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Abstract. New smooth solutions of the Strominger system with non vanishing flux, non-trivial

instanton and non-constant dilaton based on the quaternionic Heisenberg group are constructed. We

show that through appropriate contractions the solutions found in the G2-heterotic case converge

to the heterotic solutions on 6-dimensional inner non-Kähler spaces previously found by the authors

and, moreover, to new heterotic solutions with non-constant dilaton in dimension 5. All the solutions

satisfy the heterotic equations of motion up to the first order of α′.
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1. Introduction

We investigate smooth solutions with non-trivial fluxes to the heterotic equations of motion pre-

serving at least one supersymmetry up to the first order of the string tension α′ in dimensions seven

and five. Using the quaternionic Heisenberg group we propose an explicit construction leading to

new smooth solutions of the Killing spinor equations and the Green-Schwarz anomaly cancellation,

the system of equations known as the Strominger system, with a non-constant dilaton. The found

solutions satisfy the heterotic equations of motion up to the first order of α′.

Another goal of the paper is to point that through contractions of the quaternion Heisenberg

algebra, the geometric structures, the partial differential equations and their solutions found in

the G2-heterotic case converge to the heterotic solutions on 6-dimensional inner non-Kähler spaces

found in [26] and to the new 5-dimensional heterotic solutions with non-constant dilaton.

The bosonic fields of the ten-dimensional supergravity which arises as low energy effective theory

of the heterotic string are the spacetime metric g, the NS three-form field strength (flux) H, the

dilaton φ and the gauge connection A with curvature 2-form FA. The bosonic geometry is of
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the form R1,9−d ×Md, where the bosonic fields are non-trivial only on Md, d ≤ 8. We consider

the two connections ∇± = ∇g ± 1
2H, where ∇g is the Levi-Civita connection of the Riemannian

metric g. Both connections preserve the metric, ∇±g = 0 and have totally skew-symmetric torsion

±H, respectively. We denote by Rg, R± the corresponding curvature.

We consider the heterotic supergravity theory with an α′ expansion where 1/2πα′ is the heterotic

string tension. The bosonic part of the ten-dimensional supergravity action in the string frame is

([46], [13], R = R−)

S =
1

2k2

∫
d10x
√
−ge−2φ

[
Scalg + 4(∇gφ)2 − 1

2
|H|2 − α′

4

(
Tr|FA|2)− Tr|R|2

)]
.(1.1)

The string frame field equations (the equations of motion induced from the action (1.1)) of the

heterotic string up to the first order of α′ in sigma model perturbation theory in the notations in

[36] are [44, 46]

(1.2)
Ricgij −

1

4
HimnH

mn
j + 2∇gi∇

g
jφ−

α′

4

[
(FA)imab(F

A)mabj −RimnqRmnqj

]
= 0,

∇gi (e
−2φH i

jk) = 0, ∇+
i (e−2φ(FA)ij) = 0.

The field equation of the dilaton φ is implied from the first two equations above.

The Green-Schwarz anomaly cancellation mechanism requires that the three-form Bianchi iden-

tity receives an α′ correction of the form

(1.3) dH =
α′

4
8π2(p1(Md)− p1(E)) =

α′

4

(
Tr(R ∧R)− Tr(FA ∧ FA)

)
,

where p1(Md) and p1(E) are the first Pontrjagin forms of Md with respect to a connection ∇ with

curvature R and the vector bundle E with connection A, respectively.

A class of heterotic-string backgrounds for which the Bianchi identity of the three-form H receives

a correction of type (1.3) are those with (2,0) world-volume supersymmetry. Such models were

considered in [47]. The target-space geometry of (2,0)-supersymmetric sigma models has been

extensively investigated in [47, 67, 43]. Recently, there is revived interest in these models [20, 32,

17, 51, 52, 33, 34, 36] as string backgrounds and in connection with heterotic-string compactification

with fluxes mainly in dimension six [16, 6, 7, 8, 55, 29, 30, 9, 41, 40, 10, 39, 38, 63, 11, 3, 4, 5, 35,

14, 59, 61, 2, 58, 22, 62].

Equations (1.3), (1.1) and (1.2) involve a subtlety due to the choice of the connection ∇ on

TMd since anomalies can be canceled independently of the choice [45]. Different connections

correspond to different regularization schemes in the two-dimensional worldsheet non-linear sigma

model. Hence the background fields given for the particular choice of ∇ must be related to those

for a different choice by a field redefinition [64]. Connections on Md proposed to investigate the

anomaly cancellation (1.3) are ∇g [67, 34], ∇+ [17, 19, 24], ∇− [45, 13, 16, 36, 49, 53, 54, 57, 60, 48],

Chern connection ∇c when d = 6 [67, 55, 29, 30, 9].

A heterotic geometry preserves supersymmetry iff in ten dimensions there exists at least one

Majorana-Weyl spinor ε such that the following Killing-spinor equations hold [67, 13]

(1.4)

δλ = ∇mε =

(
∇gm +

1

4
HmnpΓ

np

)
ε = ∇+ε = 0,

δΨ =

(
Γm∂mφ−

1

12
HmnpΓ

mnp

)
ε = (dφ− 1

2
H) · ε = 0,

δξ = FAmnΓmnε = FA · ε = 0,
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where λ,Ψ, ξ are the gravitino, the dilatino and the gaugino fields, Γi generate the Clifford algebra

{Γi,Γj} = 2gij and · means Clifford action of forms on spinors.

The system of Killing spinor equations (1.4) together with the anomaly cancellation condition

(1.3) is known as the Strominger system [67]. The last equation in (1.4) is the instanton condition

which means that the curvature FA is contained in a Lie algebra of a Lie group which is a stabilizer

of a non-trivial spinor. In dimension 7 this group is G2. Denoting the G2 three-form by Θ, the

G2-instanton condition has the form

(1.5)
7∑

k,l=1

(FA)ij(Ek, El)Θ(Ek, El, Em) = 0.

In the presence of a curvature term Tr(R ∧ R) the solutions of the Strominger system (1.4),

(1.3) obey the second and the third equations of motion (the second and the third equations in

(1.2)) but do not always satisfy the Einstein equations of motion (see [24, 23, 25] where a sufficient

quadratic condition on R is found). It was proved in [50] that the solutions of the Strominger

system ((1.4) and (1.3)) also solve the heterotic supersymmetric equations of motion (1.2) if and

only if R is an instanton in dimensions 5,6,7,8 (see [57, 61] for higher dimensions and different

proofs). In particular, in dimension 7, R is required to be an G2-instanton.

The physically relevant connection on the tangent bundle to be considered in (1.3), (1.1), (1.2)

is the (−)-connection [13, 45]. One reason is that the curvature R− of the (−)-connection is an

instanton up to the first order of α′ which is a consequence of the first equation in (1.4), (1.3) and

the well known identity

(1.6) R+(X,Y, Z, U)−R−(Z,U,X, Y ) =
1

2
dH(X,Y, Z, U).

Indeed, (1.3) together with (1.6) imply R+(X,Y, Z, U) − R−(Z,U,X, Y ) = O(α′) and the first

equation in (1.4) yields that the holonomy group of ∇+ is contained in G2, i.e. the curvature

2-form R+(X,Y ) ⊂ g2 and therefore R− satisfies the instanton condition (1.5) up to the first order

of α′. Hence, a solution to the Strominger system with first Pontrjagin form of the (−)-connection

always satisfies the heterotic equations of motion (1.2) up to the first order of α′ (see e.g.[57] and

references therein).

In dimension 7 the only known heterotic/type I solutions with non-zero fluxes to the equations

of motion preserving at least one supersymmetry (satisfying (1.4) and (1.3) without the curvature

term, R = 0) are those constructed [42]. All these solutions are noncompact and conformal to a

flat space. Noncompact solutions to (1.4) and (1.3) in dimension 7 are presented also in [49]. The

first compact heterotic/type I solutions with non-zero fluxes and constant dilaton to the equations

of motion preserving at least one supersymmetry (satisfying (1.4) and (1.3)) in dimension seven

are constructed in [25]

In dimension d = 5, if the field strength vanishes, H = 0, then the 5-dimensional case reduces to

dimension four since any five dimensional Riemannian spin manifold admitting ∇g-parallel spinor

is reducible. Non compact solutions on circle bundle over 4-dimensional base endowed with a hyper

Kähler metric (when the 4-dimensional metric is Eguchi-Hanson, Taub-NUT, Atiyah-Hitchin) have

appeared in [56, 31, 65, 12, 63], the compact cases are discussed in [34] where a cohomological

obstruction is presented. The first compact heterotic/type I solutions with non-zero fluxes and

constant dilaton to the equations of motion preserving at least one supersymmetry (satisfying (1.4)

and (1.3)) in dimension five are constructed in [23].

In this paper we construct smooth solutions with non vanishing flux and non-constant dilaton

to the Strominger system using the first Pontrjagin form of the (−)-connection on 7-dimensional

complete non-compact manifold equipped with conformally cocalibrated G2 structures of pure type
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coupled with carefully chosen instanton bundle. The source of the construction is the already con-

structed smooth compact solutions to the Strominger system with constant dilaton on nilmanifods

presented in [25] and the ideas outlined there to consider special three-torus bundles over either

conformally T4 or K3 manifold.

Our first family of solutions are complete G2 manifolds which are T3 bundles over conformally

compact asymptotically hyperbolic metric on T4 with conformal boundary at infinity a flat torus

T3. Using the first Pontrjagin form of the (−)-connection together with the first Pontrjagin form

of a carefully chosen instanton we satisfied the anomaly cancellation condition with a negative α′

and a non-constant dilaton which a real slice of an elliptic function of order two.

In Section 5 we present another smooth non-compact complete solution to the Strominger system

using the first Pontrjagin form of the (−)-connection with positive string tension on certain T3

bundles over R4 with non-vanishing torsion, non-trivial instanton and non-constant dilaton. The

non-constant dilaton function here is determined by the fundamental solution of the Laplacian on

R4.

Conventions. The connection 1-forms ωji of a metric connection ∇,∇g = 0 with respect to a

local orthonormal basis {E1, . . . , Ed} are given by ωji(Ek) = g(∇Ek
Ej , Ei), since we write ∇XEj =

ωsj (X)Es.

The curvature 2-forms Ωi
j of ∇ are given in terms of the connection 1-forms ωij by Ωi

j = dωij +

ωik ∧ ωkj , Ωji = dωji + ωki ∧ ωjk, Rlijk = Ωl
k(Ei, Ej), Rijkl = Rsijkgls.

The first Pontrjagin class is represented by the 4-form 8π2p1(∇) =
∑

1≤i<j≤d Ωi
j ∧ Ωi

j .
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2. The supersymmetry equations and the geometric model

Geometrically, the vanishing of the gravitino variation is equivalent to the existence of a non-

trivial real spinor parallel with respect to the metric connection ∇+ with totally skew-symmetric

torsion T = H. The presence of ∇+-parallel spinor leads to restriction of the holonomy group

Hol(∇+) of the torsion connection ∇+.

2.1. Dimension 7. In dimension seven Hol(∇+) has to be contained in the exceptional group G2

[27, 32, 34, 28]. The precise conditions to have a solution to the gravitino Killing spinor equation

in dimension 7 were found in [27]. Namely, there exists a non-trivial parallel spinor with respect to

a G2-connection with torsion 3-form T if and only if there exists an integrable G2-structure Θ, i.e.

d ∗Θ = θ7 ∧ ∗Θ, where θ7 = −1
3 ∗ (∗dΘ ∧Θ) = 1

3 ∗ (∗d ∗Θ ∧ ∗Θ) is the Lee form. In this case, the

connection ∇+ is unique and the torsion 3-form T is given by the formula [27]

H = T =
1

6
(dΘ, ∗Θ) Θ− ∗dΘ + ∗(θ7 ∧Θ).

The necessary conditions to have a solution to the system of dilatino and gravitino Killing spinor

equations (the first two equations in (1.4)) in dimension seven were derived in [32, 27, 28], and the

sufficiency was proved in [27, 28]. The general existence result [27, 28] states that there exists a

non-trivial solution to both dilatino and gravitino Killing spinor equations (the first two equations
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in (1.4)) in dimension 7 if and only if there exists a globally conformal co-calibrated G2-structure

(Θ, g) of pure type and with exact Lee form θ7, i.e. a G2-structure (Θ, g) satisfying the equations

(2.1) d ∗Θ = θ7 ∧ ∗Θ, dΘ ∧Θ = 0, θ7 = −2dφ.

Consequently, the torsion 3-form (the flux H) is given by H = T = − ∗ dΘ − 2 ∗ (dφ ∧ Θ) and

the Riemannian scalar curvature satisfies sg = 8||dφ||2− 1
12 ||T ||

2− 6 δdφ. The equations (2.1) hold

exactly when the G2-structure (Θ̄ = e−
3
2
φΘ, ḡ = e−φg) obeys the equations d∗̄Θ̄ = dΘ̄∧ Θ̄ = 0, i.e.,

it is co-calibrated of pure type.

A geometric model which fits the above structures was proposed in [25] as a certain T3-bundle

over a Calabi-Yau surface. For this, let Γi, 1 ≤ i ≤ 3, be three closed anti-self-dual 2-forms

on a Calabi-Yau surface M4, which represent integral cohomology classes. Denote by ω1 and by

ω2 +
√
−1ω3 the (closed) Kähler form and the holomorphic volume form on M4, respectively. Then,

there is a compact 7-dimensional manifold M1,1,1 which is the total space of a T3-bundle over M4

and has a G2-structure

Θ = ω1 ∧ η1 + ω2 ∧ η2 − ω3 ∧ η3 + η1 ∧ η2 ∧ η3,

solving the first two Killing spinor equations in (1.4) with constant dilaton in dimension 7, where

ηi, 1 ≤ i ≤ 3, is a 1-form on

M1,1,1 such that dηi = Γi, 1 ≤ i ≤ 3.

For any smooth function f on M4, the G2-structure on M1,1,1 given by

Θf = e2f
[
ω1 ∧ η1 + ω2 ∧ η2 − ω3 ∧ η3

]
+ η1 ∧ η2 ∧ η3

solves the first two Killing spinor equations in (1.4) with non-constant dilaton φ = −2f . The metric

has the form

gf = e2fgcy + η1 ⊗ η1 + η2 ⊗ η2 + η3 ⊗ η3.

To achieve a smooth solution to the Strominger system we still have to determine an auxiliary

vector bundle with an instanton and a linear connection on M1,1,1 in order to satisfy the anomaly

cancellation condition (1.3).

2.2. Dimension 5. The existence of ∇+-parallel spinor in dimension 5 determines an almost

contact metric structure and, equivalently, a reduction of the structure group SO(5) to SU(2).

The properties of the almost contact metric structure as well as solutions to gravitino and dilatino

Killing-spinor equations are investigated in [27, 28] and presented in terms of reduction to SU(2)

in [23].

2.2.1. Almost contact structure point of view. We recall that an almost contact metric structure

consists of an odd dimensional manifold M2k+1 equipped with a Riemannian metric g, vector field

ξ of length one, its dual 1-form η as well as an endomorphism ψ of the tangent bundle such that

ψ(ξ) = 0, ψ2 = −id+ η ⊗ ξ, g(ψ., ψ.) = g(., .)− η ⊗ η.

The Reeb vector field ξ is determined by the equations η(ξ) = 1, ξydη = 0, where y denotes the

interior multiplication. The Nijenhuis tensor N , the fundamental form F and the Lee form θ of an

almost contact metric structure are defined by

N = [ψ., ψ.] + ψ2[., .]− ψ[ψ., .]− ψ[., ψ.] + dη ⊗ ξ, F (., .) = g(., ψ.), θ =
1

2
FydF.

It was shown in [28] that the gravitino and the dilatino equation admit a solution in dimension five

if and only if the Nijenhuis tensor is totally skew-symmetric, the Reeb vector field ξ is a Killing
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vector field and the next equalities hold 2dφ = θ, ∗Hdη = −dη, where ∗H denotes the Hodge

operator acting on the 4-dimensional orthogonal complement H of the vector ξ, H = Ker η.

2.2.2. The SU(2)-structure point of view. The reduction of the structure group SO(5) to SU(2)

is described in terms of forms by Conti and Salamon in [18] (see also [31]) as follows: an SU(2)-

structure on a 5-dimensional manifold M is (η, F = ω1, ω2, ω3), where η is a 1-form dual to ξ via

the metric and ωs, s = 1, 2, 3, are 2-forms on M satisfying ωs ∧ ωt = δst v, v ∧ η 6= 0 for some

4-form v, and Xyω1 = Y yω2 ⇒ ω3(X,Y ) ≥ 0. The 2-forms ωs, s = 1, 2, 3, can be chosen to form a

basis of the H-self-dual 2-forms [18].

It was shown in [23] that the first two equations in (1.4) admit a solution in dimension five

exactly when there exists a five dimensional manifold M endowed with an SU(2)-structure (η, F =

ω1, ω2, ω3) satisfying the structure equations:

(2.2) dωs = 2df ∧ ωs, ∗Hdη = −dη, df(ξ) = 0.

The flux H is given by [27, 28]

(2.3) H = T = η ∧ dη + 2dψf ∧ F, where dψf(X) = −df(ψX).

The dilaton φ is equal to φ = 2f .

In other words, the gravitino and dilatino equations in dimension five are satisfied if and only if

the manifold is special conformal to a quasi-Sasaki manifold with H-anti-self-dual exterior derivative

of the almost contact form and the metric has the form

gf = e2fg|H + η ⊗ η.

It was proposed in [25] to investigate S1 bundles over a conformally hyper-Kähler manifold. This

ansatz guaranties solution to the first two equations in (1.4). To achieve a smooth solution to the

Strominger system we still have to determine a linear connection on the tangent bundle and an

auxiliary vector bundle with an SU(2)-instanton, i.e., a connection A with curvature 2-form FA

satisfying

(2.4) (FA)ij(ψEk, ψEl) = (FA)ij(Ek, El),
5∑

k=1

(FA)ij(Ek, ψEk) = 0

so that the anomaly cancellation condition (1.3) is satisfied.

3. The quaternionic Heisenberg group

The seven dimensional quaternionic Heisenberg group G(H) is the connected simply connected

Lie group with a group multiplication [., .] determined by the Lie algebra g(H) with structure

equations

(3.1) dγ1 = dγ2 = dγ3 = dγ4 = 0, dγ5 = γ12 − γ34, dγ6 = γ13 + γ24, dγ7 = γ14 − γ23.

In order to obtain results in dimensions less than seven through contractions of g(H) it will be con-

venient to consider the orbit of G(H) under the natural action of GL(3,R) on the span {γ5, γ6, γ7}.
Accordingly letKA be a seven-dimensional real Lie group with Lie bracket [x, x′]A = A[A−1x,A−1x′]

for A ∈ GL(3,R) defined by a basis of left-invariant 1-forms {e1, . . . , e7} such that ei = γi for

1 ≤ i ≤ 4 and (e5 e6 e7) = A (γ5 γ6 γ7)T . Hence, the structure equations of the Lie algebra KA of

the group KA are

(3.2) de1 = de2 = de3 = de4 = 0, de4+i =

3∑
j=1

aij σj , i = 1, 2, 3,
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where σ1 = e12 − e34, σ2 = e13 + e24, σ3 = e14 − e23 are the three anti-self-dual forms on R4 and

(3.3) A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

We will denote the norm of A by |A|, |A|2 =
∑3

i,j=1 a
2
ij .

Since KA is isomorphic to g(H), if KA is connected and simply connected it is isomorphic to

G(H). Furthermore, any lattice ΓA gives rise to a (compact) nilmanifold MA = KA/ΓA, which is a

T3-bundle over a T4 with connection 1-forms of anti-self-dual curvature on the four torus.

Following [25] we consider the G2 structure on the Lie group KA defined by the 3-form

(3.4) Θ = ω1 ∧ e7 + ω2 ∧ e5 − ω3 ∧ e6 + e567,

where

ω1 = e12 + e34, ω2 = e13 − e24, ω3 = e14 + e23

are the three closed self-dual 2-forms on R4. The corresponding Hodge dual 4-form ∗Θ is given by

(3.5) ∗Θ = ω1 ∧ e56 + ω2 ∧ e67 + ω3 ∧ e57 +
1

2
ω1 ∧ ω1.

It is easy to check using (3.2) and the property σi ∧ ωj = 0 for 1 ≤ i, j ≤ 3 that

(3.6) d ∗Θ = 0, dΘ ∧Θ = 0,

i.e. Θ is co-calibrated of pure type. According to [27, 28] this G2 structure solves the gravitino and

dilatino equations with constant dilaton.

Let f be a smooth function on R4. Following [25] we consider the G2 form given by

(3.7) Θ̄ = e2f
[
ω1 ∧ e7 + ω2 ∧ e5 − ω3 ∧ e6

]
+ e567.

The corresponding metric ḡ on KA has an orthonormal basis of 1-forms given by

(3.8) ē1 = ef e1, ē2 = ef e2, ē3 = ef e3, ē4 = ef e4, ē5 = e5, ē6 = e6, ē7 = e7

and self-dual form ω̄i and anti-self-dual forms σ̄i given by

(3.9) ω̄i = e2fωi, σ̄i = e2fσi, i = 1, 2, 3.

The corresponding Hodge dual 4-form ∗̄Θ̄ is

(3.10) ∗̄Θ̄ = e2f
[
ω1 ∧ e56 + ω2 ∧ e67 + ω3 ∧ e57 +

e2f

2
ω1 ∧ ω1

]
.

It was shown in [25, Theorem 6.1] using (3.6) that

(3.11) d∗̄Θ̄ = 2df ∧ ∗̄Θ̄, dΘ̄ ∧ Θ̄ = 0.

Then the Lie form θ̄ is given by

(3.12) θ̄ = 2df

and the G2 structure Θ̄ solves the gravitino and dilatino equations with non-constant dilaton

φ = −2f [27, 28].

According to [27, 28], the torsion of the (+)-connection ∇+ is the 3-form

(3.13) T = − ∗ dΘ + ∗(θ ∧Θ).

We calculate from (3.2) and (3.7) that

(3.14) dΘ̄ = 2df ∧ Θ̄− 2df ∧ e567 + de567.
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A substitution of (3.14) in (3.13), and using (3.12), gives

(3.15) T̄ = ∗̄(2df ∧ e567 − de567) = e−f
[
− 2f1 ē

234 + 2f2 ē
134 − 2f3 ē

124 + 2f4 ē
123
]

+e−2f
[
(a11 σ̄1 +a12 σ̄2 +a13 σ̄3)∧ ē5 +(a21 σ̄1 +a22 σ̄2 +a23 σ̄3)∧ ē6 +(a31 σ̄1 +a32 σ̄2 +a33 σ̄3)∧ ē7

]
,

where fi = ∂f
∂xi

, 1 ≤ i ≤ 4, and σ̄1 = ē12 − ē34, σ̄2 = ē13 + ē24 and σ̄3 = ē14 − ē23. Letting

fij = ∂2f
∂xj∂xi

, 1 ≤ i, j ≤ 4, a short calculation gives

(3.16) dT̄ = −e−4f
[
4e2f + 2|A|2

]
ē1234 = −

[
4e2f + 2|A|2

]
e1234,

where 4e2f = (e2f )11 + (e2f )22 + (e2f )33 + (e2f )44 is the standard Laplacian on R4.

3.1. The first Pontrjagin form of the (−)-connection. From Koszul’s formula, we have that

the Levi-Civita connection 1-forms (ωḡ)ı̄
j̄

of the metric ḡ are given by

(3.17)
(ωḡ)ı̄

j̄
(ēk) = −1

2

(
ḡ(ēi, [ēj , ēk])− ḡ(ēk, [ēi, ēj ]) + ḡ(ēj , [ēk, ēi])

)
= 1

2

(
dēi(ēj , ēk)− dēk(ēi, ēj) + dēj(ēk, ēi)

)
taking into account ḡ(ēi, [ēj , ēk]) = −dēi(ēj , ēk). With the help of (3.17) we compute the expressions

for the connection 1-forms (ω−)ı̄
j̄

of the connection ∇−,

(3.18) (ω−)ı̄j̄ = (ωḡ)ı̄j̄ −
1

2
(T̄ )ı̄j̄ , where (T̄ )ı̄j̄(ēk) = T̄ (ēi, ēj , ēk).

Now, (3.18), (3.17) and (3.15) show that the possibly non-zero connection 1-forms (ω−)ı̄
j̄

are given

in terms of the basis {ē1, . . . , ē7} by:

(3.19)

(ω−)1̄
2̄

= (ω−)3̄
4̄

= e−f
(
f2 ē

1 − f1 ē
2 + f4 ē

3 − f3 ē
4
)
,

(ω−)1̄
3̄

= −(ω−)2̄
4̄

= e−f
(
f3 ē

1 − f4 ē
2 − f1 ē

3 + f2 ē
4
)
,

(ω−)1̄
4̄

= (ω−)2̄
3̄

= e−f
(
f4 ē

1 + f3 ē
2 − f2 ē

3 − f1 ē
4
)
,

(ω−)1̄
5̄

= e−2f
(
−a11 ē

2 − a12 ē
3 − a13 ē

4
)
, (ω−)1̄

6̄
= e−2f

(
−a21 ē

2 − a22 ē
3 − a23 ē

4
)
,

(ω−)1̄
7̄

= e−2f
(
−a31 ē

2 − a32 ē
3 − a33 ē

4
)
, (ω−)2̄

5̄
= e−2f

(
a11 ē

1 + a13 ē
3 − a12 ē

4
)
,

(ω−)2̄
6̄

= e−2f
(
a21 ē

1 + a23 ē
3 − a22 ē

4
)
, (ω−)2̄

7̄
= e−2f

(
a31 ē

1 + a33 ē
3 − a32 ē

4
)
,

(ω−)3̄
5̄

= e−2f
(
a12 ē

1 − a13 ē
2 + a11 ē

4
)
, (ω−)3̄

6̄
= e−2f

(
a22 ē

1 − a23 ē
2 + a21 ē

4
)
,

(ω−)3̄
7̄

= e−2f
(
a32 ē

1 − a33 ē
2 + a31 ē

4
)
, (ω−)4̄

5̄
= e−2f

(
a13 ē

1 + a12 ē
2 − a11 ē

3
)
,

(ω−)4̄
6̄

= e−2f
(
a23 ē

1 + a22 ē
2 − a21 ē

3
)
, (ω−)4̄

7̄
= e−2f

(
a33 ē

1 + a32 ē
2 − a31 ē

3
)
.
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A long straightforward calculation using (3.19) gives in terms of the basis {ē1, . . . , ē7} the fol-

lowing formulas for the curvature 2-forms (Ω−)ī
j̄

of the connection ∇−:

(Ω−)1̄
2̄

= −e−2f [f11 + f22 + 2f2
3 + 2f2

4 + (a2
11 + a2

21 + a2
31)e−2f ] ē12

+e−2f [f14 − f23 − 2f1f4 + 2f2f3 − (a11a12 + a21a22 + a31a32)e−2f ] σ̄2

−e−2f [f13 + f24 − 2f1f3 − 2f2f4 + (a11a13 + a21a23 + a31a33)e−2f ] σ̄3

−e−2f [f33 + f44 + 2f2
1 + 2f2

2 + (a2
12 + a2

22 + a2
32 + a2

13 + a2
23 + a2

33)e−2f ] ē34,

(Ω−)1̄
3̄

= −e−2f [f14 + f23 − 2f1f4 − 2f2f3 + (a11a12 + a21a22 + a31a32)e−2f ] σ̄1

−e−2f [f11 + f33 + 2f2
2 + 2f2

4 + (a2
12 + a2

22 + a2
32)e−2f ] ē13

+e−2f [f12 − f34 − 2f1f2 + 2f3f4 + (a12a13 + a22a23 + a32a33)e−2f ] σ̄3

+e−2f [f22 + f44 + 2f2
1 + 2f2

3 + (a2
11 + a2

21 + a2
31 + a2

13 + a2
23 + a2

33)e−2f ] ē24,

(Ω−)1̄
4̄

= e−2f [f13 − f24 − 2f1f3 + 2f2f4 − (a11a13 + a21a23 + a31a33)e−2f ] σ̄1

−e−2f [f12 + f34 − 2f1f2 − 2f3f4 + (a12a13 + a22a23 + a32a33)e−2f ] σ̄2

−e−2f [f11 + f44 + 2f2
2 + 2f2

3 + (a2
13 + a2

23 + a2
33)e−2f ] ē14

−e−2f [f22 + f33 + 2f2
1 + 2f2

4 + (a2
11 + a2

21 + a2
31 + a2

12 + a2
22 + a2

32)e−2f ] ē23,

(Ω−)1̄
5̄

= 2e−3f [(a11f1 − a13f3 + a12f4) σ̄1 + (a12f1 + a13f2 − a11f4) σ̄2 + (a13f1 − a12f2 + a11f3) σ̄3] ,

(Ω−)1̄
6̄

= 2e−3f [(a21f1 − a23f3 + a22f4) σ̄1 + (a22f1 + a23f2 − a21f4) σ̄2 + (a23f1 − a22f2 + a21f3) σ̄3] ,

(Ω−)1̄
7̄

= 2e−3f [(a31f1 − a33f3 + a32f4) σ̄1 + (a32f1 + a33f2 − a31f4) σ̄2 + (a33f1 − a32f2 + a31f3) σ̄3] ,

(Ω−)2̄
3̄

= e−2f [f13 − f24 − 2f1f3 + 2f2f4 + (a11a13 + a21a23 + a31a33)e−2f ] σ̄1

−e−2f [f12 + f34 − 2f1f2 − 2f3f4 − (a12a13 + a22a23 + a32a33)e−2f ] σ̄2

−e−2f [f11 + f44 + 2f2
2 + 2f2

3 + (a2
11 + a2

21 + a2
31 + a2

12 + a2
22 + a2

32)e−2f ] ē14

−e−2f [f22 + f33 + 2f2
1 + 2f2

4 + (a2
13 + a2

23 + a2
33)e−2f ] ē23,

(Ω−)2̄
4̄

= e−2f [f14 + f23 − 2f1f4 − 2f2f3 − (a11a12 + a21a22 + a31a32)e−2f ] σ̄1

+e−2f [f11 + f33 + 2f2
2 + 2f2

4 + (a2
11 + a2

21 + a2
31 + a2

13 + a2
23 + a2

33)e−2f ] ē13

−e−2f [f12 − f34 − 2f1f2 + 2f3f4 + (a12a13 + a22a23 + a32a33)e−2f ] σ̄3

−e−2f [f22 + f44 + 2f2
1 + 2f2

3 + (a2
12 + a2

22 + a2
32)e−2f ] ē24,

(Ω−)2̄
5̄

= 2e−3f [(a11f2 − a12f3 − a13f4) σ̄1 − (a13f1 − a12f2 − a11f3) σ̄2 + (a12f1 + a13f2 + a11f4) σ̄3] ,

(Ω−)2̄
6̄

= 2e−3f [(a21f2 − a22f3 − a23f4) σ̄1 − (a23f1 − a22f2 − a21f3) σ̄2 + (a22f1 + a23f2 + a21f4) σ̄3] ,

(Ω−)2̄
7̄

= 2e−3f [(a31f2 − a32f3 − a33f4) σ̄1 − (a33f1 − a32f2 − a31f3) σ̄2 + (a32f1 + a33f2 + a31f4) σ̄3] ,

(Ω−)3̄
4̄

= −e−2f [f11 + f22 + 2f2
3 + 2f2

4 + (a2
12 + a2

22 + a2
32 + a2

13 + a2
23 + a2

33)e−2f )ē12

+e−2f [f14 − f23 − 2f1f4 + 2f2f3 + (a11a12 + a21a22 + a31a32)e−2f ] σ̄2

−e−2f [f13 + f24 − 2f1f3 − 2f2f4 − (a11a13 + a21a23 + a31a33)e−2f ] σ̄3

−e−2f [f33 + f44 + 2f2
1 + 2f2

2 + (a2
11 + a2

21 + a2
31)e−2f )ē34,

(Ω−)3̄
5̄

= 2e−3f [(a13f1 + a12f2 + a11f3) σ̄1 − (a11f2 − a12f3 + a13f4) σ̄2 − (a11f1 − a13f3 − a12f4) σ̄3] ,

(Ω−)3̄
6̄

= 2e−3f [(a23f1 + a22f2 + a21f3) σ̄1 − (a21f2 − a22f3 + a23f4) σ̄2 − (a21f1 − a23f3 − a22f4) σ̄3] ,

(Ω−)3̄
7̄

= 2e−3f [(a33f1 + a32f2 + a31f3) σ̄1 − (a31f2 − a32f3 + a33f4) σ̄2 − (a31f1 − a33f3 − a32f4) σ̄3] ,
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(Ω−)4̄
5̄

= 2e−3f [−(a12f1 − a13f2 − a11f4) σ̄1 + (a11f1 + a13f3 + a12f4) σ̄2 − (a11f2 + a12f3 − a13f4) σ̄3] ,

(Ω−)4̄
6̄

= 2e−3f [−(a22f1 − a23f2 − a21f4) σ̄1 + (a21f1 + a23f3 + a22f4) σ̄2 − (a21f2 + a22f3 − a23f4) σ̄3] ,

(Ω−)4̄
7̄

= 2e−3f [−(a32f1 − a33f2 − a31f4) σ̄1 + (a31f1 + a33f3 + a32f4) σ̄2 − (a31f2 + a32f3 − a33f4) σ̄3] ,

(Ω−)5̄
6̄

= 2e−4f [(a12a23 − a13a22) σ̄1 − (a11a23 − a13a21) σ̄2 + (a11a22 − a12a21) σ̄3] ,

(Ω−)5̄
7̄

= 2e−4f [(a12a33 − a13a32) σ̄1 − (a11a33 − a13a31) σ̄2 + (a11a32 − a12a31) σ̄3] ,

(Ω−)6̄
7̄

= 2e−4f [(a22a33 − a23a32) σ̄1 − (a21a33 − a23a31) σ̄2 + (a21a32 − a22a31) σ̄3] .

A long calculation based on the formulas for the curvature 2-form (Ω−)ī
j̄

of ∇− gives

Proposition 3.1. The first Pontrjagin form of ∇− is a scalar multiple of e1234 given by

(3.20) π2p1(∇−) =

[
F2[f ] +44f −

3

8
|A|24e−2f

]
e1234,

where F2[f ] is the 2-Hessian of f , i.e., the sum of all principle 2 × 2-minors of the Hessian, and

44f = div(|∇f |2∇f) is the 4-Laplacian of f .

The above Proposition shows, in particular, that even though the curvature 2-forms of ∇− are

quadratic in the gradient of the dilaton, the Pontrjagin form of ∇− is also quadratic in these terms.

Furthermore, if f depends on two of the variables then F2[f ] = det(Hessf) while if f is a function

of one variable F2[f ] vanishes.

4. A conformally compact solution with negative α′

In this section we give our first main result. Recall that KA is the connected simply connected

Lie group with Lie algebra KA determined by (3.2). Due to the results recalled in Section 2.1 the

remaining part is to solve the anomaly cancellation condition. This we will achieve for the G2

structure (3.7) with the torsion term (3.16), the Pontrjagin form (3.20) of the ∇− connection, and

the G2-instanton defined below.

Proposition 4.1. Let DΛ, Λ = (λij) ∈ gl3(R), be the linear connection on the Lie group KA whose

possibly non-zero 1-forms are given as follows

(ωDΛ)1̄
2̄

= −(ωDΛ)2̄
1̄

= −(ωDΛ)3̄
4̄

= (ωDΛ)4̄
3̄

= λ11 ē
5 + λ12 ē

6 + λ13 ē
7,

(ωDΛ)1̄
3̄

= −(ωDΛ)3̄
1̄

= (ωDΛ)2̄
4̄

= −(ωDΛ)4̄
2̄

= λ21 ē
5 + λ22 ē

6 + λ23 ē
7,

(ωDΛ)1̄
4̄

= −(ωDΛ)4̄
1̄

= −(ωDΛ)2̄
3̄

= (ωDΛ)3̄
2̄

= λ31 ē
5 + λ32 ē

6 + λ33 ē
7.

Then, DΛ is a G2-instanton with respect to the G2 structure defined by (3.7) which preserves the

metric if and only if rank(Λ) ≤ 1.

Proof. Let us use the notation Λijkl = λikλjl − λjkλil = det

(
λik λil
λjk λjl

)
for the 2 × 2 minors of

Λ. A direct calculation using (3.2) shows that the possibly non-zero curvature forms (ΩDΛ)ı̄
j̄

of the
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connection DΛ are:

(ΩDΛ)1̄
2̄

= −(ΩDΛ)2̄
1̄

= −(ΩDΛ)3̄
4̄

= (ΩDΛ)4̄
3̄

= e−2f (a11λ11 + a21λ12 + a31λ13) σ̄1

+e−2f (a12λ11 + a22λ12 + a32λ13) σ̄2 + e−2f (a13λ11 + a23λ12 + a33λ13) σ̄3

+ 2Λ2312 ē
56 + 2Λ2313 ē

57 + 2Λ2323 ē
67,

(ΩDΛ)1̄
3̄

= −(ΩDΛ)3̄
1̄

= (ΩDΛ)2̄
4̄

= −(ΩDΛ)4̄
2̄

= e−2f (a11λ21 + a21λ22 + a31λ23) σ̄1

+e−2f (a12λ21 + a22λ22 + a32λ23) σ̄2 + e−2f (a13λ21 + a23λ22 + a33λ23) σ̄3

− 2Λ1312 ē
56 − 2Λ1313 ē

57 − 2Λ1323 ē
67,

(ΩDΛ)1̄
4̄

= −(ΩDΛ)4̄
1̄

= −(ΩDΛ)2̄
3̄

= (ΩDΛ)3̄
2̄

= e−2f (a11λ31 + a21λ32 + a31λ33) σ̄1

+e−2f (a12λ31 + a22λ32 + a32λ33) σ̄2 + e−2f (a13λ31 + a23λ32 + a33λ33) σ̄3

+ 2Λ1212 ē
56 + 2Λ1213 ē

57 + 2Λ1223 ē
67.

Now, it is straightforward to see that DΛ satisfies (1.5) if and only if all the 2 × 2 minors Λijkl of

the matrix Λ vanish. Therefore, DΛ is a G2-instanton if and only rank(Λ) ≤ 1. �

Corollary 4.2. For Λ = (λij) ∈ gl3(R) a matrix of rank one, let DΛ be the G2-instanton defined

in Proposition 4.1. Then, the first Pontrjagin form p1(DΛ) of the G2-instanton DΛ is given by

(4.1) 8π2p1(DΛ) = −4λ2 e1234,

where λ = |ΛA| is the norm of the product matrix ΛA.

Proof. Since the 2× 2 minors Λijkl are all zero, the formulas for the curvature forms (ΩDΛ)ī
j̄

given

in the proof of Proposition 4.1 imply the claimed identity.

�

We turn to the proof of our first main result.

Theorem 4.3. The conformally compact manifold M7 = (Γ\KA, Θ̄,∇−, DΛ, f) is a G2-manifold

which solves the Strominger system with non-constant dilaton f , non-trivial flux H = T̄ , non-flat

instanton DΛ using the first Pontrjagin form of ∇− and negative α′. The dilaton f depends on one

variable and is determined as a real slice of the Weierstrass’ elliptic function.

The conformally compact manifold M7 = (Γ\KA, Θ̄,∇−, DΛ, f) satisfies the heterotic equations

of motion (1.2) up to first order of α′.

Proof. By the construction in Section 2.1 we are left with solving the anomaly cancellation condition

dT̄ = α′

4 8π2
(
p1(∇−) − p1(DΛ)

)
, which in our case taking into account (3.16), (3.20) and (4.1)

becomes the single non-linear equation

(4.2) 4e2f + 2|A|2 +
α′

4

[
8F2[f ] + 844f − 3|A|24e−2f + 4λ2

]
= 0.

Up to relabelling the constants, this is the same equation as the one obtained through the anomaly

cancellation that appeared in [26, Section 4.2]. Accordingly, we assume that the function f depends

on one variable, f = f(x1), and for a negative α′ we choose 2|A|2 + α′λ2 = 0, i.e., we let α′ = −α2

so that 2|A|2 = α2λ2. This simplifies (4.2) to the ordinary differential equation

(4.3)
(
e2f
)′

+
3

4
α2|A|2

(
e−2f

)′
− 2α2f ′3 = C0 = const.

A solution of the last equation for C0 = 0 was found in [26, Section 4.2]. For ease of reading

we repeat the key steps of the derivation in order to obtain a seven dimensional solution of the
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Strominger system. The substitution u = α−2e2f allows us to write (4.3) in the form(
e2f
)′

+
3

4
α2|A|2

(
e−2f

)′
− 2α2f ′3 =

α2u′

4u3

(
4u3 − 3

|A|2

α2
u− u′2

)
.

For C0 = 0 we shall solve the following ordinary differential equation for the function u = u(x1) > 0

(4.4) u′2 = 4u3 − 3
|A|2

α2
u = 4u (u− d) (u+ d) , d =

√
3|A|2/α.

Replacing the real derivative with the complex derivative leads to the Weierstrass’ equation

(4.5)

(
dP

dz

)2

= 4P (P− d) (P + d)

for the doubly periodic Weierstrass P function with a pole at the origin. As well known, [21] and

[1], near the origin P has the expansion

P(z) =
1

z2
+
d2

5
z2 + d1z

6 + · · · ,

which has no z4 term and only even powers of z. Furthermore, see [21] and [1], letting τ± be the

basic half-periods such that τ+ is real and τ− is purely imaginary we have that P is real valued on

the lines Re z = mτ+ or Im z = imτ−, m ∈ Z. In the fundamental region centered at the origin,

where P has a pole of order two, we have that P(z) decreases from +∞ to a to 0 to −a to −∞ as

z varies along the sides of the half-period rectangle from 0 to τ+ to τ+ + τ− to τ− to 0.

Thus, u(x1) = P(x1) defines a non-negative 2τ+-periodic function with singularities at the points

2nτ+, n ∈ Z, which solves the real equation (4.4). From the Laurent expansion of the Weierstrass’

function it follows

u(x1) =
1

(x1)2

(
1 +

d2

5
(x1)4 + · · ·

)
.

By construction, f = 1
2 ln(α2u) is a periodic function with singularities on the real line which is a

solution to equation (4.2). Therefore the G2 structure defined by Θ̄ descends to the 7-dimensional

nilmanifold M7 = Γ\KA with singularity, determined by the singularity of u, where KA is the

2-step nilpotent Lie group with Lie algebra KA, defined by (3.2), and Γ is a lattice with the same

period as f , i.e., 2τ+ in all variables. In fact, as seen from the asymptotic behavior of u, M7 is the

total space of a T3 bundle over the asymptotically hyperbolic manifold M4 with metric

ḡH = u(x1)
(
(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2

)
,

which is a conformally compact 4-torus with conformal boundary at infinity a flat 3-torus. Thus,

we conclude that there is a complete solution with non-constant dilaton, non-trivial instanton and

flux and with a negative α′ parameter.

The last statement follows from the fact that the (−)-connection is an instanton up to the first

order of α′. This completes the proof of Theorem 4.3. �

From the apparent Z2-symmetry of u determined by the symmetry with respect to the line

x1 = τ+ we also obtain a solution on the quotient M7/Z2.

5. A complete solution with positive α′

In this section we exhibit a solution of the Strominger system using again the G2 structure (3.7)

by solving the anomaly cancellation condition with torsion term (3.16), the Pontrjagin form (3.20)

of the ∇− connection, and the G2-instanton defined with the help of Lemma 5.1.
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As usual, the (±)-connections of the G2 structure Θ̄ are defined by the formula ∇± = ∇ḡ ± 1
2 T̄ ,

where ∇ḡ is the Levi-Civita connection of the metric ḡ and the torsion is determined in (3.15). The

curvature of the connections ∇± are denoted by R±.

Lemma 5.1. The (−)-connection of the G2 structure Θ̄ is a G2 instanton with respect to Θ̄ if and

only if the torsion 3-form is closed, dT̄ = 0, i.e. the dilaton function f satisfies the equality

(5.1) 4e2f + 2|A|2 = 0.

Proof. Let {ē1, . . . , ē7} be the orthonormal basis dual to {ē1, . . . , ē7}. Using (1.6) we investigate

the G2 instanton condition (1.5) for R− as follows

(5.2)
0 =

∑7
i,j=1R

−(ēi, ēj , ēl, ēm)Θ̄(ēi, ēj , ēk) =
∑7

i,j=1

[
R+ − dT̄

]
(ēi, ēj , ēl, ēm)Θ̄(ēi, ēj , ēk)

= −
∑7

i,j=1 dT̄ (ēi, ēj , ēl, ēm)Θ̄(ēi, ēj , ēk),

where we used the fact that the holonomy of ∇+ is contained in G2, i.e.∑7
i,j=1R

+(ēi, ēj , ēl, ēm)Θ̄(ēi, ēj , ēk) = 0. Now, applying (3.16) and (3.7) we conclude that

(5.2) is satisfied if and only if (5.1) holds.

�

Let DB be the ∇− connection obtained by replacing A with the matrix B in Lemma 5.1, but

allowing B to be singular, B ∈ gl3(R). Hence, the connection DB is a G2-instanton with respect

to the G2 structure defined by (3.7) iff the dilaton function satisfies

(5.3) 4e2f = −2|B|2.

Equation (3.20) shows that the difference between the first Pontrjagin forms of ∇− and DB is

given by the formula

(5.4) 8π2
(
p1(∇−)− p1(DB)

)
= −3

(
|A|2 − |B|2

)(
4e−2f

)
e1234.

Therefore, recalling (3.16) and taking into account (5.4), the anomaly cancellation condition is

dT̄ − α′

4
8π2
(
p1(∇−) − p1(DB)

)
= −

[
4e2f + 2|A|2 − 3

4
α′
(
|A|2 − |B|2

)(
4e−2f

)]
e1234 = 0

coupled with (5.3). Notice that at this point the analysis can proceed exactly as in [26, Section 5.2].

As a result we obtain the following results depending on the |A|2 − |B|2 being zero or non-zero.

For B = O, where O is the zero matrix in gl3(R), and a fixed e ∈ R4 we let

(5.5) e2f =
3α′

4|x− e|2
, x ∈ R4.

Using logarithmic radial coordinates near the singularity (as e.g. in [15]) it follows that the 4−D
metric induced on R4 is actually complete. In fact, taking the singularity at the origin, in the

coordinate t =
√

3α′/2 ln
(
4|x|2/3α′

)
= −
√

3α′ f , we have that the dilaton and the 4 −D metric

can be expressed as follows

f = −t
√

3α′, ḡH =
4∑
i=1

e2f (ei)2 = dt2 + 3α′ds2
3,

where ds2
3 is the metric on the unit three-dimensional sphere in the four dimensional Euclidean

space. The completeness of the horizontal metric implies that the metric ḡ = ḡH+(e5)2+(e6)2+(e7)2

is also complete. Thus, we proved
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Theorem 5.2. The non-compact complete simply connected manifold (KA, Θ̄,∇−,DO, f) described

above is a complete G2 manifold which solves the Strominger system with non-constant dilaton f

determined by (5.5), non-zero flux H = T̄ and non-flat instanton DO using the first Pontrjagin

form of ∇− and positive α′. Furthermore, (KA, Θ̄,∇−,DO, f) also solves the heterotic equations of

motion (1.2) up to the first order of α′.

On the other hand, in the case |A|2 = |B|2 6= 0 the anomaly condition is trivially satisfied for any

α′, provided the torsion is closed, see Lemma 5.1. In this case the solution is given by the solutions

of (5.1). Furthermore, both ∇− and DB are G2-instantons. For example, a particular solution is

obtained by taking

e2f =
|A|2

4
(1− |x|2)

defined in the unit ball.

6. Solutions through contractions

In this section we consider appropriate contractions of the quaternion Heisenberg algebra, the

geometric structures, the partial differential equations and their solutions found in sections 4 and 5

in the G2-heterotic case, and we show that they converge to the heterotic solutions on 6-dimensional

inner non-Kähler spaces constructed in [26]. Furthermore, this method allows us to find new

heterotic solutions with non-constant dilaton in dimension 5.

6.1. Six dimensional solutions. Using the classification results of [68] it was shown in [26], that

the 2-step nilmanifolds which are T2 bundles over T4 with connection 1-forms of anti-self-dual

curvature are precisely the invariant balanced Hermitian metrics with Abelian complex structure

J , i.e., [JX, JY ] = [X,Y ]. Moreover, in such case the Lie algebra underlying M is isomorphic

to h3 or h5. Here, h3 is the Lie algebra underlying the nilmanifold given by the product of the

5-dimensional generalized Heisenberg nilmanifold by S1, while h5 is the Lie algebra underlying the

Iwasawa manifold. The structure equations of the Lie algebra h5 are

(6.1) de1 = de2 = de3 = de4 = 0, de5 = b σ2, de6 = a σ1 − b σ3,

while h3 is given by

de1 = de2 = de3 = de4 = 0, de5 = 0, de6 = a σ1,

where a, b ∈ R∗ and σi are the anti-self-dual forms on R4, see after (3.2). Clearly h3 is a contraction

of h5 and both are contractions of g(H), see (3.2).

It is a remarkable fact that the geometric structures, the partial differential equations and their

solutions found in sections 4 and 5 converge to the heterotic solutions on 6-dimensional inner

non-Kähler spaces found in [26] as we explain next in details for h5. The SU(3) structure and

corresponding solution based on h3 is handled analogously.

Clearly h5 is a contraction of KA when ε→ 0 using, for example,

Aε
def
=

0 b 0

a 0 −b
0 0 ε

 .

Notice that by (3.8) we have ē7 = e7
ε = εγ7 → 0 as ε → 0. With the above choice of Aε we write

the G2-form (3.7) in the usual way as

Θ̄ε = F̄ ∧ e7
ε + Ψ̄+, F̄ = e2fω1 + e56, Ψ̄+ = e2f (ω2 ∧ e5 − ω3 ∧ e6)
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using (3.8) and indicating with subscript ε the dependence on ε through the matrix Aε. In addition,

we let Ψ̄− = e2f (ω2 ∧ e6 +ω3 ∧ e5). In the limit ε→ 0, the forms F̄ , Ψ̄± define an SU(3) structure

(F̄ , Ψ̄±) on a six dimensional space, obtained through the ansatz proposed in [37] from a T2 bundle

over T4 (corresponding to f = 0), see [26, Section 3.2] for details in the case of h5. Therefore, this

SU(3) structure solves the first two Killing spinor equations. Furthermore, the Pontrjagin form of

the ∇− connection is given again by (3.20) as shown in [26, Section 3]. In fact, the connection forms

(3.8) and the corresponding curvature 2-forms (notice that (Ω−ε )ī
7̄
→ 0 for all i) converge to those

of the ∇− connection of the SU(3) case. Similarly, the seven dimensional anomaly cancellation

conditions of Sections 4 and 5 turn into the anomaly cancellation conditions for the corresponding

six dimensional structures. As a consequence we obtain the six-dimensional solutions with non-

constant dilaton found in [26].

6.2. Five dimensional solutions. We begin with recalling the five dimensional Lie algebra h(2, 1)

[23] with structure equations

(6.2) dej = 0, j = 1, 2, 3, 4, de5 =

3∑
i=1

ai σi, ai ∈ R, (a1, a2, a3) 6= (0, 0, 0).

Without loss of generality we will suppose next that a1 6= 0. Clearly h(2, 1) is a contraction of KA,

see (3.2), using, for example,

Aε
def
=

a1 a2 a3

0 ε 0

0 0 ε


and letting ε→ 0. Notice that by (3.8) we have

(6.3) ēi = eiε = εγi → 0, i = 6, 7

when ε→ 0.

It was shown in [23, Section 4] that the SU(2)-structure (e5, ω1, ω2, ω3) is the unique family of

left invariant solutions (with constant dilaton) to the first two Killing spinor equations on a five

dimensional Lie group. Furthermore, [23] continued on showing that for ∇ = ∇+ or ∇ = ∇g and

suitably defined instantons one can obtain compact (nilmanifolds) heterotic solutions with constant

dilaton. However, since the first Pontrjagin form of the connection ∇− vanishes there is no compact

solution with constant dilaton to the heterotic supersymmetry equations satisfying the anomaly

cancellation condition with ∇ = ∇−.

From the current point of view, we consider the case ∇ = ∇− as a contraction limit of the

G2-solutions in Sections 4 and 5. As a result we will obtain five dimensional solutions with non-

constant dilaton. Indeed, applying (6.3) and (6.2) in (3.15) we obtain the expression for the torsion

in dimension five described in (2.3). In other words, the torsion in dimension five is obtained

as a dimensional reduction of the torsion in dimension seven. Furthermore, the Pontrjagin form

of the ∇− connection is given again by (3.20) taking into account (6.2). In fact, the connection

forms (3.8) and the corresponding curvature 2-forms (notice that (Ω−ε )ī
6̄
→ 0 and (Ω−ε )ī

7̄
→ 0 for

all i) converge to those of the ∇− connection of the SU(2) structure in dimension five. Similarly,

the seven dimensional anomaly cancellation conditions of Sections 4 and 5 turn into the anomaly

cancellation conditions for the corresponding five dimensional structures. At this point we turn to

the construction of the five dimensional solutions with non-constant dilaton.

The five dimensional version of Theorem 4.3 is Theorem 6.2 below. In the statement of Theorem

6.2 we use (3.9), i.e., ω̄i = e2fωi, i = 1, 2, 3, 4. Let H(2, 1) be the five dimensional connected simply

connected Lie group H(2, 1) with Lie algebra h(2, 1), We consider a lattice Γ in the Lie group

H(2, 1) with period 2τ+ in all variables, where 2τ+ is the period of the Weirstrass’ P function (4.5).
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The SU(2) instanton DΛ below corresponds to the instanton obtained from the one in Proposition

4.1 by setting the last two columns equal to zero or letting ε→ 0, see (6.3).

Lemma 6.1. Let DΛ, Λ = (λ1, λ2, λ3) ∈ R3, be the linear connection on the Lie group H(2, 1)

whose possibly non-zero 1-forms are given as follows

(ωDΛ)1̄
2̄

= −(ωDΛ)2̄
1̄

= −(ωDΛ)3̄
4̄

= (ωDΛ)4̄
3̄

= λ1 ē
5,

(ωDΛ)1̄
3̄

= −(ωDΛ)3̄
1̄

= (ωDΛ)2̄
4̄

= −(ωDΛ)4̄
2̄

= λ2 ē
5,

(ωDΛ)1̄
4̄

= −(ωDΛ)4̄
1̄

= −(ωDΛ)2̄
3̄

= (ωDΛ)3̄
2̄

= λ3 ē
5.

Then, DΛ is an SU(2)-instanton with respect to the SU(2) structure defined by (e5, ω̄1, ω̄2, ω̄3).

We skip the proof which is similar to the proof of Proposition 4.1. The five dimensional version

of Theorem 4.3 follows.

Theorem 6.2. Let (e5, ω̄1, ω̄2, ω̄3) be the SU(2) structure on the Lie group H(2, 1). The conformally

compact five manifold M5 = (Γ\H(2, 1), η5, ω̄1, ω̄2, ω̄3,∇−, DΛ, f) is a conformally quasi-Sasakian

five manifold which solves the Strominger system with non-constant dilaton f , non-trivial flux

H = T̄ and non-flat instanton DΛ using the first Pontrjagin form of ∇− and negative α′. The

dilaton f depends on one variable and is determined as a real slice of the Weierstrass’ elliptic

function. In addition, M5 satisfies the heterotic equations of motion (1.2) up to first order of α′.

In order to obtain the five dimensional version of Theorem 5.2 we use the following property of

the ∇− connection whose 1-forms are

(ω−)1̄
2̄

= (ω−)3̄
4̄

= e−f
(
f2 ē

1 − f1 ē
2 + f4 ē

3 − f3 ē
4
)
,

(ω−)1̄
3̄

= −(ω−)2̄
4̄

= e−f
(
f3 ē

1 − f4 ē
2 − f1 ē

3 + f2 ē
4
)
,

(ω−)1̄
4̄

= (ω−)2̄
3̄

= e−f
(
f4 ē

1 + f3 ē
2 − f2 ē

3 − f1 ē
4
)
,

(ω−)1̄
5̄

= e−2f
(
−a11 ē

2 − a12 ē
3 − a13 ē

4
)
, (ω−)2̄

5̄
= e−2f

(
a11 ē

1 + a13 ē
3 − a12 ē

4
)
,

(ω−)3̄
5̄

= e−2f
(
a12 ē

1 − a13 ē
2 + a11 ē

4
)
, (ω−)4̄

5̄
= e−2f

(
a13 ē

1 + a12 ē
2 − a11 ē

3
)
,

which are obtained from (3.19) taking into account (6.3).

Lemma 6.3. The (−)-connection of the SU(2) structure (e5, ω̄1, ω̄2, ω̄3) is an SU(2) instanton iff

the torsion 3-form is closed, dT̄ = 0, i.e., the dilaton function f satisfies equation (5.1).

The proof of Lemma 6.3 is very similar to the proof of Lemma 5.1 and involves a direct calculation.

Let DO be the SU(2) instanton constructed by Lemma 6.3 in the case A = O-the zero:

Theorem 6.4. The non-compact simply connected five manifold (H(2, 1), e5, ω̄1, ω̄2, ω̄3,∇−, DO, f)

is a complete conformally quasi-Sasakian five manifold which solves the Strominger system with

non-constant dilaton f determined by (5.5), non-trivial flux H = T̄ , non-flat instanton DO using

the first Pontrjagin form of ∇− and positive α′.

The complete five manifold (H(2, 1), e5, ω̄1, ω̄2, ω̄3,∇−, DO, f) satisfies the heterotic equations of

motion (1.2) up to first order of α′.
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[4] B. Andreas, M. Garćıa-Fernández, Solutions of the Strominger system via stable bundles on Calabi-Yau threefolds,

Commun. Math. Phys. 332 (2014), 1381–1383. 2
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(Ugarte) Departamento de Matemáticas - I.U.M.A., Universidad de Zaragoza, Campus Plaza San

Francisco, 50009 Zaragoza, Spain

E-mail address: ugarte@unizar.es

(Dimiter Vassilev) Department of Mathematics and Statistics, University of New Mexico, Albu-

querque, New Mexico, 87131-0001

E-mail address: vassilev@math.unm.edu


	1. Introduction
	2. The supersymmetry equations and the geometric model
	2.1. Dimension 7
	2.2. Dimension 5

	3. The quaternionic Heisenberg group
	3.1. The first Pontrjagin form of the (-)-connection

	4. A conformally compact solution with negative 
	5. A complete solution with positive 
	6. Solutions through contractions
	6.1. Six dimensional solutions
	6.2. Five dimensional solutions

	References

