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Abstract. Conformally compact and complete smooth solutions to the Strominger system with

non vanishing flux, non-trivial instanton and non-constant dilaton using the first Pontrjagin form

of the (−)-connection on 6-dimensional non-Kähler nilmanifold are presented. In the conformally

compact case the dilaton is determined by the real slices of the elliptic Weierstrass function. The

dilaton of non-compact complete solutions is given by the fundamental solution of the Laplacian

on R4.
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1. Introduction

The goal of this paper is the explicit construction of smooth six-dimensional non-Kähler solution

to the Strominger system with a non-constant dilaton.

A model for string theory proposed in [15] involves a ten dimensional space R1,3 ×M6 which

is the product of a Lorentzian spacetime with a six-dimensional Calabi-Yau manifold M . The

latter was equipped with an SU(3) Yang-Mills connection, Donaldson-Uhlenbeck-Yau instanton, of

the Calabi-Yau metric. In a key paper Strominger [63] systematically considered a generalization

of this construction allowing a background with non-zero torsion, H-fluxes, which is motivated

by physical significance. This led to a system of differential equations known as the Strominger

system, which specifies the geometric inner space M to be a complex (non-Kähler) conformally

balanced 6-manifold with holomorphically trivial canonical bundle equipped, in addition, with an

instanton bundle E compatible with the Green-Schwarz anomaly cancellation condition. The latter

also involves the first Pontrjagin form of a linear connection whose determination is a part of the

problem. An important problem considered in the past thirty years is to provide “backgrounds”

and solutions of the Strominger system. Several connections have been used in order to satisfy the
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anomaly condition, such as, the Levi-Civita connection [63, 34], the Chern connection [63, 56, 30],

the (+)-connection [17, 20], and the (−)-connection [46, 11] etc..

A smooth compact solution was first found by Li & Yau [56] and Fu & Yau [30, 31]. In [30],

developing the ideas of [37], the authors considered compact non-Kähler 6-manifolds which are T2-

bundles over a Calabi-Yau 4-manifold using the first Pontrjagin form of the Chern connection. Thus,

[30] showed existence of a balanced metric while satisfying the Hermitian-Yang-Mills equations and

the anomaly equation. In this case, the difficulty to satisfy anomaly cancellation condition turns

into a non-linear PDE of Monge-Ampère type for the dilaton function. We note that when E is the

tangent bundle of a Kähler manifold M the flux H vanishes and Strominger’s system is solved by

the Calabi-Yau metric [67] and the Donaldson-Uhlenbeck-Yau instanton [64, 22]. In particular, the

non-Kähler case can be considered as a generalization of Calabi’s conjecture for the case of non-

Kähler Calabi-Yau threefolds. Since the choice of the first Pontrjagin form of the (−)-connection

is preferable by physical reasons [11], in [10, 9] the authors considered the smooth compact non-

Kähler model of a T2-bundle over a Calabi-Yau four manifold but with the first Pontrjagin form of

the (−)-connection in the anomaly cancellation. It was shown in [10, 9] that the PDE system for

the dilaton function gives rise to a single PDE which is of the Laplace type for which a solution

exists provided the natural compatibility condition holds.

Non-compact solutions can have different physical interpretation in string theory [14, 13, 23, 62].

They may be a local models of a compact solutions or correspond to the supergravity descriptions of

the solitonic objects of the theory [29]. A class of non-compact smooth solutions to the Strominger

system on a T2 bundle over the non-compact Eguchi-Hanson space is considered in [29] where the

non-linear equation for the dilaton imposed by the anomaly cancellation with the first Pontrjagin

form of the Chern connection is solved.

In this paper we construct smooth solutions with non vanishing flux and non-constant dilaton

to the Strominger system using the first Pontrjagin form of the (−)-connection on 6-dimensional

complete non-compact manifold equipped with conformally balanced Hermitian structures coupled

with carefully chosen instanton bundle. The source of the construction is the already constructed

smooth compact solutions to the Strominger system with constant dilaton on nilmanifods presented

in [27] and the ideas of [34] and [37]. In particular, [34] posed the question of solving the anomaly

condition for compact supersymmetric geometries that are two-torus bundles over either confor-

mally T4 or K3 manifold. Our main results are explicit complete smooth examples of the former

case. In particular, we prove

Theorem 1.1. The conformally compact manifold M6 = (Γ\H5, ḡ, J,∇−, Aλ) is a Hermitian man-

ifold which solves the Strominger system with non-constant dilaton f , non-trivial flux H = T̄ , non-

flat instanton Aλ using the first Pontrjagin form of ∇− and negative α′. Furthermore, the heterotic

equations of motion (2.2) are satisfied up to first order of α′.

The precise definition of the background and proof of Theorem 1.1 are given in Section 3.4. Our

solutions are complete non-Kähler T2 bundles over conformally compact asymptotically hyperbolic

metric on T4 with conformal boundary at infinity a flat torus T3. Using the first Pontrjagin form

of the (−)-connection together with the first Pontrjagin form of a carefully chosen instanton we

arrived via the anomaly cancellation to a single highly non-linear PDE for the dilaton function.

Assuming that the dilaton depends only on one of the independent variables we can reduce the

equation to Weiestrass’ equation. This allows us to determine the dilaton as a real slice of an

elliptic function of order two, f = 1
2 ln(α2P) where P is the Weierstrass’ elliptic function with pole

of order two at the origin, z =
∫ P dP

2
√

P(P−a)(P+a)
. The positive parameter a depends on the group

H5 and the magnitude of α′.
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This suggests there could be a relation with the F-theory/heterotic duality principle. It is a well

known fact that for warped compactification there must be some branes with negative tension [35].

It was argued in [49, 58] (see also [61, 42, 43] for earlier discussions) that a negative tension brane

in heterotic string theory could be understood as a T-dual of the Atiyah-Hitchin [4] manifold.

In Section 3.5 we present another smooth non-compact but complete solutions to the Strominger

system using the first Pontrjagin form of the (−)-connection with positive string tension on certain

T2 bundles over R4 with non-vanishing torsion, non-trivial instanton and non-constant dilaton. We

construct an instanton whose first Pontrjagin form together with the first Pontrjagin form of the

(−)-connection imposes via the anomaly cancellation a system of two equations of Laplace type

on the dilaton. The non-constant dilaton function of our smooth non-compact complete solutions

is determined by a harmonic function, the fundamental solution of the Laplacian on R4. In the

special case of a trivial T2 bundle, i.e., on the product of T2 × R4 we recover the ’symmetric

background solution’ from [13] thus strengthening the conjectured existence of a non-compact non-

trivial solution satisfying the anomaly cancellation. The precise result is the following

Theorem 1.2. The non-compact simply connected manifold (H5, ḡ, J,∇−, A0,d) is a complete Her-

mitian manifold which solves the Strominger system with non-constant dilaton f determined by

(3.25), non-zero flux H = T̄ and non-flat instanton A0,d using the first Pontrjagin form of ∇− and

positive α′.

The complete manifold (H5, ḡ, J,∇−, A0,d) described above also solves the heterotic equations of

motion (2.2) up to the first order of α′.

Our conventions: The connection 1-forms ωji of a metric connection ∇,∇g = 0 with respect

to a local orthonormal basis {E1, . . . , Ed} are given by ωji(Ek) = g(∇EkEj , Ei), since we write

∇XEj = ωsj (X)Es.

The curvature 2-forms Ωi
j of ∇ are given in terms of the connection 1-forms ωij by

Ωi
j = dωij + ωik ∧ ωkj , Ωji = dωji + ωki ∧ ωjk, Rlijk = Ωl

k(Ei, Ej), Rijkl = Rsijkgls.

The first Pontrjagin class is represented by the 4-form 8π2p1(∇) =
∑

1≤i<j≤d Ωi
j ∧ Ωi

j .

2. Motivation from heterotic string theory

The bosonic fields of the ten-dimensional supergravity which arises as low energy effective theory

of the heterotic string are the spacetime metric g, the NS three-form field strength (flux) H, the

dilaton φ and the gauge connection A with curvature 2-form FA. The bosonic geometry is of the

form R1,9−d ×Md, where the bosonic fields are non-trivial only on Md, d ≤ 8. We consider the

two connections ∇± = ∇g ± 1
2H, where ∇g is the Levi-Civita connection of the Riemannian metric

g. Both connections preserve the metric, ∇±g = 0 and have totally skew-symmetric torsion ±H,

respectively. We denote by Rg, R± the corresponding curvature.

We consider the heterotic supergravity theory with an α′ expansion where 1/2πα′ is the heterotic

string tension. The bosonic part of the ten-dimensional supergravity action in the string frame is

([47], [11], R = R−)

S =
1

2k2

∫
d10x
√
−ge−2φ

[
Scalg + 4(∇gφ)2 − 1

2
|H|2 − α′

4

(
Tr|FA|2)− Tr|R|2

)]
.(2.1)

The string frame field equations (the equations of motion induced from the action (2.1)) of the

heterotic string up to the first order of α′ in sigma model perturbation theory are [45, 47] (we use

the notations in [36])

Ricg(X,Y )− 1

4
< iXH, iYH > +2((∇g)2φ)(X,Y )− α′

4

[
< iXF

A, iY F
A > − < iXR, iYR >

]
= 0
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δ(e−2φH) = −Tr(∇g(e−2φH)) = 0, δ∇
+

(e−2φFA) = −Tr(∇+(e−2φFA)) = 0,(2.2)

where iX is the interior multiplication of tensors and < ., . > is the corresponding scalar product.

The field equation of the dilaton φ is implied from the first two equations above.

The Green-Schwarz anomaly cancellation mechanism requires that the three-form Bianchi iden-

tity receives an α′ correction of the form

(2.3) dH =
α′

4
8π2(p1(Md)− p1(E)) =

α′

4

(
Tr(R ∧R)− Tr(FA ∧ FA)

)
,

where p1(Md) and p1(E) are the first Pontrjagin forms of Md with respect to a connection ∇ with

curvature R and the vector bundle E with connection A, respectively.

A class of heterotic-string backgrounds for which the Bianchi identity of the three-form H receives

a correction of type (2.3) are those with (2,0) world-volume supersymmetry. Such models were

considered in [48]. The target-space geometry of (2,0)-supersymmetric sigma models has been

extensively investigated in [48, 63, 44]. Recently, there is revived interest in these models [21, 32,

17, 33, 34, 36] as string backgrounds and in connection with heterotic-string compactifications with

fluxes [16, 5, 6, 7, 56, 30, 31, 8, 41, 40, 39, 38, 59, 2, 3, 12].

Equations (2.3), (2.1) and (2.2) involve a subtlety due to the choice of the connection ∇ on

Md since anomalies can be canceled independently of the choice [46]. Different connections cor-

respond to different regularization schemes in the two-dimensional worldsheet non-linear sigma

model. Hence the background fields given for the particular choice of ∇ must be related to those

for a different choice by a field redefinition [60]. Connections on Md proposed to investigate the

anomaly cancellation (2.3) are ∇g [63, 34], ∇+ [17, 20, 27], ∇− [46, 11, 16, 36, 51, 54, 55, 57, 58, 49],

Chern connection ∇c when d = 6 [63, 56, 30, 31, 8].

A heterotic geometry preserves supersymmetry if and only if, in 10 dimensions, there exists at

least one Majorana-Weyl spinor ε such that the following Killing-spinor equations hold [63, 11]

(2.4) ∇+ε = 0, (2dφ−H) · ε = 0, FA · ε = 0,

where · means Clifford action of forms on spinors. The system of Killing spinor equations (2.4)

together with the anomaly cancellation condition (2.3) is known as the Strominger system [63, 56].

The last equation in (2.4) is the instanton condition which means that the curvature FA is contained

in a Lie algebra of a Lie group which is a stabilizer of a non-trivial spinor. In dimension 6 this

group is SU(3) and the last equation in (2.4) is the Donaldson-Uhlenbeck-Yau instanton. The

SU(3)-instanton means that the trace of FA with respect to the Kähler 2 form as well as the

(2,0)+(0,2)-part of FA vanish simultaneously. The real expression of the SU(3)-instanton condition

on a six dimensional Hermitian manifold (M, g, J) is given by

(2.5) (FA)ij(JEk, JEl) = (FA)ij(Ek, El),

6∑
k=1

(FA)ij(Ek, JEk) = 0.

The first compact torsional solutions for the heterotic/type I string were obtained via duality

from M-theory compactifications on K3×K3 proposed in [19]. The metric was first written down on

the orientifold limit in [19] and such backgrounds have since been studied (see [5, 6] and references

therein). The metric and the H-flux are derived by applying a chain of supergravity dualities and

the resulting geometry in the heterotic theory is a T2 bundle over a K3.

Compact smooth examples in dimension six solving (2.4) and (2.3) with non-zero flux H and

non-constant dilaton were constructed by Li and Yau [56] for U(4) and U(5) principal bundles

taking R = Rc-the curvature of the Chern connection in (2.3). Non-Kähler compact solutions of

(2.4) and (2.3) on some torus bundles over Calabi-Yau 4-manifold (K3 surfaces or complex torus)
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are presented by Yau et al. [30, 31, 8] using the Chern connection in (2.3). Compact solutions,

up to two loops, in dimension six with non-zero flux H and non-constant dilaton involving the

(−)-connection are investigated in [10, 9]. Compact examples solving (2.4) and (2.3) with nonzero

field strength, non-trivial instanton, constant dilaton and taking R = R+, were constructed in

[17, 20, 27].

In the presence of a curvature term Tr(R∧R) the solution of the Strominger system (2.4), (2.3)

obey the second and the third equations of motion (the second and the third equations in (2.2))

but do not always satisfy the Einstein equations of motion (see [27] where a sufficient quadratic

condition on R is found). It was proved in [50] that (2.4) and (2.3) imply (2.2) if and only if R is

an instanton in dimensions 5,6,7,8, (see [57] for higher dimensions). In particular, in dimension 6,

R is required to be an SU(3)-instanton.

The physically relevant connection on the tangent bundle to be considered in (2.3), (2.1), (2.2)

is the (−)-connection [11, 46]. One reason is that the curvature R− of the (−)-connection is an

instanton up to the first order of α′ which is a consequence of the first equation in (2.4), (2.3) and

the well known identity

(2.6) R+(X,Y, Z, U)−R−(Z,U,X, Y ) =
1

2
dH(X,Y, Z, U).

Indeed, (2.3) together with (2.6) imply R+(X,Y, Z, U) − R−(Z,U,X, Y ) = O(α′) and the first

equation in (2.4) yields that the holonomy group of ∇+ is contained in SU(n), i.e. the curvature

2-form R+(X,Y ) ⊂ su(n) and therefore R− satisfies the instanton condition (2.5) up to the first

order of α′. Hence, a solution to the Strominger system with first Pontrjagin form of the (−)-

connection always satisfies the heterotic equations of motion (2.2) up to the first order of α′ (see

e.g.[57] and references therein).

We remark that in the case of compact Hermitian manifold with holomorhically trivial canonical

bundle, the vanishing theorem from [52, 53] shows that R− is an instanton if and only if the manifold

is Kähler. Indeed, (2.6) yields that if R− is an instanton then the trace of dH with respect to the

Kähler form vanishes since the holonomy group of ∇+ is contained in su(3). Hence, the function h

defined in [52, 53] as the trace of dH vanishes which implies, due to [52, Corollary 4.2], that there

are no holomorphic top-forms unless the manifold is Kähler.

Concerning the Chern connection, it is shown in [57] that the curvature of the Chern connection

is an instanton up to zeros order of α′ if and only if the H-flux vanishes and the manifold is Kähler.

The proof in [57] relies on a point-wise identity established in [52] and therefore the result is purely

local.

2.1. The geometric model. Necessary and sufficient conditions to have a solution to the system

of gravitino and dilatino equations (the first two equations in (2.4)) in dimension 2n were derived

by Strominger in [63] involving the notion of SU(n)-structure and then studied by many authors

[32, 33, 34, 17, 16, 51, 5, 6, 36, 56, 30, 31, 8].

The gravitino equation, the first equation in (2.4) shows that there exists a parallel spinor with

respect to the (+)-connection. This reduces the structure group SO(2n) to a subgroup of SU(n)

since the holonomy group of ∇+ reduces to a subgroup of SU(n), i.e., the manifold is an almost

Hermitian manifold admitting a linear connection having totally skew-symmetric torsion which

preserves both the almost Hermitian structure and a non-vanishing (n, 0)-form (complex volume

form).

The dilatino equation, the second identity in (2.4), yields that the almost complex structure is

integrable and the trace of the torsion 3-form with respect to the Kähler form is an exact 1-form.

Strominger shows in [63] the existence of a unique Hermitian connection with skew-symmetric
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torsion on any Hermitian manifolds writing explicitly the torsion 3-form from the exterior derivative

of the Kähler form (∇+ in our notations). He also shows that the ∇+-parallel complex volume

form supplies a holomorphic complex volume form whose norm determines the dilaton.

Next we detail the model in dimension six which is the focus of the paper. Let (M,J, g) be a

Hermitian 6-manifold with Riemannian metric g and a complex structure J . The Kaehler form

F and the Lee form θ are defined by F (·, ·) = g(·, J ·), θ(·) = δF (J ·), respectively, where ∗ is

the Hodge operator and δ is the co-differential, δ = − ∗ d∗. The flux H, i.e., the torsion of the

connection ∇+ preserving the Hermitian structure (J, g) is given by [63]

(2.7) H = T = dcF, where dcF (X,Y, Z) = −dF (JX, JY, JZ).

Clearly, (2.7) determines the connection ∇+ uniquely since ∇+g = 0.

An SU(3)-structure is determined by an additional non-degenerate (3,0)-form Ψ = Ψ++
√
−1 Ψ−,

or equivalently by a non-trivial spinor, satisfying the compatibility conditions F ∧ Ψ± = 0, Ψ+ ∧
Ψ− = 2

3F ∧F ∧F . The subgroup of SO(6) fixing the forms F and Ψ simultaneously is SU(3). The

Lie algebra of SU(3) is denoted su(3).

The necessary and sufficient condition for the existence of solutions to the first two equations

in (2.4) derived by Strominger [63] imply that the 6-manifold should be a complex conformally

balanced manifold (the Lee form θ = 2dφ) with non-vanishing holomorphic volume form Ψ satisfying

an additional condition. In terms of the five torsion classes on dimension six, described in [18], the

Strominger condition is interpreted in [17] as follows (see [51] for a slightly different expression):

(2.8) 2FydF + Ψ+ydΨ+ = 0,

where y denotes the interior multiplication. Another very useful interpretation of this condition

was proposed in [56]. If the dilaton is constant (the Lee form θ = 0) then the Strominger condition

reads

(2.9) dF ∧ F = dΨ+ = dΨ− = 0.

Compact examples of the latter on nilmanifolds were presented in [66, 65] and examples via evolution

equations were given in [28].

A very promising geometric model in dimension six was proposed by Goldstein and Prokushkin

in [37] as a certain T2-bundle over a Calabi-Yau surface, which we explain next. Let Γi, 1 ≤ i ≤ 2,

be two closed 2-forms on a Calabi-Yau surface M4 with anti-self-dual (1,1)-part, which represent

integral cohomology classes. Denote by ω1 and by ω2 +
√
−1ω3 the (closed) Kähler form and

the holomorphic volume form on M4, respectively. Then, there is a (non-Kähler) 6-dimensional

manifold M6, which is the total space of a T2-bundle over M4, and it has an SU(3)-structure

(2.10) g = gCY + η2
1 + η2

2, F = ω1 + η1 ∧ η2, Ψ+ = ω2 ∧ η1−ω3 ∧ η2, Ψ− = ω2 ∧ η2 +ω3 ∧ η1,

where ηi, 1 ≤ i ≤ 2, is a 1-form on M6 such that dηi = Γi, 1 ≤ i ≤ 2. From the construction it

is easy to check that the SU(3) structure (2.10) satisfies (2.9) and therefore it solves the first two

Killing spinor equations in (2.4) with constant dilaton.

For any smooth function f on M4, the SU(3)-structure on M6 given by

F = e2fω1 + η1 ∧ η2, Ψ+ = e2f
[
ω2 ∧ η1 − ω3 ∧ η2

]
, Ψ− = e2f

[
ω2 ∧ η2 + ω3 ∧ η1

]
satisfies (2.8) and therefore it solves the first two Killing spinor equations in (2.4) with non-constant

dilaton φ = 2f . The metric has the form

gf = e2fgcy + η2
1 + η2

2.
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This ansatz guaranties solution to the first two equations in (2.4). To achieve a smooth solution to

the Strominger system we still have to determine an auxiliary vector bundle with an instanton and

a linear connection on M6 in order to satisfy the anomaly cancellation condition (2.3). Taking the

first Pontrjagin form of the Chern connection [56, 30, 31, 8] leads to an equation of Monge-Ampère

type for the dilaton function, while it is reduced to a PDE of Laplace type for the dilaton when

using the first Pontrjagin form of the (−)-connection [10, 9].

The T2-bundle over a K3 surface construction with connection 1-forms of anti-self-dual curvature

was used in [56, 30, 31, 8] to produce the first compact smooth solutions in dimension 6 solving

the heterotic supersymmetry equations (2.4) with non-zero flux and non-constant dilaton together

with the anomaly cancellation (2.3) with the first Pontrjagin form of the Chern connection.

3. The anomaly cancellation and the non-constant dilaton

We apply the construction from Section 2.1 to special non-Kähler 2-step nilmanifolds which are

T2-bundles over T4 with connection 1-forms of anti-self-dual curvature on the four torus and using

the first Pontrjagin form of the (−)-connection in investigating the anomaly cancellation (2.3) with

non-constant dilaton.

3.1. Two-step nilmanifolds with Abelian complex structure. In this subsection we show,

due to considerations in [66], that the 2-step nilmanifolds which are T2 bundles over T4 with

connection 1-forms of anti-self-dual curvature are precisely the balanced Hermitian structures with

Abelian complex structure, i.e. [JX, JY ] = [X,Y ].

The invariant balanced Hermitian structures on compact 6-dimensional nilmanifolds which are a

T2-bundle over a 4-torus, according to [66, Theorem 2.11], are parametrized by one of the following

three sets of equations

(3.1) de1 = de2 = de3 = de4 = 0, de5 = t (e13 − e24), de6 = t (e14 + e23),

where t ∈ R∗;

(3.2)


de1 = de2 = de3 = de4 = 0,

de5 = t
s(ρ+ b2)e13 − t

s(ρ− b
2)e24,

de6 = − 2 t (e12 − e34) + t
s(ρ− b

2)e14 + t
s(ρ+ b2)e23,

where ρ ∈ {0, 1}, b ∈ R and s, t ∈ R∗;

(3.3)



de1 = de2 = de3 = de4 = 0,

de5 = sY
[
2b2u1|u| (e12 − e34)− b2tu1|u|Y (e13 + e24) + 2ρsu1 (e13 − e24)

+2su2

(
(ρ− b2)e14 + (ρ+ b2)e23

)]
,

de6 = sY
[
2(2s2 − b2u2)|u| (e12 − e34) + b2tu2|u|Y (e13 + e24)− 2ρsu2 (e13 − e24)

+2su1

(
(ρ− b2)e14 + (ρ+ b2)e23

)]
,

where ρ ∈ {0, 1}, b ∈ R, t ∈ R∗ and u ∈ C∗ such that s2 > |u|2 > 0, and where Y =
2
√
s2−|u|2
|u|t .

In all the cases the balanced structure (J, F ) is given in the standard form, i.e.

(3.4) Je1 = −e2, Je3 = −e4, Je5 = −e6, F = e12 + e34 + e56.
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The nilpotent Lie algebras (nilmanifolds) underlying the families (3.1)–(3.3) are hk, 2 ≤ k ≤ 6

(see [66] for a description) However, in order to apply the construction from Section 2.1 we are led

to

Lemma 3.1. Let (J, F ) be an invariant balanced Hermitian structure on a 6-dimensional 2-step

nilmanifold M . Then, M is the total space of a T2-bundle over T4 of anti-self-dual curvature if

and only if the complex structure J is Abelian. Moreover, in such case the Lie algebra underlying

M is isomorphic to h3 or h5.

Proof. The curvature of the bundle is determined by the 2-forms de5 and de6 in the structure

equations (3.1), (3.2) and (3.3). Taking into account that s, t, u, Y 6= 0 we get that de5, de6 ∈
〈e12 − e34, e13 + e24, e14 − e23〉 if and only if the balanced Hermitian structure is given by (3.2) or

(3.3) with ρ = 0. The latter condition means that J is an Abelian complex structure. Finally, when

ρ = 0 we can take b ∈ {0, 1} since the corresponding balanced Hermitian structures are isomorphic.

The case b = 0, resp. b = 1, corresponds to structures on the Lie algebra h3, resp. h5. �

Notice that h3 is the Lie algebra underlying the nilmanifold given by the product of the 5-

dimensional generalized Heisenberg nilmanifold by S1, whereas h5 is the Lie algebra underlying the

Iwasawa manifold. It is important to note that the holonomy of the (+)-connection of any balanced

structure (J, F ) with J Abelian is a subgroup of SU(2), hence inside SU(3), [66].

3.2. Non-constant dilaton in 6-D. Here we consider the Lie algebra h5, which we describe

below. We shall construct a background with non-constant dilaton with non-trivial instanton and

flux. By a contraction, this will also give analogous solutions on the Lie algebra h3 as we shall

explain later in Section 4.

The structure equations of the Lie algebra h5 are

(3.5) de1 = de2 = de3 = de4 = 0, de5 =
t

s
(e13 + e24), de6 = −2 t (e12 − e34)− t

s
(e14 − e23),

where s, t ∈ R∗. We note that the structure equations (3.5) are obtained from the family (3.2)

taking there ρ = 0 and b = 1. The corresponding Lie group H5 can be considered as a R2-bundle

over R4. Moreover, the balanced structure (J, F ) on h5 is given in the standard form given by (3.4).

Let f be a smooth function on R4. Following [37] we consider the metric ḡ on h5 for which the

basis of 1-forms

(3.6) ē1 = ef e1, ē2 = ef e2, ē3 = ef e3, ē4 = ef e4, ē5 = e5, ē6 = e6

is orthonormal. The Kähler form of the new Hermitian structure (ḡ, J) is given by

F̄ = ē12 + ē34 + ē56 = e2f (e12 + e34) + e56,

where df =
∑4

i=1 fie
i, i.e., in local coordinates fi = ∂f

∂xi
. Furthermore,

dF̄ = 2e−ff3 ē
123 + 2e−ff4 ē

124 + 2te−2f ē125 + 2e−ff1 ē
134 + t

se
−2f ē136 + t

se
−2f ē145

+ 2e−ff2 ē
234 − t

se
−2f ē235 + t

se
−2f ē246 − 2te−2f ē345.

According to (2.7), the torsion 3-form T̄ is represented by

(3.7)
T̄ = JdF̄ = 2e−ff4 ē

123 − 2e−ff3 ē
124 − 2te−2f ē126 + 2e−ff2 ē

134 + t
se
−2f ē135

− t
se
−2f ē146 − 2e−ff1 ē

234 + t
se
−2f ē236 + t

se
−2f ē245 + 2te−2f ē346.

At this point we define the constant

(3.8) κ2 = 1/2
(
2 + 1/s2

)
.
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Letting fij = ∂2f
∂xj∂xi

, i, j = 1, 2, 3, 4, a short calculation gives

(3.9) dT̄ = −e−4f

[
4e2f + 4t2

(
2 +

1

s2

)]
ē1234 = −

[
4e2f + 8t2κ2

]
e1234,

where 4e2f = (e2f )11 + (e2f )22 + (e2f )33 + (e2f )44 is the standard Laplacian on R4.

Corollary 3.2. The (−)-connection is an instanton if and only if the torsion 3-form is closed,

dT̄ = 0, i.e., the dilaton function f satisfies the equality

(3.10) 4e2f + 8t2κ2 = 0.

Proof. Take the trace in (2.6) and use (3.9) together with the fact that the holonomy of ∇+ is

contained in SU(3) to conclude that R− satisfies the instanton condition (2.5) if and only if (3.10)

holds. �

3.3. The first Pontrjagin form of the (−)-connection. The (−)-connection of the Hermitian

structure (ḡ, J) is defined by the formula ∇− = ∇ḡ − 1
2 T̄ , where ∇ḡ is the Levi-Civita connection

of the metric ḡ and the torsion is determined in (3.7).

Using the metric ḡ, let {ē1, . . . , ē6} be the dual to {ē1, . . . , ē6} orthonormal basis. From Koszul’s

formula, we have that the Levi-Civita connection 1-forms (ωḡ)ī
j̄

are given by

(3.11) (ωḡ)īj̄(ēk) = −1

2

(
ḡ(ēi, [ēj , ēk])− ḡ(ēk, [ēi, ēj ]) + ḡ(ēj , [ēk, ēi])

)
=

1

2

(
dēi(ēj , ēk)− dēk(ēi, ēj) + dēj(ēk, ēi)

)
taking into account ḡ(ēi, [ēj , ēk]) = −dēi(ēj , ēk). With the help of (3.11) we compute the expressions

for the connection 1-forms (ω−)ī
j̄

of the connection ∇−,

(3.12) (ω−)īj̄ = (ωḡ)īj̄ −
1

2
(T̄ )īj̄ , where (T̄ )īj̄(ēk) = T̄ (ēi, ēj , ēk).

Now, (3.12), (3.11) and (3.7) show that the non-zero connection 1-forms (ω−)ī
j̄

are given in terms

of the basis {ē1, . . . , ē6} by

(3.13)

(ω− )
1̄
2̄ = e−f

[
f2 ē

1 − f1 ē
2 + f4 ē

3 − f3 ē
4
]
, (ω− )

1̄
3̄ = e−f

[
f3 ē

1 − f4 ē
2 − f1 ē

3 + f2 ē
4
]
,

(ω− )
1̄
4̄ = e−f

[
f4 ē

1 + f3 ē
2 − f2 ē

3 − f1 ē
4
]
, (ω− )

1̄
5̄ = −e−2f t

s ē
3,

(ω− )
1̄
6̄ = e−2f2t

[
ē2 + 1

2s ē
4
]
, (ω− )

2̄
3̄ = e−f

[
f4 ē

1 + f3 ē
2 − f2 ē

3 − f1 ē
4
]
,

(ω− )
2̄
4̄ = e−f

[
−f3 ē

1 + f4 ē
2 + f1 ē

3 − f2 ē
4
]
, (ω− )

2̄
5̄ = −e−2f t

s ē
4,

(ω− )
2̄
6̄ = e−2f2t

[
− ē1 − 1

2s ē
3
]
, (ω− )

3̄
4̄ = e−f

[
f2 ē

1 − f1 ē
2 + f4 ē

3 − f3 ē
4
]
,

(ω− )
3̄
5̄ = e−2f t

s ē
1, (ω− )

3̄
6̄ = e−2f2t

[
1
2s ē

2 − ē4
]
,

(ω− )
4̄
5̄ = e−2f t

s ē
2, (ω− )

4̄
6̄ = e−2f2t

[
− 1

2s ē
1 + ē3

]
.

A long straightforward calculation using (3.13) gives in terms of the basis {ē1, . . . , ē6} the fol-

lowing formulas for the curvature 2-forms of ∇−
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(Ω−)1̄
2̄= −(f11 + f22 + 2f2

3 + 2f2
4 + 4t2e−2f ) e−2fe12 + (f14 − f23 + 2f2f3 − 2f1f4)e−2f (e13 + e24)

−(f13 + f24 − 2f1f3 − 2f2f4 + 2t2/se−2f )e−2f (e14 − e23)

− (2f2
1 + 2f2

2 + f33 + f44 + 2t2/s2e−2f )e−2fe34,

(Ω−)1̄
3̄= −(f14 + f23 − 2f2f3 − 2f1f4)e−2f (e12 − e34)− (f11 + 2f2

2 + f33 + 2f2
4 + t2/s2e−2f )e−2fe13

+(f12 − 2f1f2 − f34 + 2f3f4)e−2f (e14 − e23)

+(2f2
1 + f22 + 2f2

3 + f44 + t2/s2e−2f + 4t2e−2f )e−2fe24,

(Ω−)1̄
4̄= (f13 − f24 − 2f1f3 + 2f2f4 − 2t2/se−2f )e−2f (e12 − e34)− (f12 − 2f1f2 + f34 − 2f3f4)e−2f (e13 + e24)

−(f11 + 2f2
2 + 2f2

3 + f44 + t2/s2e−2f ) e−2fe14 − (2f2
1 + f22 + f33 + 2f2

4 + t2/s2e−2f + 4t2e−2f )e−2fe23,

(Ω−)1̄
5̄= 2e−3f t/s

[
f4(e12 − e34) + f1(e13 + e24)− f2(e14 − e23)

]
,

(Ω−)1̄
6̄= 2e−3f t/s

[
(f3 − 2f1s)(e

12 − e34)− (f2 − 2f4s)(e
13 + e24)− (f1 + 2f3s)(e

14 − e23)
]
,

(Ω−)2̄
3̄= (f13 − f24 − 2f1f3 + 2f2f4 + 2t2/se−2f )e−2f (e12 − e34)− (f12 − 2f1f2 + f34 − 2f3f4)e−2f (e13 + e24)

−(f11 + 2f2
2 + 2f2

3 + f44 + t2/s2e−2f + 4t2e−2f )e−2fe14− (2f2
1 + f22 + f33 + 2f2

4 + t2/s2e−2f )e−2fe23,

(Ω−)2̄
4̄= (f14 + f23 − 2f2f3 − 2f1f4)e−2f (e12 − e34) + (f11 + 2f2

2 + f33 + 2f2
4 + t2/s2e−2f + 4t2e−2f )e−2fe13

−(f12 − 2f1f2 − f34 + 2f3f4)e−2f (e14 − e23)− (2f2
1 + f22 + 2f2

3 + f44 + t2/s2e−2f )e−2f e24,

(Ω−)2̄
5̄= 2e−3f t/s

[
−f3(e12 − e34) + f2(e13 + e24) + f1(e14 − e23)

]
,

(Ω−)2̄
6̄= 2e−3f t/s

[
(f4 − 2f2s)(e

12 − e34) + (f1 − 2f3s)(e
13 + e24)− (f2 + 2f4s)(e

14 − e23)
]
,

(Ω−)3̄
4̄= − (f11 + f22 + 2f2

3 + 2f2
4 + 2t2/s2e−2f )e−2fe12 + (f14 − f23 + 2f2f3 − 2f1f4)e−2f (e13 + e24)

−(f13 + f24 − 2f1f3 − 2f2f4 − 2t2/se−2f )e−2f (e14 − e23)− (2f2
1 + 2f2

2 + f33 + f44 + 4t2e−2f ) e−2fe34,

(Ω−)3̄
5̄= 2e−3f t/s

[
f2(e12 − e34) + f3(e13 + e24) + f4(e14 − e23)

]
,

(Ω−)3̄
6̄= 2e−3f t/s

[
−(f1 + 2f3s)(e

12 − e34) + (f4 + 2f2s)(e
13 + e24)− (f3 − 2f1s)(e

14 − e23)
]
,

(Ω−)4̄
5̄= 2e−3f t/s

[
−f1(e12 − e34) + f4(e13 + e24)− f3(e14 − e23)

]
,

(Ω−)4̄
6̄= 2e−3f t/s

[
−(f2 + 2f4s)(e

12 − e34)− (f3 + 2f1s)(e
13 + e24)− (f4 − 2f2s)(e

14 − e23)
]
,

(Ω−)5̄
6̄= 2e−4f t2/s2

[
−(e12 − e34) + 2s(e14 − e23)

]
.

Proposition 3.3. The first Pontrjagin form of ∇− is a scalar multiple of e1234 given by

(3.14) π2p1(∇−) =

 ∑
1≤i<j≤4

(
det(fij) + (f2

i fj)j + (fif
2
j )i
)

+

4∑
i=1

(f3
i )i −

3

2
t2κ24e−2f

 e1234.

Proof. The proof of (3.14) is a long straightforward calculations using the formulas for the curvature

2-form of ∇−. �

Note that even though the curvature 2-forms of ∇− are quadratic in the gradient of the dilaton,

remarkably, the Pontrjagin form of ∇− is also quadratic in these terms.

3.4. A conformally compact solution with negative α′. Proof of Theorem 1.1. Here we

give the proof of Theorem 1.1.

By [31] there is no compact solution of Strominger’s system for positive α′ in the case of the

Chern connection on torus bundle over T4. On the other hand, the existence of a solution on a

2-torus bundle over K3-surfaces given in [31] seems to depend on the assumption α′ > 0, whereas

the existence of a solution with negative α′ is not clear.

The proof of Theorem 1.1 occupies the remaining part of Section 3.4. We begin with a Proposition

defining the instanton bundle.
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Proposition 3.4. Let Aλ, λ = (λ1, λ2, λ3) ∈ R3 be the linear connection on H5 whose non-zero

1-forms are given as follows

(ωAλ)1̄
2̄

= −(ωAλ)2̄
1̄

= −(ωAλ)3̄
4̄

= (ωAλ)4̄
3̄

= −λ1 ē
6,

(ωAλ)1̄
3̄

= −(ωAλ)3̄
1̄

= (ωAλ)2̄
4̄

= −(ωAλ)4̄
2̄

= −λ2 ē
6,

(ωAλ)1̄
4̄

= −(ωAλ)4̄
1̄

= −(ωAλ)2̄
3̄

= (ωAλ)3̄
2̄

= −λ3 ē
6.

Then, Aλ is an SU(3)-instanton which preserves the metric. Furthermore, the first Pontrjagin

form of Aλ is

(3.15) 8π2p1(Aλ) = −8t2(1 + κ2)|λ|2 e1234, |λ|2 = λ2
1 + λ2

2 + λ2
3.

Proof. A direct calculation shows that the non-zero curvature forms (ΩAλ)ī
j̄

of the connection Aλ
are:

(ΩAλ)1̄
2̄

= −(ΩAλ)2̄
1̄

= −(ΩAλ)3̄
4̄

= (ΩAλ)4̄
3̄

= −λ1 dē
6 = 2tλ1e

−2f (ē12 − ē34) + t
sλ1e

−2f (ē14 − ē23),

(ΩAλ)1̄
3̄

= −(ΩAλ)3̄
1̄

= (ΩAλ)2̄
4̄

= −(ΩAλ)4̄
2̄

= −λ2 dē
6 = 2tλ2e

−2f (ē12 − ē34) + t
sλ2e

−2f (ē14 − ē23),

(ΩAλ)1̄
4̄

= −(ΩAλ)4̄
1̄

= −(ΩAλ)2̄
3̄

= (ΩAλ)3̄
2̄

= −λ3 dē
6 = 2tλ3e

−2f (ē12 − ē34) + t
sλ3e

−2f (ē14 − ē23).

It is straightforward to see that Aλ satisfies (2.5) and therefore it is an SU(3)-instanton. After

another lengthy calculation we see 8π2p1(Aλ) = −4t2(4+1/s2)|λ|2e−4f ē1234, which in view of (3.8)

and (3.6) implies formula (3.15). �

Now, we suppose that the function f depends on one variable, say f = f(x1). Using(
f ′′ − 2f ′2

)
e−2f = −1

2

(
e−2f

)′′
we have from (3.14)

(3.16) 8π2p1(∇−) = 4

(
2f ′3 − 3t2κ2

(
e−2f

)′)′
e1234.

Furthermore, from (3.9)

(3.17) dT̄ = −
((

e2f
)′′

+ 8t2κ2

)
e1234.

In view of (3.15), (3.16) and (3.17) the anomaly cancellation condition (2.3), i.e., dT̄ =
α′

4 8π2
(
p1(∇−)− p1(Aλ)

)
, takes the form of a single ODE for the function f

(3.18)

((
e2f
)′
− 3α′t2κ2

(
e−2f

)′
+ 2α′f ′3

)′
+ 8t2κ2 + 2α′t2(1 + κ2)|λ|2 = 0.

For a negative α′ we choose κ2 or |λ|2 so that 8t2κ2 + 2α′t2(1 + κ2)|λ|2 = 0, i.e., we let

α′ = −α2, 4κ2 = α2(1 + κ2)|λ|2,

which simplifies (3.18) to the ordinary differential equation

(3.19)
(
e2f
)′

+ 3α2t2κ2
(
e−2f

)′
− 2α2f ′3 = A = const.

At this point we let u = α−2e2f . With this substitution the left-hand side of (3.19) becomes(
e2f
)′
− 3α′t2

(
e−2f

)′
+ 2α′f ′3 =

α2u′

4u3

(
4u3 − 12

t2κ2

α2
u− u′2

)
.
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For A = 0 consider the following ordinary differential equation for the function u = u(x1) > 0

(3.20) u′2 = 4u3 − 12
t2κ2

α2
u = 4u (u− a) (u+ a) , a = κ|t|

√
3/α.

Equation (3.20) can also be considered in the complex plane by replacing the real derivative with

the complex derivative which turns it into the Weierstrass’ equation(
dP

dz

)2

= 4P (P− a) (P + a)

for the doubly periodic Weierstrass P function with a pole at the origin where it has the expansion

P(z) =
1

z2
+
a2

5
z2 + bz6 + · · · ,

(no z4 term and only even powers). In addition, as well known [24] and [1], letting τ± be the basic

half-periods such that tau+ is real and τ− is purely imaginary we have that P is real valued on the

lines Re z = mτ+ or Im z = imτ−, m ∈ Z. Furthermore, in the fundamental region centered at the

origin, where P has a pole of order two, we have that P(z) decreases from +∞ to a to 0 to −a to

−∞ as z varies along the sides of the half-period rectangle from 0 to τ+ to τ+ + τ− to τ− to 0.

Thus, u(x1) = P(x1) defines a non-negative 2τ+-periodic function with singularities at the points

2nτ+, n ∈ Z, which solves the real equation (3.20). From the Laurent expansion of the Weierstrass’

function it follows

u(x1) =
1

(x1)2

(
1 +

a2

5
(x1)4 + · · ·

)
.

By construction, f = 1
2 ln(α2u) is a periodic function with singularities on the real line which

is a solution to equation (3.18) sufficient for the anomaly cancellation condition. Therefore the

SU(3) structure defined by F̄ and the non-degenerate (3,0) form Ψ̄ = (ē1 + iē2)∧ (ē3 + iē4)∧ (ē5 +

iē6) descends to the 6-dimensional nilmanifold M6 = Γ\H5 with singularity, determined by the

singularity of u, where H5 is the 2-step nilpotent Lie group with Lie algebra h5, defined by (3.5),

and Γ is a lattice with the same period as f , i.e., 2τ+ in all variables. In fact, as seen from the

asymptotic behavior of u, M6 is the total space of a T2 bundle over the asymptotically hyperbolic

manifold M4 with metric

ḡH = u(x1)
(
(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2

)
,

which is a conformally compact 4-torus with conformal boundary at infinity a flat 3-torus. Thus,

we conclude that there is a complete solution with non-constant dilaton, non-trivial instanton and

flux and with a negative α′ parameter. This completes the proof of Theorem 1.1.

A few remarks are in order. First, since the function u has a Z2-symmetry determined by the

symmetry with respect to the line x1 = τ+ we also obtain a solution on the quotient M6/Z2.

Second, the function v(x1) = P(τ+ + ix1), which is the restriction of P to the line Re z = τ+

leads to a solution “equivalent” to the one described above, taking into account the invariance

under translation in x1. Indeed, clearly (v′)2 = −
(
dP
dz

)2
hence v satisfies

(v′)2 = −4v (v − a) (v + a) , a = κ|t|
√

3/α.

The above equation is (3.20) with the substitution u = a2

v which shows that we obtain the same

six dimensional SU(3) structure. We note that v is an even non-negative periodic function with

period 2iτ− (without a loss of generality iτ− > 0) such that v(−iτ−) = v(iτ−) = 0, v(0) = a and v

increases on the interval (−iτ−, 0).
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3.5. Complete solution with positive α′. Proof of Theorem 1.2. Let us consider a connec-
tion Aa,d depending on parameters a, d ∈ R, d 6= 0, whose non-zero connection 1-forms (ωAa,d)ī

j̄
in

the basis {ē1, . . . , ē6} are as follows

(ωAa,d)1̄
2̄ = e−f

[
f2 ē

1 − f1 ē
2 + f4 ē

3 − f3 ē
4
]
, (ωAa,d)1̄

3̄ = e−f
[
f3 ē

1 − f4 ē
2 − f1 ē

3 + f2 ē
4
]
,

(ωAa,d)1̄
4̄ = e−f

[
f4 ē

1 + f3 ē
2 − f2 ē

3 − f1 ē
4
]
, (ωAa,d)1̄

5̄ = −a
d
e−2f ē3,

(ωAa,d)1̄
6̄ = ae−2f

[
2 ē2 + 1/d ē4

]
, (ωAa,d)2̄

3̄ = e−f
[
f4 ē

1 + f3 ē
2 − f2 ē

3 − f1 ē
4
]
,

(ωAa,d)2̄
4̄ = e−f

[
−f3 ē

1 + f4 ē
2 + f1 ē

3 − f2 ē
4
]
, (ωAa,d)2̄

5̄ = −a
d
e−2f ē4,

(ωAa,d)2̄
6̄ = −a e−2f

[
2 ē1 +

1

d
ē3

]
, (ωAa,d)3̄

4̄ = e−f
[
f2 ē

1 − f1 ē
2 + f4 ē

3 − f3 ē
4
]
,

(ωAa,d)3̄
5̄ =

a

d
e−2f ē1, (ωAa,d)3̄

6̄ = ae−2f

[
1

d
ē2 − 2 ē4

]
,

(ωAa,d)4̄
5̄ =

a

d
e−2f ē2, (ωAa,d)4̄

6̄ = −ae−2f

[
1

d
ē1 − 2 ē3

]
.

Lemma 3.5. Aa,d is an instanton with respect to the SU(3) structure defined with the help of the

basis (3.6) if and only if the dilaton function satisfies

(3.21) 4e2f = −8τ2a2, τ2 =
1

2

(
2 +

1

d2

)
.

Proof. Observe that the connection 1-forms of Aa,d are given by (3.13) replacing t with a and s

with d. Then the assertion follows from Corollary 3.2. �

Lemma 3.5 shows, in particular, that Aa,d is an instanton with respect to the SU(3) structure

determined by the basis (3.6) if

(3.22) e2f = h(x)− a2τ2|x|2,

where h is a harmonic function on R4.

The expression (3.14) yield that the difference between the first Pontrjagin forms of ∇− and

Aa,d is given by the formula

(3.23) 8π2
(
p1(∇−)− p1(Aa,d)

)
=

12

d2s2

[
a2(1 + 2d2)s2 − d2(1 + 2s2)t2

]
e−6f

(
2|f |2 −4f

)
ē1234

= −24
(
t2κ2 − a2τ2

)
e−4f

(
4e−2f

)
ē1234 = −24

(
t2κ2 − a2τ2

) (
4e−2f

)
e1234.

On the other hand recalling (3.9) and taking into account (3.23), we have that the anomaly can-

cellation condition

dT̄ − α′

4
8π2
(
p1(∇−) − p1(Aa,d)

)
= −

[
4e2f + 8t2κ2 − 3α′(t2κ2 − a2τ2)4e−2f

]
e1234 = 0

simplifies to the single equation for the dilaton 4e2f + 8t2κ2 − 3α′(t2κ2 − a2τ2)4e−2f = 0.

Thus a non-trivial dilaton is given by (3.22) which satisfies the equation

(3.24) (t2κ2 − a2τ2)
(

8− 3α′4e−2f
)

= 0.

We analyze the solution in the next two cases.

Case 1. Here t2κ2 − a2τ2 = 0, hence by (3.23) the anomaly condition is trivially satisfied for

any α′, provided the torsion is closed. In this case the solution is given by the solutions of (3.21).
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Furthermore, taking into account Corollary 3.2 both ∇− and Aa,d are instantons. For example, a

particular case of (3.22) is the solution

e2f = a2τ2(1− |x|2)

defined in the unit ball.

Notice that in this case we also obtain a solution of the type II theory, see [17] for the case of

the Iwasawa manifold and [34, Section VII] for the general case of two flat directions fibered over

a four dimensional base M0.

Case 2. Here t2κ2 − a2τ2 6= 0, hence the anomaly condition is non-trivial.

We need to solve the system of the two equations (3.21) and (3.24). To get a solution we take

a = 0 in (3.21) and arrive to the next two equations for the dilaton f :

4e2f = 0, 4e−2f = 8/(3α′).

Hence the solution with a singularity is given by

(3.25) e2f =
3α′

|x− b|2
, b ∈ R4,

As a result of the above arguments we obtain a non-compact solution with non-constant dilaton,

non-trivial instanton and flux with positive α′. This solution is similar to the multi-instanton

solution considered in [13]. Taking into account that H5 is a R2-bundle over R4, and using log-

arithmic radial coordinates near the singularity as in [13] it follows that the 4 − D metric in-

duced on R4 is actually complete. In fact, taking the singularity at the origin, in the coordinate

q =
√

3α′/2 ln
(
|x|2/3α′

)
= −

√
3α′ f , we have that the dilaton and the 4 − D metric can be

expressed as follows

ḡH =
4∑
i=1

e2f (ei)2 = dq2 + 3α′ds2
3, f = −q

√
3α′,

where ds2
3 is the metric on the unit three-dimensional sphere in the four dimensional Euclidean

space. The completeness of the horizontal metric implies that the metric

ḡ = ḡH + (e5)2 + (e6)2

is also complete. This finishes the proof of Theorem 1.2.

4. Contraction and the Lie algebra h3

Taking into account that the Lie algebra h3 is a contraction of the Lie algebra h5 we can obtain

solutions for the Lie algebra h3 from the solution on h5. Indeed, letting t
s → 0 in (3.5) we obtain

de1 = de2 = de3 = de4 = 0, de5 = 0, de6 = −2 t (e12 − e34)

which are the structure equations of h3.

Correspondingly, using equations (3.6) we obtain the structure equations

dē1 = −e−f
(
f2 ē

12 + f3 ē
13 + f4 ē

14
)
, dē2 = e−f

(
f1 ē

12 − f3 ē
23 − f4 ē

24
)
,

dē3 = e−f
(
f1 ē

13 + f2 ē
23 − f4 ē

34
)
, dē4 = e−f

(
f1 ē

14 + f2 ē
24 + f3 ē

34
)
,

dē5 = 0, dē6 = −2te−2f (ē12 − ē34).

As before, we consider the ∇− connection described in (3.13). We define the connection Aa by

letting the parameter d→∞ in (3.5), or equivalently a
d → 0. All remaining calculation in Section
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3.2 are valid by taking the above described limits. As a result, Theorem 1.1 and Theorem 1.2 give

solutions with non-constant dilaton on h3.

Remark 4.1. It can be checked from the expression for the curvature 2-forms of ∇− using (2.6)

and (3.9) that the connection ∇+ is an SU(3)-instanton if and only if f is a constant function and
t
s → 0, i.e. the connection ∇+ is an SU(3)-instanton if and only if f is constant and the group

is H3.
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[17] G.L. Cardoso, G. Curio, G. Dall’Agata, D. Lüst, P. Manousselis, G. Zoupanos, Non-Kähler string backgrounds

and their five torsion classes, Nuclear Phys. B 652 (2003), 5–34. 2, 4, 5, 6, 14

[18] S. Chiossi, S. Salamon, The intrinsic torsion of SU(3) and G2-structures, Differential Geometry, Valencia 2001,

World Sci. Publishing, 2002, pp. 115–133. 6

[19] K. Dasgupta, G. Rajesh, S. Sethi, M theory, orientifolds and G-flux, JHEP 9908 (1999), 023. 4

[20] K. Dasgupta, H. Firouzjahi, R. Gwyn, On the warped heterotic axion, JHEP 0806 (2008), 056. 2, 4, 5

[21] B. de Wit, D.J. Smit, N.D. Hari Dass, Residual supersymmetry of compactified D=10 supergravity, Nuclear

Phys. B 283 (1987), 165–191. 4

[22] S.K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles,

Proc. London Math. Soc. 50 (1985), 1–26. 2
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