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Groups of Heisenberg and Iwasawa types 47


Here, A(S) denotes the group of automorphisms of S (or s) that preserve


the left-invariant metric on S. The spaces constructed in this manner be-


came known as Damek-Ricci spaces, see [22] for more details. It is worth


recalling [57] where it is shown that the just described solvable extension of


H-type groups, which are not of Iwasawa type, provide noncompact counter-


examples to a conjecture of Lichnerowicz, which asserted that harmonic


Riemannian spaces must be rank one symmetric spaces.


The Heisenberg type groups allowed for the generalization of many im-


portant concepts in harmonic analysis and geometry, see [108], [109], [115],


[58] and the references therein, in addition to the above cited papers. An-


other milestone was achieved in [49], which allowed for avoiding the classifi-


cation rank one symmetric spaces and the heavy machinery of the semisim-


ple Lie group theory, when studying the non-compact symmetric spaces


of real rank one. Specifically, in [49] the authors considered the H-type


algebras satisfying the so called J2 condition defined in [49], see also [50].


Definition 2.2.4. We say that the H-type algebra g satisfies the J2


condition if for every ξ2, ξ
′
2 ∈ V2 which are orthogonal to each other,


< ξ2, ξ
′
2 > = 0, there exists ξ′′2 ∈ V2 such that


J(ξ2)J(ξ
′
2) = J(ξ′′2 ). (2.18)


The key result here is the following Theorem of [49], see also [47], which can


be used to show that if N is an H-type group, then the Riemannian space


S = NA is symmetric iff the Lie algebra n of N satisfies the J2 condition,


see [[49], Theorem 6.1].


Theorem 2.2.5. If n is an H-type algebra satisfying the J2-condition, then


n is an Iwasawa type algebra. In other words, the H-type groups N whose


Lie algebras satisfy the J2 condition are precisely the groups that arise as


the nilpotent component in the Iwasawa decomposition of a semisimple Lie


group of real rank one.


This fundamental result has many consequences in allowing a unified proof


of some classical results on symmetric spaces, in addition to some beautiful


properties of extensions of the classical Cayley transform, inversion and


Kelvin transform, which are of a particular importance for our goals.
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Quaternionic contact manifolds 111


Thus, we may regard RBC on H as an endomorphism of H and we have


RBC ∈ sp(n)⊕ sp(1).


As usual, we write R(A,B,C,D) = g(RA,BC,D).


Definition 4.3.1. The Ricci 2-forms ρi are defined by


ρi(B,C) =
1


4n
R(B,C, ea, Iiea).


We decompose the curvature on H into sp(n)⊕sp(1)-parts. Let R0
BC ∈


sp(n) denote the sp(n)-component.


Lemma 4.3.2.


a) The curvature of the Biquard connection decomposes on H as follows


RBCX = R0
BCX + ρ1(B,C)I1X + ρ2(B,C)I2X + ρ3(B,C)I3X,


RBCIiX − IiRBCX = 2(−ρj(B,C)IkX + ρk(B,C)IjX), (4.60)


ρi(B,C) =
1


2
(dαi + αj ∧ αk)(B,C), (4.61)


where the connection 1-forms αs are determined in (4.16), (4.36) and


(4.42).


b) The curvature of the Biquard connection on V is determined by


R(B,C, ξi, ξj) = 2ρk(B,C). (4.62)


Proof. The first two identities follow directly from the definitions. Using


(4.10), we calculate that on H we have


RBCIi − IiRBC = ∇B∇CIi −∇c∇BIi −∇[B,C]Ii


= ∇B(αk(C)Ij − αj(C)Ik)−∇C(αk(B)Ij − αj(B)Ik)


− (αk([B,C])Ij − αj([B,C])Ik)


= −(dαj + αk ∧ αi)(B,C)Ik + (dαk + αi ∧ αj)(B,C)Ij .
Now (4.61) follows from (4.60).


Similarly, using (4.10) and (4.61), we obtain


R(B,C)ξi = −(dαj + αk ∧ αi)(B,C)ξk + (dαk + αi ∧ αj)(B,C)ξj
= −2ρj(B,C)ξk + ρk(B,C)ξj .


Definition 4.3.3. The quaternionic contact Ricci tensor (qc-Ricci tensor


for short) and the qc-scalar curvature Scal of the Biquard connection are


defined by


Ric(B,C) = R(ea, B, C, ea), Scal = Ric(ea, ea). (4.63)
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114 Extremals for the Sobolev inequality and the qc Yamabe problem


Proof. Since ∇ preserves the splitting H ⊕ V , the first Bianchi identity


(4.66) and (4.62) together with (4.11) and (4.34) imply


2ρi(X,Y ) = R(X,Y, ξj , ξk) = b(X,Y, ξj , ξk) = (∇ξjT )(X,Y, ξk)


+ T (T (X,Y ), ξj), ξk) + T (T (Y, ξj), X), ξk) + T (T (ξj , X), Y ), ξk)


= 2(∇ξjωk)(X,Y )− 2T (X,Y,∇ξjξk)


+ 2ωi(X,Y )T (ξi, ξj , ξk) + 2ωk(T (ξj , X), Y )− 2ωk(T (ξj , Y ), X), (4.77)


where we used the fact that T (ξs, X) is a horizontal vector field, T (ξ,X) ∈
H to conclude the vanishing of terms of the type (∇AT )(X, ξj , ξk).


Applying (4.10) and (4.11) we deduce that the third line in (4.77) van-


ishes because


T (X,Y,∇ξjξk) = −αi(ξj)ωj(X,Y ) + αj(ξj)ωi(X,Y ) = (∇ξjωk)(X,Y ).


With the help of (4.41), (4.20), Lemma 4.2.6 and Lemma 4.2.7 we obtain


from (4.77) that


ρi(X,Y ) = −λωi(X,Y )− T (ξj , X, IkY ) + T (ξj , Y, IkX)


= −λωi(X,Y )− 2U(IiX,Y )− T 0(ξj , X, IkY ) + T 0(ξj , Y, IkX)


= −λωi(X,Y )− 2U(IiX,Y ) +
1


2
(T 0(X, IiY )− T 0(IiX,Y )). (4.78)


In view of (4.60), we have


Ric(B, IsY ) + 4nζs(B, Y )


= R(ea, B, IsY, ea) + R(ea, B, Y, Isea)


= −2ρj(ea, B)ωk(Y, ea) + 2ρk(ea, B)ωj(Y, ea))


= 2ρj(B, IkY ) − 2ρk(B, IjY ). (4.79)


Consequently, applying (4.78), we derive from (4.79) and the properties of


the torsion listed in Lemmas 4.2.6 and 4.2.7 that


Ric(X, IsY ) + 4nζs(X,Y ) = −4λωs(X,Y )


+ 4U(X, IsY ) +
1


2


(
T 0(X, IsY ) + T 0(IsX,Y )


)
. (4.80)


The first Bianchi identity (4.66) implies


4n(τs(X,Y ) + 2ζs(X,Y ))


= R(ea, Isea, X, Y ) +R(X, ea, Isea, Y ) +R(Isea, X, ea, Y )


= b(ea, Isea, X, Y ). (4.81)
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120 Extremals for the Sobolev inequality and the qc Yamabe problem


Theorem 4.3.11. On a QC manifold the curvature of the Biquard connec-


tion satisfies the equalities:


R(X,Y, Z, V )−R(Z, V,X, Y )


= 2
3∑
s=1


[
ωs(X,Y )U(IsZ, V )− ωs(Z, V )U(IsX,Y )


]
− 2


3∑
s=1


[
ωs(X,Z)T


0(ξs, Y, V ) + ωs(Y, V )T 0(ξs, Z,X)
]


+ 2


3∑
s=1


[
ωs(Y, Z)T


0(ξsX,V ) + ωs(X,V )T 0(ξs, Z, Y )
]
. (4.103)


The [3]-componenet of the horizontal curvature with respect to the first two


arguments is given by


3R(X,Y, Z, V )−
3∑
s=1


R(IsX, IsY, Z, V ))


= 2
[
g(Y, Z)T 0(X,V ) + g(X,V )T 0(Z, Y )


]
− 2
[
g(Z,X)T 0(Y, V ) + g(V, Y )T 0(Z,X)


]
− 2


3∑
s=1


[
ωs(Y, Z)T


0(X, IsV ) + ωs(X,V )T 0(Z, IsY )
]


+ 2
3∑
s=1


[
ωs(Z,X)T 0(Y, IsV ) + ωs(V, Y )T 0(Z, IsX)


]
+


3∑
s=1


[
2ωs(X,Y )


(
T 0(Z, IsV )− T 0(IsZ, V )


)
− 8ωs(Z, V )U(IsX,Y )


]
− Scal


2n(n+ 2)


3∑
s=1


ωs(X,Y )ωs(Z, V ). (4.104)
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126 Extremals for the Sobolev inequality and the qc Yamabe problem


In coordinates, with the obvious notation, the multiplication formula is


t′a = ta + tao , x′a = xa + xao ,


y′a = ya + xao , z′a = za + zao ,


x′ = x + xo + 2(xaot
a − taox


a + zaoy
a − yaoz


a)


y′ = y + yo + 2(yao t
a − zaox


a − taoy
a + xaoz


a)


z′ = z + zo + 2(zao t
a + yaox


a − xaoy
a − taoz


a).


(4.123)


A basis of left invariant horizontal vector fields


Ta, Xa = I1Ta, Ya = I2Ta, Za = I3Ta


is given by


Ta =
∂


∂tα
+ 2xa


∂


∂x
+ 2ya


∂


∂y
+ 2za


∂


∂z


Xa =
∂


∂xα
− 2ta


∂


∂x
− 2za


∂


∂y
+ 2ya


∂


∂z


Ya =
∂


∂yα
+ 2za


∂


∂x
− 2ta


∂


∂y
− 2xa


∂


∂z


Za =
∂


∂zα
− 2ya


∂


∂x
+ 2xa


∂


∂y
− 2ta


∂


∂z
.


(4.124)


The central (vertical) vector fields ξ1, ξ2, ξ3 are described as follows


ξ1 = 2
∂


∂x
ξ2 = 2


∂


∂y
ξ3 = 2


∂


∂z
. (4.125)


A small calculation shows the following commutator relations


[Ij Ta, Ta] = 2ξj [Ij Ta, Ii Ta] = 2ξk. (4.126)


The standard quaternionic contact form Θ̃ = (Θ̃1, Θ̃2, Θ̃3) is


2Θ̃ = dω − q′ · dq̄′ + dq′ · q̄′, (4.127)


which, in coordinates reads


Θ̃1 =
1


2
dx − xadta + tadxa − zadya + yadza


Θ̃2 =
1


2
dy − yadta + zadxa + tadya − xadza


Θ̃3 =
1


2
dz − zadta − yadxa + xadya + tadza.


The Biquard connection coincides with the flat left-invariant connection


on G (H) and the described horizontal and vertical vector fields are parallel
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