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Abstract. We show that the fundamental 4-form on a quaternionic contact manifold of dimension

at least eleven is closed if and only if the torsion endomorphism of the Biquard connection vanishes.

This condition characterizes quaternionic contact structures which are locally qc homothetic to

3-Sasakian structures.

1. Introduction

A quaternionic contact (qc) structure, introduced in [4, 5], appears naturally as the conformal

boundary at infinity of the quaternionic hyperbolic space. Such structures have been considered in

connection with the quaternionic contact Yamabe problem, [25, 15, 16]. A particular case of this

problem amounts to finding the extremals and the best constant in the L2 Folland-Stein Sobolev-type

embedding, [10] and [11], on the quaternionic Heisenberg group, see [12] and[16].

A qc structure on a real (4n+3)-dimensional manifold M is a codimension three distribution H,

called the horizontal space, locally given as the kernel of a 1-form η = (η1, η2, η3) with values in R3,

such that, the three 2-forms dηi|H are the fundamental 2-forms of a quaternionic structure on H.

The 1-form η is determined up to a conformal factor and the action of SO(3) on R3. Therefore H is

equipped with a conformal class [g] of Riemannian metrics and a 2-sphere bundle of almost complex

structures, the quaternionic bundle Q. The 2-sphere bundle of one forms determines uniquely the

associated metric and a conformal change of the metric is equivalent to a conformal change of the

one forms. To every metric in the fixed conformal class one can associate a complementary to H

distribution V spanned by the Reeb vector fields ξ1, ξ2, ξ3 and a linear connection ∇ preserving the

qc structure and the splitting TM = H ⊕ V provided n > 1 [4]. This connection is known as the

Biquard connection. The qc Ricci tensor, the qc scalar curvature Scal of the Biquard connection

are obtained from the curvature tensor by taking horizontal traces.

The transformations preserving a given qc structure η, i.e. η̄ = µΨ · η for a positive smooth

function µ and a SO(3) matrix Ψ with smooth functions as entries, are called quaternionic con-

tact conformal (qc conformal) transformations. If the function µ is constant we have quaternionic

contact homothetic (qc homothetic) transformations. The Biquard connection is invariant under qc

homothetic transformations.

Examples of qc manifolds can be found in [4, 5, 15, 9]. In particular, any totally umbilic hyper-

surface of a quaternionic Kähler or hyperkähler manifold carries such a structure. An extensiveley

studied class of examples of quaternionic contact structures are provided by the 3-Sasakian mani-

folds. The latter can be defined as (4n+3)-dimensional (pseudo) Riemannian manifold of signature

either (4n+3,0) or (4n,3) whose Riemannian cone is a hyperkähler manifold of signature (4n+4,0) or

(4n,4), respectively. It was shown in [15] that the torsion endomorphism of the Biquard connection

is the obstruction for a given qc-structure to be locally qc homothethic to a 3-Sasakian one provided
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the qc scalar curvature Scal is not identically zero. Explicit examples of qc manifolds with zero or

non-zero torsion endomorphism were recently given in [2]. The quaternionic Heisenberg group, the

quaternionic sphere of dimension 4n+3 with its standard 3-Sasakian structure and the qc structures

locally qc conformal to them are characterized in [17] by the vanishing of a tensor invariant, the

qc-conformal curvature defined in terms of the curvature and torsion of the Biquard connection.

Explicit examples of non-qc conformally flat qc manifolds are constructed in [2].

In this article we consider the 4-form Ω defining the Sp(n)Sp(1) structure on the horizontal

distribution and call it the fundamental four-form.

The purpose of the paper is to show that when the dimension of the manifold is greater than

seven, the fundamental 4-form form is closed if and only if the qc structure is locally qc homothetic

to a 3-Sasakian one provided the qc scalar curvature does not vanish. We prove the following main

result.

Theorem 1.1. Let (M4n+3, η,Q) be a 4n + 3-dimensional qc manifold. For n > 1 the following

conditions are equivalent

i) The fundamental four form is closed, dΩ = 0;

ii) The torsion endomorphism of the Biquard connection vanishes;

iii) Each Reeb vector field ξl, defined in (2.3), preserves the fundamental four form, LξlΩ = 0.

Any of the above conditions imply that the qc scalar curvature is constant and the vertical distribution

is integrable.

Combining the last Theorem with Theorem 1.3 and Theorem 7.11 in [15] we obtain

Theorem 1.2. Let (M4n+3, η,Q) be a 4n + 3-dimensional qc manifold. For n > 1 the following

conditions are equivalent

a) (M4n+3, η,Q) has closed fundamental four form, dΩ = 0;

b) The torsion endomorphism of the Biquard connection vanishes;

c) (M4n+3, g,Q) is a qc-Einstein manifold (the trace-free part of the qc Ricci tensor is zero);

d) Each Reeb vector ξl field preserves the horizontal metric and the quaternionic structure

simultaneously, Lξlg = 0, LξlQ ⊂ Q;

e) Each Reeb vector field ξl preserves the fundamental four form, LξlΩ = 0.

If in addition the qc scalar curvature is non-zero, Scal 6= 0, then each of a), b), c), d) and e) is

equivalent to the following condition f).

f) M4n+3 is locally qc homothetic to a 3-Sasakian manifold, i.e., locally, there exists a SO(3)-

matrix Ψ with smooth entries depending on an auxiliary parameter, such that, the local qc

structure (ε Scal
16n(n+2)Ψ · η,Q), ε = sign(Scal) is 3-Sasakian.

As an application of Theorem 1.1 we give in the last section a proof of the equivalence of a) and

f) in Theorem 1.2. Thus, when the dimension of the qc manifold is greater than seven, we establish

in a slightly different manner Theorem 3.1 in [15].

Remark 1.3. On a seven dimensional qc manifold, if the torsion endomorphism of the Biquard

connection vanishes then the fundamental four form is closed. We do not know whether the converse

holds or if there exists an example of a seven dimensional qc manifold with a closed fundamental

four form and a non-vanishing torsion endomorphism. This might be related to the well known fact

that in dimension eight an almost quaternion hermitian structure with a closed fundamental four

form is not necessarily quaternionic Kähler since Salamon [23] gave a compact counter-example (see

[2] for non-compact counter-examples).
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Organization of the paper. The paper relies heavily on the notion of Biquard connection

introduced in [4] and the properties of its torsion and curvature discovered in [15]. In order to make

the present paper self-contained, in Section 2 we give a review of the notion of a quaternionic contact

structure and collect formulas and results from [4] and [15] that will be used.

Convention 1.4. a) We shall use X,Y, Z, U to denote horizontal vector fields, i.e. X,Y, Z, U ∈ H;

b) {e1, . . . , e4n} denotes an orthonormal basis of the horizontal space H;

c) The triple (i, j, k) denotes any cyclic permutation of (1, 2, 3).

d) l and m will be any numbers from the set {1, 2, 3}, l,m ∈ {1, 2, 3}.
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02-257/18.12.2008 and DID 02-39/21.12.2009

2. Quaternionic contact manifolds

In this section we will briefly review the basic notions of quaternionic contact geometry and recall

some results from [4] and [15]. For the purposes of this paper, a quaternionic contact (qc) manifold

(M, g,Q) is a 4n + 3 dimensional manifold M with a codimension three distribution H equipped

with a metric g and an Sp(n)Sp(1) structure, i.e., we have

i) a 2-sphere bundle Q over M of almost complex structures Il : H → H, I2l = −1,

satisfying the commutation relations of the imaginary quaternions I1I2 = −I2I1 = I3 and

Q = {aI1 + bI2 + cI3 : a2 + b2 + c2 = 1};
ii) H is locally the kernel of a 1-form η = (η1, η2, η3) with values in R3 satisfying the compati-

bility condition 2g(IlX,Y ) = dηl(X,Y ).

The fundamental 2-forms ωl of the quaternionic structure Q are determined by

(2.1) 2ωl|H = dηl|H , ξyωl = 0, ξ ∈ V.

The 4-form Ω defining the Sp(n)Sp(1) structure on the horizontal distribution, called here the

fundamental four-form, is defined (globally) on the horizontal distribution H by

(2.2) Ω = ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3.

On a quaternionic contact manifold there exists a canonical connection defined in [4] when the

dimension (4n+ 3) > 7, and in [8] in the 7-dimensional case.

Theorem 2.1. [4] Let (M, g,Q) be a quaternionic contact manifold of dimension 4n+ 3 > 7 and a

fixed metric g on H in the conformal class [g]. Then there exists a unique connection ∇ with torsion

T on M4n+3 and a unique supplementary subspace V to H in TM , such that:

i) ∇ preserves the decomposition H ⊕ V and the Sp(n)Sp(1)-structure on H;

ii) for X,Y ∈ H, one has T (X,Y ) = −[X,Y ]|V ;

iii) for ξ ∈ V , the endomorphism T (ξ, .)|H of H lies in (sp(n)⊕ sp(1))⊥ ⊂ gl(4n);

We shall call the above connection the Biquard connection. Biquard [4] also described the sup-

plementary subspace V . Locally, V is generated by vector fields {ξ1, ξ2, ξ3}, such that

(2.3) ηl(ξk) = δlk, (ξlydηl)|H = 0, (ξlydηk)|H = −(ξkydηl)|H .

The vector fields ξ1, ξ2, ξ3 are called Reeb vector fields or fundamental vector fields. If the dimension

of M is seven, the conditions (2.3) do not always hold. Duchemin shows in [8] that if we assume, in
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addition, the existence of Reeb vector fields as in (2.3), then Theorem 2.1 holds. Henceforth, by a

qc structure in dimension 7 we shall mean a qc structure satisfying (2.3).

The torsion endomorphism Tξ = T (ξ, .) : H → H, ξ ∈ V, plays an important role in the qc

geometry. Decomposing the endomorphism Tξ ∈ (sp(n) + sp(1))⊥ into symmetric part T 0
ξ and

skew-symmetric part bξ, Tξ = T 0
ξ + bξ Biquard shows in [4] that Tξ is completely trace-free, tr Tξ =

tr Tξ ◦ I = 0, I ∈ Q and describes the properties of the two components. Using the two Sp(n)Sp(1)-

invariant trace-free symmetric 2-tensors T 0 and U on H defined in [15] by

T 0(X,Y )
def
= g((T 0

ξ1I1 + T 0
ξ2I2 + T 0

ξ3I3)X,Y ), U(X,Y )
def
= −g(IlbξlX,Y ),

the properties of Tξ outlined in [4] give the following identities, cf. [15],

T 0(X,Y ) + T 0(I1X, I1Y ) + T 0(I2X, I2Y ) + T 0(I3X, I3Y ) = 0,(2.4)

3U(X,Y )− U(I1X, I1Y )− U(I2X, I2Y )− U(I3X, I3Y ) = 0.(2.5)

If n = 1 then U vanishes identically, U = 0, and the torsion is a symmetric tensor, Tξ = T 0
ξ .

The covariant derivatives with respect to the Biquard connection of the almost complex structures

and the vertical vectors are given by

(2.6) ∇Ii = −αj ⊗ Ik + αk ⊗ Ij , ∇ξi = −αj ⊗ ξk + αk ⊗ ξj .

It turns out that the vanishing of the sp(1)-connection 1-forms on H is equivalent to the vanishing

of the torsion endomorphism of the Biquard connection, T 0 = U = 0 [15].

The first equation in (2.6) together with (2.2) imply that the fundamental four form is parallel

with respect to ∇, ∇Ω = 0 but it may not be closed because of the torsion of the Biquard connection.

Let R = [∇,∇] − ∇[ , ] be the curvature tensor of ∇. We denote the curvature tensor of

type (0,4) by the same letter, R(A,B,C,D) := g(R(A,B)C,D), A,B,C,D ∈ Γ(TM). The qc-

Ricci forms and qc-scalar curvature are defined by 4nρl(A,B) =
∑4n
a=1R(A,B, ea, Ilea), Scal =∑4n

a,b=1R(eb, ea, ea, eb), respectively. It was shown in [15] that the sp(1)-part of R is determined

by the Ricci 2-forms and the connection 1-forms by

(2.7) R(A,B, ξi, ξj) = 2ρk(A,B) = (dαk + αi ∧ αj)(A,B), A,B ∈ Γ(TM).

It is important to note that the horizontal part of the Ricci 2-forms can be expressed in terms of

the torsion of the Biquard connection [15]. For ease of reading, we collect the necessary facts from

[15, Theorem 1.3, Theorem 3.12, Corollary 3.14, Proposition 4.3 and Proposition 4.4] with slight

modifications, using the equality 4T 0(ξl, IlX,Y ) = T 0(X,Y ) − T 0(IlX, IlY ), and present them in

the form described in [17].

Theorem 2.2. [15] On a (4n+ 3)-dimensional qc manifold, n > 1 the next formulas hold

ρl(X, IlY ) = −1

2

[
T 0(X,Y ) + T 0(IlX, IlY )

]
− 2U(X,Y )− Scal

8n(n+ 2)
g(X,Y ),

T (ξi, ξj) = − Scal

8n(n+ 2)
ξk − [ξi, ξj ]H , Scal = −8n(n+ 2)g(T (ξ1, ξ2), ξ3)

T (ξi, ξj , X) = −ρk(IiX, ξi) = −ρk(IjX, ξj), ρi(ξi, ξj) + ρk(ξk, ξj) =
1

16n(n+ 2)
ξj(Scal);

ρi(X, ξi) = − X(Scal)

32n(n+ 2))
+

1

2
(−ρi(ξj , IkX) + ρj(ξk, IiX) + ρk(ξi, IjX)) .

In particular, the vanishing of the horizontal trace-free part of the Ricci forms is equivalent to

the vanishing of the torsion endomorphism of the Biquard connection. In this case the vertical

distribution is integrable, the qc scalar curvature is constant and if Scal 6= 0 then the qc-structure is



QUATERNIONIC CONTACT MANIFOLDS WITH A CLOSED FUNDAMENTAL 4-FORM 5

3-Sasakian up to a multiplication by a constant and an SO(3)-matrix with smooth entries depending

on an auxiliary parameter.

For the last part of the above Theorem we have adopted the definition that a 4n+ 3-dimensional

(pseudo) Riemannian manifold (M, gM ) of signature either (4n + 3, 0) or (4n, 3) has a 3-Sasakian

structure if the cone metric t2gM + εdt2 on M × R is a hyperkähler metric of signature (4n + 4, 0)

(positive 3-Sasakian structure, ε = 1) or (4n,4) (negative 3-Sasakian structure, ε = −1), respectively,

see [21, 24, 18] for the negative case. In other words, the cone metric has holonomy contained in

Sp(n+ 1) (see [7]) or in Sp(n, 1) (see [1]), respectively.

We remind that, usually, a 4n + 3-dimensional Riemannian manifold (M, g) is called 3-Sasakian

only in the positive case, while the term pseudo 3-Sasakain is used in the negative case. However,

we find it convenient to use the more general definition.

A 3-Sasakian manifold of dimension (4n + 3) is Einstein [19, 24, 1]. If the metric is positive

definite then it is with positive Riemannian scalar curvature (4n+ 2)(4n+ 3) [19] and if complete it

is compact with finite fundamental group due to Myer’s theorem. There are known many examples

of positive 3-Sasakian manifold of dimension (4n + 3), see [6] and references therein for a nice

overview of positive 3-Sasakian spaces. Certain SO(3)-bundles over quaternionic Kähler manifolds

with negative scalar curvature constructed in [21, 24, 18, 1] supply examples of negative 3-Sasakian

manifolds. A natural definite metric on the negative 3-Sasakian manifolds is considered in [24, 18] by

changing the sign of the metric on the vertical SO(3)-factor. With respect to this metric the negative

3-Sasakian manifold becomes an A-manifold in the terminology of [13], its Riemannian Ricci tensor

has precisely two constant eigenvalues, −4n− 14 (of multiplicity 4n) and 4n+ 2 (of multiplicity 3)

see [18], and the Riemannian scalar curvature is the negative constant −16n2 − 44n + 6 [24, 18].

Explicit examples of negative 3-Sasakian manifolds are constructed in [2].

3. Local structure equations of qc manifolds

We derive the local structure equations of a qc structure in terms of the sp(1)-connection forms

of the Biquard connection and the qc scalar curvature.

Proposition 3.1. Let (M4n+3, η,Q) be a (4n+3)- dimensional qc manifold with qc scalar curvature

Scal. Let s = Scal
8n(n+2) be the normalized qc scalar curvature. The following equations hold

2ωi = dηi + ηj ∧ αk − ηk ∧ αj + sηj ∧ ηk,(3.1)

dωi = ωj ∧ (αk + sηk)− ωk ∧ (αj + sηj)− ρk ∧ ηj + ρj ∧ ηk +
1

2
ds ∧ ηj ∧ ηk,(3.2)

dΩ =
∑
(ijk)

[
2ηi ∧ (ρk ∧ ωj − ρj ∧ ωk) + ds ∧ ωi ∧ ηj ∧ ηk

]
,(3.3)

where αl are the sp(1)-connection 1-forms of the Biquard connection, ρl are the Ricci 2-forms and∑
(ijk) is the cyclic sum of even permutations of {1, 2, 3}.
In particular, for a 3-Sasakian manifold the structure equations have the form

(3.4) dηi = 2ωi + 2εηj ∧ ηk

and the normalized qc scalar curvature is s = 2ε, where ε = 1 if the 3-Sasakian structure is positive

and ε = −1 in the negative 3-Sasakian case.

Proof. From the definition (2.1) of the fundamental 2-forms ωl we have (see also [15])

(3.5) 2ωm = (dηm)|H = dηm −
3∑
l=1

ηl ∧ (ξlydηm) +
∑

1≤l<p≤3

dηm(ξl, ξp)ηl ∧ ηp.
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It is shown in [4] that the sp(1)-connection 1-forms αl on H are given by

αi(X) = dηk(ξj , X) = −dηj(ξk, X), X ∈ H, ξi ∈ V.(3.6)

The sp(1)-connection 1-forms αl on the vertical space V were determined in [15]:

(3.7) αi(ξl) = dηl(ξj , ξk)− δil

(
Scal

16n(n+ 2)
+

1

2
( dη1(ξ2, ξ3) + dη2(ξ3, ξ1) + dη3(ξ1, ξ2))

)
.

A straightforward calculation using (3.6) and (3.7) gives the equivalence of (3.5) and (3.1). Taking

the exterior derivative of (3.1), followed by an application of (3.1) and (2.7) implies (3.2). The last

formula, (3.3), follows from (3.2) and definition (2.2).

For the last part of the theorem consider the cone N = M4n+3 × R+ equipped with a (pseudo)

almost hyperhermitian structure (GN , φl) where GN is a (pseudo) Riemannian metric of signature

(4n+4,0) (resp. (4n,4)) for ε = 1 (resp. ε = −1) and φl, l = 1, 2, 3, are three anti-commuting almost

complex structures. The 1-form dt on R+ and the three almost complex structures are related to

three 1-forms ηl on M4n+3 defined by ηl = ε φl (
1
t dt), where we used the same notation for both a

tensor and its lift to a tensor on the tangent bundle of N identifying M with the slice t = 1 of N .

We may write the metric GN and the three Kähler 2-forms on N as follows:

(3.8) GN = t2g + εt2(η21 + η22 + η23) + εdt2; F εi = t2ωi + εt2ηj ∧ ηk − tηi ∧ dt,

where g = GN |H and H = ∩3l=1Ker ηl. A qc structure on M4n+3 is defined by the three 1-forms ηl
[4].

It is straightforward to check from the second equation in (3.8) that the 2-forms F εl are closed

precisely when (3.4) holds. Therefore the cone metric GN is hyperkähler, i.e. M4n+3 is 3-Sasakian,

if and only if (3.4) is fulfilled due to Hitchin’s theorem [14], which is valid with the same proof in

the case of non-positive definite metrics.

To compute the qc scalar curvature of a 3-Sasakian manifold, we use equations (3.4) to find

ξiydηj |H = 0, dηi(ξj , ξk) = 2ε, dηi(ξi, ξk) = dηi(ξi, ξj) = 0. We calculate from (3.6) and (3.7)

the sp(1)-connection 1-forms αl = −
(

Scal
16n(n+2) + ε

)
ηl. The last identity and (2.7) yield ρl(X,Y ) =

1
2dαl(X,Y ) = −

(
Scal

16n(n+2) + ε
)
ωl(X,Y ), which compared with the first equation in Theorem 2.2

gives T = U = 0, Scal = 16n(n+ 2)ε, see [15].

�

4. Proof of Theorem 1.1

First we show that if T 0 = U = 0, then dΩ = 0. Indeed, in this case, Theorem 2.2 implies

(4.1) ρl(X,Y ) = −sωl(X,Y ), ρl(ξm, X) = 0, ρi(ξi, ξj) + ρk(ξk, ξj) = 0,

since Scal is constant and the horizontal distribution is integrable. Using the just obtained identities

in (3.3) gives dΩ = 0 which proves the implication ii)→ i).

To finish the proof of the theorem we shall apply the next Lemma.

Lemma 4.1. On a qc manifold of dimension (4n+ 3) > 7 we have the identities

U(X,Y ) = − 1

16n

4n∑
a=1

[
dΩ(ξi, X, IkY, ea, Ijea) + dΩ(ξi, IiX, IjY, ea, Ijea)

]
(4.2)

T 0(X,Y ) =
1

8(1− n)

∑
(ijk)

4n∑
a=1

[
dΩ(ξi, X, IkY, ea, Ijea)− dΩ(ξi, IiX, IjY, ea, Ijea)

]
.(4.3)
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Proof. Equation (3.3) together with the first equality in Theorem 2.2 yield

(4.4) dΩ(ξi, X, IkY, ea, Ijea) = 4(n− 1)ρ0k(X, IkY ) + 2ρ0j (X, IjY )− 2ρ0j (IiX, IkY ),

where ρ0 is the horizontal trace-free part of ρ given by

(4.5) ρ0l (X, IlY ) = −1

2

[
T 0(X,Y ) + T 0(IlX, IlY )

]
− 2U(X,Y ).

A substitution of (4.5) in (4.4), combined with the properties of the torsion, (2.4) and (2.5) give

(4.6) 2(n− 1)
[
T 0(X,Y ) + T 0(IkX, IkY )

]
+ 8nU(X,Y ) = −

4n∑
a=1

dΩ(ξi, X, IkY, ea, Ijea).

Applying again (2.4) and (2.5) in (4.6) we see that U and T 0 satisfy (4.2) and (4.3), respectively

which proves the lemma. �

The well known Cartan formula yields LξlΩ = ξlydΩ + d(ξlyΩ) = ξlydΩ, since Ω is horizontal.

The latter formula together with the already proved implication ii) → i) and Lemma 4.1 complete

the proof of Theorem 1.1.

From Lemma 4.1 we easily derive

Corollary 4.2. If one of the Reeb vector fields preserves the fundamental four form on a qc manifold

of dimension (4n + 3) > 7 then U = 0 and the torsion endomorphism of the Biquard connection is

symmetric, Tξl = T 0
ξl

.

5. Proof of Theorem 1.2

In this section we give the proof of the equivalence of parts a) and f) of Theorem 1.2. The

remaining claims follow from Theorem 1.1 and [15, Theorem 1.3 and Theorem 7.11]. The idea is

the same as in the proof of Theorem 3.1 in [15], namely we show that both a) and f) are equivalent

to the fact that the cone over M is locally hyperkähler. However, here, the proof is based on the

fundamental 4-form. In one direction, let dΩ = 0. Theorem 1.1 implies that the torsion of the

Biquard connection vanishes, while Theorem 2.2 shows that the qc scalar curvature is constant

and the vertical distribution is integrable. Let Scal 6= 0 and ε = sign(Scal). The qc structure

η′ = ε Scal
16n(n+2)η has normalized qc scalar curvature s′ = 2ε and dΩ′ = 0. For simplicity, we shall

denote η′ with η and, in fact, drop the ′ everywhere.

In the first step of the proof we show that the cone N = M × R+ with the structure (GN , F
ε
l )

defined by (3.8) has holonomy contained in Sp(n + 1) for ε > 0 and in Sp(n, 1) for ε < 0. To this

end we consider the following four form on N

(5.1) F = F ε1 ∧ F ε1 + F ε2 ∧ F ε2 + F ε3 ∧ F ε3 .

Applying (3.1), (3.2) and (3.3), we calculate

(5.2) dFi = tdt ∧ (2ωi + 2εηj ∧ ηk − dηi) + t2d(ωi + εηj ∧ ηk)

= t dt∧(2ωi+2εηj∧ηk+ηj∧αk−ηk∧αk+sηj∧ηk)+εt2(2ωj+ηi∧αk)∧ηk−εt2(2ωk−ηi∧αj)∧ηj)

+ t2
(
ωj ∧ (αk + sηk)− ωk ∧ (αj + sηj)− ρk ∧ ηj + ρj ∧ ηk +

1

2
ds ∧ ηj ∧ ηk

)
.
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A short computation, using (3.1), (3.2), (3.3) and (5.2), gives

(5.3) dF = 2

3∑
i=1

dFi ∧ Fi = t4
∑
(ijk)

[2ηi ∧ (ωj ∧ ρk − ωk ∧ ρj) + ds ∧ ωi ∧ ηj ∧ ηk]

+ t3dt ∧
∑
(ijk)

[4εωi ∧ ηk ∧ ηj − 2sωi ∧ ηj ∧ ηk − 4ρk ∧ ηi ∧ ηj − ds ∧ ηi ∧ ηj ∧ ηk]

= 2t4dΩ− 4t3
∑
(ijk)

dt ∧ (ρi + 2εωi) ∧ ηj ∧ ηk = 0,

taking into account the first equality in Theorem 2.2, (4.1) and s = 2ε, which hold when dΩ = 0 by

Theorem 1.1.

Hence, dF = 0 and the holonomy of the cone metric is contained either in Sp(n + 1)Sp(1) or in

Sp(n, 1)Sp(1) provided n > 1 [22], i.e. the cone is quaternionic Kähler manifold provided n > 1.

Note that when n = 1 this conclusion can not be reached in the positive definite case due to the

8-dimensional compact counter-example constructed by S. Salamon [23] (for non compact counter-

examples see [2]).

It is a classical result (see e.g [3] and references therein) that a quaternionic Kähler manifolds

of dimension bigger than four (of arbitrary signature) are Einstein. This fact implies that the cone

N = M × R+ with the metric gN must be Ricci flat (see e.g. [3, p.267]) and therefore it is locally

hyperkähler since the sp(1)-part of the Riemannian curvature vanishes and therefore it can be

trivialized locally by a parallel sections (see e.g. [3, p.397]). This means that locally there exists

a SO(3)-matrix Ψ with smooth entries, possibly depending on t, such that the triple of two forms

(F̃1, F̃2, F̃3) = Ψ · (F1, F2, F3)T consists of closed 2-forms constitute the fundanental 2-forms of the

local hyperkähler structure. Consequently (M,Ψ · η) is locally a 3-Sasakian manifold.

The fact that f) implies a) is trivial since the 4-form Ω is invariant under rotations and rescales

by a constant when the metric on the horizontal space H is replaced by a homothetic to it metric.

Remark 5.1. It follows from the above discussion that the cone over a (4n+3)-dimensional qc

manifold carries either a Sp(n+ 1)Sp(1) or a Sp(n, 1)Sp(1) structure which is closed exactly when

dΩ = 0 provided n > 1.

Remark 5.2. An example of a qc structure satisfying T 0 = U = Scal = 0 can be obtained as

follows. Let M4n be a hyperkähler manifold with closed and locally exact Kähler forms ωl = dηl.

The total space of an R3-bundle over the hyperkähler manifold M4n with connection 1-forms ηl is

an example of a qc structure with T 0 = U = Scal = 0. The qc structure is determined by the

three 1-forms ηl satisfying dηl = ωl which yield T 0 = U = Scal = 0. In particular, the quaternionic

Heisenberg group which locally is the unique qc structure with flat Biquard connection on H, see [17],

can be considered as an R3 bundle over a 4n-dimensional flat hyperkähler R4n. A compact example is

provided by a T 3-bundle over a compact hyperkähler manifold M4n such that each closed Kähler form

ωl represents integral cohomology classes. Indeed, since [ωl], 1 ≤ l ≤ 3 define integral cohomology

classes on M4n, the well-known result of Kobayashi [20] implies that there exists a circle bundle

S1 ↪→ M4n+1 → M4n, with connection 1-form η1 on M4n+1 whose curvature form is dη1 = ω1.

Because ωl (l = 2, 3) defines an integral cohomology class on M4n+1, there exists a principal circle

bundle S1 ↪→ M4n+2 → M4n+1 corresponding to [ω2] and a connection 1-form η2 on M4n+2 such

that ω2 = dη2 is the curvature form of η2. Using again the result of Kobayashi, one gets a T 3-bundle

over M4n whose total space has a qc structure satisfying dηl = ωl which yield T 0 = U = Scal = 0.

We do not know whether there are other examples satisfying the conditions T 0 = U = Scal = 0.
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