+ ε), we rewrite as follows

(p − 1)
∫
Ω

αp|Xv|pdH ≤ p

∫
Ω

αp−1|Xv|p−1|Xα|dH +
∫
Ω

|V |αpdH.

At this point a standard application of H¨older andYoung inequalities allows
to infer for everyσ > 0∫

Ω

αp|Xv|pdH ≤ σ

∫
Ω

αp|Xv|pdH

+σ−1 1

p − 1

∫
Ω

|Xα|pdH + |B(g,2r)|
p − 1

||V ||LQ/p(B(g,2r)).
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Choosing 0< σ < 1 we find∫
Ω

αp|Xv|pdH ≤ C
|B(g,2r)|

rp

(
1+ ||V ||LQ/p(B(g,2r))

)
.

Invoking D. Jerison’s Poincar´e inequality [41] one concludes

1

|B(g, r)|
∫
B(g,r)

|v − vB(g,r)|pdH ≤ C
(
1+ ||V ||LQ/p(B(g,2r))

)
.

The latter inequality implies thatv ∈ BMO with respect to the homogeneous
structure of(G, d, dH). By the results in [6] there existsδ > 0 such that(u +
ε)δ ∈ A2, i. e.,(

1

|B(g, r)|
∫
B(g,r)

(u+ ε)δdH

) (
1

|B(g, r)|
∫
B(g,r)

(u+ ε)−δdH
)
≤ C,

for everyB(g, r) such thatB(g,2r) ⊂ Ω. By Fatou theorem the latter inequality
continues to hold replacing(u + ε) by u. Finally, one obtains the doubling
inequality in the statement of the lemma by a by now standard argument [14] .��
Corollary 10.7. Letu be a non-negative solution to (10.1) in a connected, open
setΩ. If u vanishes to infinite order at one pointg ∈ Ω, thenu ≡ 0 in Ω.

Proof. We can rewrite (1.3) in the form

m∑
i=1

Xi(|Xu|p−2Xiu) = −V up−1,

with V = up
∗−p, so thatV ∈ LQ/p(Ω) if and only if u ∈ Lp∗(Ω). Since this is

true as a consequence of the Folland-Stein embedding (1.1), we can thus apply
Theorem 10.6 to reach the conclusion. ��

Acknowledgements.We thank Bill Beckner,AdamKor´anyi and Giorgio Talenti for useful discus-
sions.
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