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Overdetermined Boundary Value Problems,
Quadrature Domains and Applications

Dmitry Khavinson, Alexander Yu. Solynin and Dimiter Vassilev

(Communicated by Edward B. Saff)

Abstract. We discuss an overdetermined problem in planar multiply con-
nected domains Ω. This problem is solvable in Ω if and only if Ω is a quadrature
domain carrying a solid-contour quadrature identity for analytic functions. At
the same time the existence of such quadrature identity is equivalent to the
solvability of a special boundary value problem for analytic functions. We give
a complete solution of the problem in some special cases and discuss some ap-
plications concerning the shape of electrified droplets and small air bubbles in
a fluid flow.
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1. Introduction

The goal of this paper is to study several connected overdetermined boundary
value problems in the complex plane C. In Section 2 we formulate an overde-
termined torsion problem related to the celebrated theorem of Serrin [S]. In
Section 3 we consider quadrature identities for analytic and harmonic functions,
which are equivalent to solvability of the overdetermined problems under consid-
eration. The results of Sections 2 and 3 have analogs in Rn for any dimension n.

In Section 4 we reduce the overdetermined problem to a certain boundary value
problem for analytic functions. From that point on our methods are essentially
complex analytic. In Section 5 we once more reformulate the problem as a
boundary value problem for the inverse of the Koebe circular function, i.e. for
the conformal mapping from a canonical circular domain onto a given multiply
connected domain. In the same section we discuss some special cases of the
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problem. Our main applications are contained in Section 6. Here we confine
ourselves to simply connected domains in C but allow the “free” solution f
to have poles, i.e. we consider meromorphic solutions. In particular, we study
shapes of droplets of perfectly conducting fluid in the presence of an analytic
potential. One special case also gives a shape of the “extremal” air bubble in a
fluid flow subject to some mild natural restrictions, found earlier by E. McLeod
[M1]. The last section contains some further examples.

2. Overdetermined torsion problem

Consider the overdetermined problem:

4u =−1 in Ω(2.1a)

u = cj on γj(2.1b)

∂u

∂n
= aj on γj(2.1c)

where Ω is a finitely connected planar domain bounded by n+ 1 smooth Jordan
curves γj, 0 ≤ j ≤ n, (γ0 is the outer boundary) and cj, aj denote real constants.
Here and below ∂/∂n denotes the inner normal derivative on ∂Ω. Clearly the
solution of the above problem (if it exists) is unique.

Problem 2.1. Find all domains Ω on C of a given connectivity n + 1 and all
possible boundary values cj and aj, 0 ≤ j ≤ n, for which problem (2.1) is
solvable.

The Dirichlet problem (2.1a)–(2.1b) is often called the torsion problem since the
solution u describes the stress in a homogenous cylindrical beam. Another reason
to study Problem 2.1 comes from hydrodynamics. For a Newtonian fluid with

velocity
→
v and viscosity µ the force

→
A exerted on the walls is given by

→
A =

(
p− 4

3
µ div

→
v

)
→
n + µ

→
n ∧ curl

→
v,

where p is the pressure and
→
n the outer normal, see [Be]. This gives a natural

decomposition of the action on the wall into a normal pressure orthogonal to
the boundary and a shear (stress) which is tangential to the wall. If the fluid

is incompressible, i.e. div
→
v = 0 and the flow is laminary along the z-axis, i.e.

→
v = v(x, y)

→
k, where

→
k is the unit vector along the z−axis, we find

→
n ∧ curl

→
v = −∂v

∂n

→
k

and thus
→
A = p

→
n − µ

∂v

∂n

→
k.
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The motion of a fluid with density ρ and external force
→
F is governed by the

Navier-Stokes equations:

ρ
d
→
v

dt
= ρ

→
F−∇p+ µ4→

v.

Assuming further that the flow is steady, i.e. d
→
v

dt
=

→
0, in the absence of external

force the above system takes the form

µ4v − pz = 0.

Denoting the pressure gradient by P = −pz and taking into account the boundary
conditions we obtain

µ4v = −P, −µ∂v
∂n

= shear on ∂Ω, v = vj on γj,

where vj equals the speed of the corresponding wall (non-slipping condition),
which is exactly the overdetermined boundary value Problem 2.1 provided that
the shear on ∂Ω is constant.

The study of the overdetermined Problem 2.1 begins with Serrin’s seminal pa-
per [S] in which he employed the Alexandrov moving plane method to show that
for a simply connected domain, solvability of Problem 2.1 in RN with constant
boundary conditions, aj = a, cj = c, forces the simply connected domain Ω to
be a ball and the solution u to be radially symmetric.

In a short note following Serrin’s paper, Weinberger [W] gave another proof of
Serrin’s result mentioned above based on the strong Maximum Principle for the
auxiliary function

ϕ = |∇u|2 + u

and a Rellich type identity.

Both Serrin’s and Weinbereger’s methods were extended to more general differ-
ential equations and more general boundary conditions. In general, the methods
allow the specification of a free boundary in some of the cases when the solution
of Problem 2.1 does not achieve local extrema inside Ω. We mention only the
following theorem, which combines the results of [S], [A], [WGS], [R] and [Si]
when applied to Problem 2.1 in the case of a domain in RN .

Theorem 2.2. Let c0 = 0, a0 ≥ 0, and cj > 0, aj ≤ 0 for 0 ≤ j ≤ n. Then the
overdetermined boundary value Problem 2.1 is solvable for a finitely connected
domain Ω in RN if and only if Ω is a ball or a spherical shell. In either case u
is a radial function.

For a disc or an annulus problem (2.1a)–(2.1c) is elementary. As an instructive
example, consider the case of an annulus A = A(r, R) = {z : r < |z| < R} in
the complex plane. Let

v(z) =
|z|2

4
,
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so that 4v = 1. Now if u solves (2.1a)–(2.1c) in A then h(z) = u(z) + v(z)
is harmonic and has constant boundary values b0 = c0 + (1/4)R2 on γ0 and
b1 = c1 + (1/4)r2 on γ1. Therefore,

h(z) = (b0 − b1)
log(|z|/r)
log(R/r)

+ b1,

and for z ∈ A,

u(z) =

(
c0 − c1 +

1

4
(R2 − r2)

)
log(|z|/r)
log(R/r)

+ c1 +
1

4
(r2 − |z|2).

An easy calculation gives

R2 − r2 = 2(a0R + a1r) > 0.

The latter inequality shows that at least one of the values a0 and a1 is positive.
(This also follows from Hopf’s Lemma.)

We stress that even for a planar doubly-connected domain Problem 2.1 remains
open when the (inner) normal derivatives are positive constants, i.e. the solution
achieves a maximum inside the domain.

3. Dual quadrature identities

The so-called duality method developed in [B, PS] reduces problem (2.1a)–(2.1c)
to a quadrature identity for harmonic or analytic functions.

Theorem 3.1. The overdetermined boundary value problem (2.1a)–(2.1c) is solv-
able in Ω if and only if the quadrature identity

(3.1)

∫
Ω

f(z) dA =
n∑

j=0

aj

∫
γj

f(z) ds

holds for all f analytic in Ω and continuous on Ω̄.

Proof. Suppose the quadrature formula (3.1) holds for all functions f analytic
in Ω and continuous on Ω̄. Let v denote the solution of the Dirichlet problem
4v = −1 with zero boundary conditions v = 0 on ∂Ω. Using Green’s identity
we obtain

n∑
j=0

aj

∫
γj

f ds =

∫
Ω

f dA = −
∫

Ω

f4v dA =

∫
∂Ω

f
∂v

∂n
ds.

Hence for every f analytic in Ω and continuous on Ω̄∫
∂Ω

f

(
∂v

∂n
−

n∑
j=0

ajωj

)
ds = 0,
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where ωj = ω(z, γj,Ω) denotes the harmonic measure of γj with respect to Ω,
i.e. ωj(z) =

∫
γj
dωz(w), see Section 4. Therefore, as in the proof of Theorem 3.2

[GK], also cf. [Kh3],

∂v

∂n
−

n∑
j=0

ajωj

annihilates all analytic functions in Ω and hence

(3.2)
∂v

∂n
−

n∑
j=0

ajωj = −
n∑

j=0

cj
∂ωj

∂n
on ∂Ω

for some constants cj. By defining u = v+
∑n

j=0 cjωj we obtain a solution of the
overdetermined boundary value Problem 2.1.

To prove the converse, suppose that u is a solution of the overdetermined prob-
lem (2.1). Set v = u−

∑n
j=0 cjωj. Then

4v = −1, v = 0 on ∂Ω.

Furthermore, the boundary conditions (2.1b) and (2.1c) imply that v satis-
fies (3.2) on ∂Ω.

Let f be analytic in Ω and continuous on Ω̄. Then applying Green’s identity
(twice) we obtain:

n∑
j=0

aj

∫
γj

f ds =

∫
∂Ω

f
n∑

j=0

ajωj ds

=

∫
∂Ω

f

(
∂v

∂n
+

n∑
j=0

cj
∂ωj

∂n

)
ds

=
n∑

j=0

cj

∫
∂Ω

f
∂ωj

∂n
ds+

∫
∂Ω

∂f

∂n
v ds+

∫
Ω

(v4f − f4v) dA

=
n∑

j=0

cj

∫
∂Ω

f
∂ωj

∂n
ds+

∫
Ω

f dA

=
n∑

j=0

cj

∫
γj

ωj
∂f

∂n
ds+

∫
Ω

f dA

=

∫
Ω

f dA.

The last equality in this chain follows from the fact that f is a single-valued
analytic function on Ω and therefore all of its boundary periods

∫
γj

(∂f/∂n) ds
are zero.
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An equivalent form of Theorem 3.1 states that problem (2.1a)–(2.1c) is solvable
if and only if the quadrature identity (3.1) holds true for all harmonic functions
which are real parts of functions analytic in Ω and continuous on Ω̄.

The following theorem, whose proof is similar to that of Theorem 3.1 and hence is
omitted, shows that if f in (3.1) is allowed to be an arbitrary harmonic function,
the latter forces the boundary values (2.1b) to be the same.

Theorem 3.2. The overdetermined boundary value problem (2.1a)–(2.1c) is solv-
able in Ω with constant boundary values ck = 0 for all k = 0, . . . , n if and only if
the quadrature identity (3.1) holds for all f harmonic in Ω and continuous in Ω̄.

If problem (2.1a)–(2.1c) is solvable in a domain Ω, then the boundary values cj
and aj are related to geometric characteristics of the domain. Indeed, let

lk =

∫
γk

ds, sk =

∫
Ω

ωk dA, pj,k =

∫
γj

∂ωk

∂n
ds.

Thus, lk is the length of γk, sk is the L1-norm of the harmonic measure ωk with
respect to area, and pj,k is the period of the harmonic conjugate of ωk around
γj. Let P (Ω) and A(Ω) denote the perimeter of Ω and its area, respectively. If
u solves Problem 2.1, then applying Green’s identity we find:

A(Ω) = −
∫

Ω

4u dA =

∫
∂Ω

∂u

∂n
ds =

n∑
k=0

aklk.

With this notation, we have:

(3.3)
n∑

k=0

lk = P (Ω),
n∑

k=0

sk =
n∑

k=0

aklk = A(Ω),
n∑

k=0

pj,k = 0.

The last equation in (3.3) holds for all 0 ≤ j ≤ n, see [N, p. 41]. Integrating (3.2)
over γk, we obtain ∫

γk

∂v

∂n
ds− aklk =

n∑
j=1

cjpk,j.

Applying Green’s identity, we find∫
γk

∂v

∂n
ds = −

∫
Ω

(ωk4v − v4ωk) dA =

∫
Ω

ωk dA = sk.

One of the constants ck may be prescribed; so let c0 = 0. Then combining the
previous results, we conclude that the parameters ck and ak satisfy a system of
equations:

(3.4)
n∑

j=1

cjpk,j = sk − aklk, k = 1, . . . , n.

It is well known that the determinant of the matrix of periods pj,k, j, k = 1, . . . , n,
is non-zero, see [N, p. 40]. Therefore for every choice of ak, sk, and lk the
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system (3.4) has at most one solution c1, . . . , cn. Now system (3.4) contains n
linearly independent equations. It follows from (3.3) that the (n+1)-th equation,
namely,

∑n
j=1 cjp0,j = s0 − a0l0, depends on the others.

In the special case when all the normal derivatives ak equal to the same con-
stant λ, we have

λ =
A(Ω)

P (Ω)
.

4. BVP for analytic functions

There is another approach to the problems under consideration, see [Kh2], which
requires minimal a priori regularity of the boundary. First we introduce necessary
terminology.

Let Ω be a finitely connected domain on C̄ bounded by n+ 1 Jordan rectifiable
curves γj, 0 ≤ j ≤ n.

We say that a function f , analytic in the domain Ω, belongs to the (Smirnov)
class E1 = E1(Ω) if f has non-tangential boundary values f ∗ ∈ L1(∂Ω) a.e. on
∂Ω and if the Cauchy integral formula holds for f ,

f(z) =
1

2πi

∫
∂Ω

f ∗(ζ)

ζ − z
dζ, z ∈ Ω

(cf. [Du1, Chapter 10] and [Kh1] for a basic account on Smirnov classes).

Let ζ = ψ(z) be a Koebe circular function mapping Ω conformally onto a do-
main G bounded by circles Ck = {ζ : |ζ − ζk| = rk}, where Ck = ψ(γj),
0 ≤ k ≤ n. In what follows we always assume that C0 is the unit circle
T = {ζ : |ζ| = 1} and C1 is a circle {ζ : |ζ| = ρ} for some 0 < ρ < 1.
Then for 2 ≤ k ≤ n, Ck are boundaries of disjoint discs in the annulus A(ρ, 1).
Since ∂Ω is rectifiable, the inverse Koebe function ϕ = ψ−1 is continuous on ∂G
and ϕ′ has boundary values a.e. on ∂G.

A domain Ω with a rectifiable boundary is called a Smirnov domain if for ζ ∈ G,

(4.1) log |ϕ′(ζ)| = 1

2π

∫
∂G

log |ϕ′(w)|∂gG(w, ζ)

∂n
|dw|,

that is, if ϕ′ can be recovered from the boundary values of |ϕ′| via the Poisson
formula for G. Here gG(w, ζ) denotes the positive Green function of G having
singularity at ζ. The measure

dωζ(w) =
1

2π

∂gG(w, ζ)

∂n
|dw|

on ∂G is the harmonic measure at the point ζ ∈ G.
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It is worth noting that in the case of a Smirnov domain Ω the boundary values f ∗

of functions f in E1(Ω) coincide with the space L1
a(∂Ω) — the L1-closure of the

set of rational functions with poles outside Ω̄, cf. [Du1, Chapter 10].

The following known form of the Reflection Principle will be used.

Lemma 4.1. For f ∈ E1(Ω) and some function h analytic on an arc σj ⊂ Cj, let
g(ζ) = f(ϕ(ζ))ϕ′(ζ)h(ζ), where ϕ is the inverse Koebe function. If Im g(ζ) = 0
a.e. on σj, then g can be continued analytically across σj.

Proof. Since ∂Ω is rectifiable and since h is analytic on Cj, it follows that
g = (f ◦ ϕ) · ϕ′ · h is in the Hardy space H1(A), where A is a thin annulus in G
with one boundary component being Cj. Now since Im g = 0 on σj a.e., by a
standard Reflection Principle g extends analytically across σj.

Theorem 4.2. Let Ω be a Smirnov domain bounded by n+ 1 Jordan curves γj,
0 ≤ j ≤ n. Then the quadrature identity (3.1) holds for all functions f analytic
in Ω and continuous on Ω̄ if and only if there exists a function F analytic in Ω
such that F ∈ H∞(Ω) and for j = 0, . . . , n,

(4.2) F (z) = z̄ + 2iaj ż a.e. on γj.

Here and below ż = dz/ds stands for the unit tangent in the positive direction
on ∂Ω and ż denote the conjugate of ż.

Proof. Let f be analytic in Ω and continuous on Ω̄. Applying complex Green’s
identity and (3.1) we obtain

(4.3)

∫
∂Ω

z̄f dz = −2i

∫
Ω

f dA = −2i
n∑

j=0

aj

∫
γj

f ds = −2i
n∑

j=0

aj

∫
γj

fż dz.

Therefore,

(4.4)

∫
∂Ω

f

(
z̄ + 2i

n∑
j=0

ajωj ż

)
dz = 0.

Now by a variant of F. and M. Riesz Theorem for finitely connected domains
proved by G. Tumarkin and S. Khavinson, see [TKh] or [Kh4], there exists a
function F in L1

a(∂Ω) such that F (z) = z̄+ 2i
∑n

j=0 ajωj ż a.e. on ∂Ω. Since Ω is

a Smirnov domain and F |Γ ∈ L∞(Γ) we conclude that F ∈ H∞(Ω).

Since Cauchy’s Theorem holds for the class E1, the converse is also true. Indeed,
if F in E1(Ω) satisfies (4.2), then (4.4) holds for all f analytic in Ω and continuous
on Ω̄. Now (4.3) implies the quadrature identity (3.1).

Equation (4.2) first appeared in [Kh2] in connection with the so-called analytic
content of Ω defined by

λ = λ(Ω) = inf ‖z̄ − f(z)‖∞,
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were the infimum is taken over all functions f analytic in Ω and continuous
on Ω̄. So, λ(Ω) characterizes how well z̄ can be approximated in L∞-norm on Ω
by analytic functions. The analytic content admits nice upper and lower bounds:

(4.5) 2A(Ω)/P (Ω) ≤ λ(Ω) ≤ (A(Ω)/π)1/2.

The upper bound in (4.5) was established by Alexander [Al], with the equality
holding only for discs. The lower bound was found in [Kh2]. It is also sharp,
equality in the left inequality in (4.5) holds for discs and circular annuli. The
question concerning a complete list of extremal domains for this inequality first
raised in [Kh2] still remains open. It was conjectured in [Kh2] that

λ(Ω) = 2A(Ω)/P (Ω)

if and only if Ω is a disc of radius λ or an annulus, also see [Kh3].

The following theorem, which is an easy extension of the results in [Kh2], where
∂Ω was assumed to be real analytic, links the question on the extremal do-
mains for the analytic content with equation (3.1) and therefore via quadrature
identity (3.2) with the question on solvability of the overdetermined problem
(2.1a)–(2.1c).

Theorem 4.3. Let Ω be a Smirnov domain on C, then

λ(Ω) =
2A(Ω)

P (Ω)

if and only if there is F in H∞(Ω) such that

F (z) = z̄ − iλż a.e. on ∂Ω.

5. The mapping function and quadratic differentials

Equation (4.2) suggests a slightly more general question.

Problem 5.1. Let pj, τj ∈ R and cj ∈ C, 0 ≤ j ≤ n, be given numbers, such

that pj
2 + τj

2 6= 0. Find all Smirnov domains Ω ⊂ C of connectivity n + 1 such
that Ω is bounded by n + 1 curves γj and there exists a function F analytic
(or meromorphic with prescribed poles and orders) in Ω and F ∈ E1 near the
boundary, satisfying the boundary condition

(5.1) F (z) = pj z̄ + 2iτj ż + cj for a.e. z ∈ γj.

We shall also consider meromorphic functions in some special yet interesting cases
in the next section. Here we will assume that F is an analytic function, which
makes the problem very closely related to the original overdetermined problem,
see Theorem 4.2. The constants in (5.1) cannot be arbitrary. Suppose Ω is
bounded and γ0 is the outer boundary. Let P (γj) and A(γj) denote the length
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of γj and the area bounded by γj, respectively. Integrating (5.1) along ∂Ω we
obtain

−p0A(γ0) +
n∑

j=1

pjA(γj) =
n∑

j=0

τjP (γj).

With obvious modifications, a similar identity holds if Ω is unbounded.

Our goal is to solve Problem 5.1 in certain cases. From the geometric point
of view our discussion is reduced to classifying domains which allow analytic
quadratic differentials that are real on the boundary.

Suppose ∂Ω ∈ C2. Differentiating (5.1) along γj with respect to arc length we
obtain

(5.2) F ′(z) dz2 = (pj + 2τjkj(z)) (ds)2,

where kj is the signed curvature of γj at z. This shows that the quadratic
differential F ′(z) dz2 is real on ∂Ω. We refer the reader to [J] and [G] for the
basic account on quadratic differentials.

Changing variables via z = ϕ(ζ), where ϕ is the inverse of the Koebe circular
function ψ defined in Section 4, we obtain the quadratic differential

(5.3) Q(ζ) dζ2 = F ′(ϕ(ζ))ϕ′
2
(ζ) dζ2,

which is analytic in the circular domain G and real on ∂G. The space TG of all
such quadratic differentials on G has real dimension 3n− 3 if n ≥ 2; it has real
dimension 0 if n = 0 and real dimension 1 if n = 1, see [G, Theorem 6, p. 27]
(the second exceptional case however is missing there). If n ≥ 1, every Q(ζ) dζ2

in TG has 2n − 2 zeros on G counting multiplicity (boundary zeros are counted
with half of their multiplicities), cf. [J, Lemma 3.2].

This shows, in particular, that Q(ζ) dζ2 is identically zero if G is the unit disc
(n = 0) and that

Q(ζ) dζ2 =
C

ζ2
dζ2

with some real constant C if G is an annulus (n = 1).

The signed curvature at z ∈ γj can be expressed in terms of the inverse Koebe
function ϕ as follows, cf. [Du2, p. 74]:

(5.4) kj(z) =
1

rj|ϕ′(ζ)|
Re

(
1 +

(ζ − ζj)ϕ
′′(ζ)

ϕ′(ζ)

)
.

Combining these results yields the following necessary condition for the solvabil-
ity of problem (2.1a)–(2.1c).

Theorem 5.2. Let Ω be a domain of connectivity n+1 in C with a C2-boundary.
If the problem (5.1), and therefore the overdetermined problem (2.1a)–(2.1c), is
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solvable with a function F analytic in Ω then the inverse Koebe function ϕ from
the circular domain G onto Ω satisfies the equation

(5.5) |ϕ′(ζ)|2
∣∣∣∣pj +

2τj
rj|ϕ′(ζ)|

Re

(
1 +

(ζ − ζj)ϕ
′′(ζ)

ϕ′(ζ)

)∣∣∣∣ = |Q(ζ)|, ζ ∈ Cj,

with some Q(ζ) analytic in Ω and such that the quadratic differential Q(ζ) dζ2 is
real on ∂G.

Note nevertheless that even using Theorem 5.2 we still have not been able to
solve Problem 5.1 for doubly-connected Ω under the assumptions of analyticity
of F . When G is an annulus and p0 = p1 = 1 equation (5.5) becomes

|ϕ′(ζ)|2 +
2τj|ϕ′(ζ)|

rj

Re

(
1 +

ζϕ′′(ζ)

ϕ′(ζ)

)
= Cr−2

j if |ζ| = rj, j = 0, 1.

This is the simplest case when the problem still remains unsolved.

Three distinguished special cases of Problem 5.1 are the following:

(5.6) (i) F (z) = pj z̄ (ii) F (z) = 2iτj ż (iii) F (z) = pj z̄ + cj

for a.e. z ∈ γj, j = 0, . . . , n. It is worth noting that the case (iii) with pj = 0 for
all j was studied by D. Aharonov and H. Shapiro in connection with quadrature
identities for analytic functions, see [Sh] and references therein.

First we deal with the case (i) of (5.6) and Ω a bounded multiply-connected
Smirnov domain. Here we have the following result.

Theorem 5.3. If the boundary conditions are

F (z) = pj z̄ a.e. on γj, j = 0, . . . , n,

for given constants pj ∈ R with p0 > 0 then the existence of F ∈ E1(Ω) with
the above boundary values is possible if and only if the domain is the annulus
A = {z : r < |z| < R} such that (R/r)2 = p1/p0.

Proof. The function zF (z) is in E1(Ω) ∩ L∞(∂Ω) and since Ω is a Smirnov
domain, zF (z) ∈ H∞(Ω). Since it is real valued on ∂Ω it is therefore a constant
[Du1]. Hence, F (z) = const/z and on each γj, j = 0, . . . , n we have |z| =const/pj,
so Ω is either a disc or an annulus centered at the origin. Since F (z) = const/z
is not analytic in the disc we are left with the annulus A = {z : r < |z| < R}.
Now the boundary conditions imply that (R/r)2 = p1/p0.

Remark 5.4. In general, even in Smirnov domains there exist non-constant E1

functions (not bounded!) with real boundary values (cf. [Kh1]).

Next let us observe that problem (5.6) (ii) can be reduced to problem (5.6) (iii).
This can be done by defining the function

g(z) =

∫
F 2(z) dz.
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It is easy to see from (ii) that g is a single-valued analytic function in Ω and
there are constants cj such that g(z) = −4τ 2

j z̄ + cj a.e. on γj, j = 0, . . . , n.

We should emphasize that problem (ii) of (5.6) is related to a special case of the
boundary value problem, for which there is an enormous literature. We mention
only a classical monograph of I. N. Vekua [V]. It follows from the results of
Section V.5 of this book that for some real constants c1, . . . , cn

(5.7) F (z) = c1
∂ω1(z)

∂z
+ · · ·+ cn

∂ωn(z)

∂z
,

where ωj denotes the harmonic measure of γj with respect to Ω and

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
.

Since the boundary curves are level sets of the harmonic measures we have

∂ωk

∂z
= −iż ∂ωk

∂n

a.e. on the boundary of Ω. Taking into account (ii) of (5.6), we find

(5.8) F (z) = −i
n∑

k=1

ckż
∂ωk

∂n
= i

n∑
j=0

τj żωj, a.e. on ∂Ω.

Now (5.7) and (5.8) imply that the function

u = −
n∑

k=1

ckωk

satisfies the following overdetermined boundary value problem:

4u = 0 in Ω
u = −cj on γj

∂u

∂n
= τj on γj

where j = 0, . . . , n and c0 = 0. At this point we arrive at the overdetermined
problem for harmonic functions in multiply connected planar domains. To our
knowledge even for this simplest differential equation the problem is open.

Equation (5.7) expresses the function F in terms of harmonic measures of bound-
ary components of an unknown domain Ω. Next we will find the Koebe function ϕ
from the canonical circular domain G onto Ω defined in Section 4. We will con-
sider problem (5.6) (ii) above, working under the assumption that Ω is a Smirnov
domain. Now we have

(5.9) −F 2(z) dz2 = 4τj
2 (ds)2 > 0 a.e. on γj.

Consider the quadratic differential

(5.10) Q(ζ) dζ2 = − (F (ϕ(ζ))ϕ′(ζ))
2
dζ2,
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which is analytic in G. Since ∂Ω is rectifiable, the function

g(ζ) = iF (ϕ(ζ))ϕ′(ζ)(ζ − ζk)

is defined a.e. on Ck, 0 ≤ k ≤ n, and has real boundary values on Ck in view of
(5.9). Invoking Lemma 4.1 we see that Q(ζ) dζ2 can be extended to an analytic
quadratic differential on G which is positive on ∂G, cf. [J].

For 1 ≤ ν ≤ n−1, let gG(ζ, ζν) denote the Green function of G with a pole at ζν ,
where ζν , 1 ≤ ν ≤ n− 1, denote zeros (each one of even order) of the quadratic
differential (5.10). It follows from (4.1), (5.9), and (5.10) that

log |ϕ′(ζ)|2 = − log 4 + log |Q(ζ)| −
n∑

j=0

ωj(ζ) log τj
2 + 2

n−1∑
ν=1

gG(ζ, ζν).

This implies

(5.11) ϕ′(ζ) =
1

2
Q1/2(ζ) exp

(
n−1∑
ν=1

g̃G(ζ, ζν)−
n∑

j=0

ω̃j(ζ) log |τj|

)
.

Here g̃G = gG + ig∗G and ω̃j = ωj + iω∗j , where g∗g and ω∗j denote harmonic
conjugates of gG and ωj, respectively. Integrating (5.11) we obtain

(5.12) ϕ(ζ) =
1

2

∫
Q1/2(ζ) exp

(
n−1∑
ν=1

g̃G(ζ, ζν)−
n∑

j=0

ω̃j(ζ) log |τj|

)
dζ.

To be single-valued the function ϕ′(ζ) must have zero periods around all contours
Cj, j = 0, . . . , n. Hence, for j = 1, . . . , n,

(5.13)
n−1∑
ν=1

∫
Cj

g̃′G(ζ, ζν) dζ −
n∑

k=0

log |τk|
∫

Cj

ω̃′k(ζ) dζ = 0 mod 2πi

and a similar equation for j = 0 follows from equations (5.13). A standard
calculation, cf. [N, Section I.10], reveals that (5.13) reduces to

n−1∑
ν=1

ωj(ζν)−
n∑

k=0

pjk log |τk| = 0 mod 1, j = 1, . . . , n.

As before, pjk denotes the period of ωk with respect to γj, i.e.

pjk = − 1

2π

∫
γj

∂ωk

∂n
ds.

Since ϕ is single-valued we have additional n constraints, for 1 ≤ j ≤ n,∫
γj

Q1/2(ζ) exp

(
n−1∑
ν=1

g̃G(ζ, ζν)−
n∑

j=0

ω̃j(ζ) log |τj|

)
dζ = 0.

Finally we have one more crucial restriction — the function ϕ should be univalent
on G.
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It is unlikely that all these conditions can be satisfied in connectivity greater or
equal to 3. However, for doubly-connected domains they are consistent and the
above argument leads to a complete solution of problem (5.6) (ii).

Theorem 5.5. Let Ω be a doubly-connected bounded Smirnov domain. Then (a
slightly modified) problem (5.6) (ii) has a solution, i.e. there exists a function
F ∈ E1(Ω) such that

F (z) = τj ż a.e. on γj, j = 0, 1,

for given constants τj ∈ R with τ0 > 0 if and only if after a translation Ω becomes
an annulus A = {z : r < |z| < R} such that R/r = τ1/τ0 and

F (z) =
iRτ0
z

.

Proof. Since Ω is doubly-connected, G is an annulus {z : ρ < |z| < 1} for
some 0 < ρ < 1. In this case the quadratic differential (5.10) has the form
Q(ζ) dζ2 = −C2/ζ2 dζ2 with some C > 0 and therefore it has no zeros in Ω.
Since ω1(ζ) = 1− ω0(ζ) = log |ζ|/ log ρ, equation(5.12) becomes

ϕ(ζ) =
iC

2

∫
ζ log(τ0/(ρ|τ1|))/ log ρ dζ,

which is univalent and maps T onto an outer boundary component γ0 if and only
if τ0/|τ1| = ρ. Then

ϕ(ζ) = c1ζ + c2
for some constants c1 6= 0 and c2 and thus ϕ is a linear map. An easy calculation
then shows that Ω is an annulus {z : r < |z − z0| < R} with some z0 ∈ C such
that R/r = τ1/τ0 and F is of the required form.

We conclude this section by quoting some results of [Ga] and [Kh2], which we
consider important for understanding equations (4.2) and (5.1). Assuming an-
alyticity of the boundary, let Sj(z) denote the Schwarz function of γj, that is a
function analytic in a neighborhood of γj such that

Sj(z) = z̄ on γj.

Now equation (5.1) can be written as

(5.14) F (z) = pjSj(z) + 2iτjS
′
j(z)ż = pjSj(z) + 2iτj

√
S ′j(z), z ∈ γj,

where the branch of the square root is chosen such that√
S ′j(z) = ż on γj.

Let

uj =
√
S ′j(z).

Then (5.14) becomes the Riccati equation for uj:

(5.15) pju
2
j + iτju

′
j = g, where g = F ′.
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A standard substitution uj = (τj/pj)iv
′/v transforms (5.15) into a homogeneous

linear equation

(5.16) v′′ +
g

pjτj2
v = 0.

As is well known (cf. [L]) solutions of (5.16) are locally analytic in Ω. Hence
uj and Sj are meromorphic in Ω. Furthermore, uj and Sj can have only simple
poles and all the residues of Sj are equal to (τj/pj)

2.

The above consideration leads to another quadratic differential related to F . Let
Φj(z) = −(F (z)− pjSj(z))

2. Then

Φj(z) dz
2 = −(F (z)− pjSj(z))

2 dz2 = 4τ 2
j (ds)2 > 0 on γj.

Thus, Φj(z) dz
2 is a meromorphic quadratic differential on Ω (multiple-valued

in general) which is single-valued and positive on γj (but not necessarily on γk

if k 6= j). In addition, all the poles of Φj(z) dz
2 are of second order such that

Φj(z) dz
2 has the circular structure of trajectories near the poles. Thus, it seems

to support once more the conjecture that annuli and discs are the only domains
in which (5.1) has a non-trivial solution.

6. The shape of droplets

As we already mentioned discs are the only simply connected domains, for which
problem (2.1a)–(2.1c) is solvable or, equivalently, equation (4.2) is solvable in
the class of analytic functions. In this section we consider Problem 5.1 in simply
connected domains but allow F to be meromorphic rather than analytic.

Let zν , 0 ≤ ν ≤ n, be distinct distinguished points on C, nν be positive integers,
p and τ be real numbers at least one of which is non-zero, and let ż be the unit
tangent vector as in (4.2).

Problem 6.1. Find all simply connected Smirnov domains Ω ⊂ C such that
zν ∈ Ω, 0 ≤ ν ≤ n and there exists a function F analytic in Ω, except poles of
order nν at the points zν , and F ∈ E1 near the boundary, satisfying the boundary
condition

(6.1) F (z) = pz̄ + iτ ż, a.e. on ∂Ω.

When Ω is an unbounded domain we assume that z0 = ∞ is among the distin-
guished points and that F is regular or meromorphic at z0; so n0 ≥ 0.

Let us observe that when Ω is a bounded domain and p = 0, Problem 6.1 is
solved, see [Sh, p. 45] and [Gu]. Our motivation to study Problem 6.1 is its
relation with overdetermined problem (2.1a)-(2.1c), quadrature identities, and
approximation theory. Yet the same boundary condition (6.1) describes the
shape of a planar droplet of a perfectly conducting fluid bounded by a Jordan
curve γ that separates it from vacuum with p representing the fluid pressure on
the free boundary and τ equalling the surface tension, see [Ga] and [GMV].
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More precisely, let Ω be the unbounded component of C̄ \ γ. Let E be an
electrostatic field in Ω with an analytic potential ζ given by

ζ = g(z) = E∞z + α0 +
α1

z
+
α2

z2
+ · · · ,

where E∞ stands for the electric field at z = ∞. Rotating the z-plane if nec-
essary we may assume that E∞ > 0. Then the field is uniform and horizontal
at infinity, and g maps Ω conformally onto the exterior of a vertical slit. Trans-
lating the ζ-plane we may assume that the center of this vertical slit is at the
origin. Changing the scale in the ζ-plane we can assume E∞ = 1. Finally, using
translation in z-plane, we can assume α0 = 0. Thus in what follows we will work
with an analytic potential having the form

(6.2) ζ = g(z) = z +
α1

z
+
α2

z2
+ · · · .

An electrical force E and the fluid pressure p act outward on the interface γ
between the droplet and the vacuum, and are balanced by an inward force τκ
due to surface tension, where τ denotes a constant and κ is the curvature of γ.
Assuming in addition that the droplet is in equilibrium, the latter conditions
imply (cf. [Ga]) that the free boundary of the droplet must assume a shape such
that the boundary condition (6.1) is satisfied for the function

(6.3) F (z) =

∫
(g′(z))2 dz = z +

2α1

z
+ · · · ,

which is analytic in Ω except for a simple pole at ∞. From now on we will refer
to F as the integrated analytic potential.

Motivated by the above consideration, any simply connected domain D bounded
by a Jordan closed curve γ such that the boundary value problem (6.1) with
some p, τ ≥ 0 admits a solution F analytic in Ω = C̄ \ D̄ except for a simple
pole at ∞, where it has expansion (6.3) will be called a mathematical droplet. It
is clear that every physical droplet is at the same time a mathematical droplet.
For the converse to be true, the analytic potential g(z) recovered from F and

therefore its derivative g′(z) =
√
F ′(z) must be single-valued functions in Ω.

We will refer to the parameters p and τ as the pressure and surface tension
of a droplet. At present there are no available methods to find all possible
mathematical droplets. Nevertheless, in Section 7 we give a one-parameter family
of mathematical droplets, i.e. domains Ω for which Problem 6.1 is solvable with
non-zero pressure p > 0 and surface tension τ > 0. To our knowledge, no
examples of such domains were known previously.

If the surface tension τ is very large then the forces due to the fluid pressure
become negligible, cf. [Ga]. Therefore equation (6.1) can be simplified to

(6.4) F (z) = iτ ż.

Note that the last equation characterizes also the boundary of some small bubbles
in a fluid flow, cf. [Ga, M1]. So every closed Jordan curve γ for which the
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problem (6.3) and (6.4) can be solved, with g given by (6.2), describes a shape
of an electrified droplet or a small bubble in a fluid flow.

In this section we deal with the following question: describe the shapes of math-
ematical droplets corresponding to the integrated analytic potential (6.3), which
satisfies the boundary condition (6.4) for a given value τ > 0. To characterize the
free boundary of a droplet we will use a slightly relaxed form of equation (6.4),
namely, we assume that (6.4) is satisfied a.e. on γ, which we assume to be a
Jordan curve such that the unbounded component Ω is a Smirnov domain, and
F (z) ∈ E1 near γ. Thus, a priori, we allow non-smooth shapes for the droplets.

Let z = ϕ(w) be a conformal mapping from the unit disc D onto Ω normalized by
conditions ϕ(0) = ∞, Res[ϕ, 0] > 0. If γ surrounds a physical droplet then the
function ζ = g(ϕ(w)) maps D onto a plane slit along a vertical segment. Hence,
g(ϕ(w)) = R (w−1 − w) with some R > 0 and therefore

(6.5) ϕ(w) = R

(
1

w
+ a1w + a2w

2 + · · ·
)
,

where

(6.6) a1 = −
(
1 +

α1

R2

)
and α1 is the coefficient of (6.2). We will see in the proof of Theorem 6.2 that
the same normalization (that is with a0 = 0) holds for mathematical droplets
as well. The leading coefficient R = R(Ω), responsible for the scale of Ω, is a
significant characteristic of Ω — the so-called outer radius of Ω. It is well known
that the outer radius coincides with the logarithmic capacity of γ = ∂Ω, i.e.
R(Ω) = cap γ.

By the Area Theorem (cf. [Du2]), |a1| ≤ 1. Moreover, in the case of equality
|a1| = 1 the boundary γ = ∂Ω is a straight line segment and therefore γ cannot
enclose a droplet. In our next theorem we find a range of the logarithmic capacity
R(Ω) and the surface tension τ for which the boundary value problem (6.4) has
a solution and describe the shape of the corresponding mathematical droplets γ.

Theorem 6.2. Suppose γ is a Jordan curve whose exterior Ω is a Smirnov
domain with logarithmic capacity R = R(Ω), R > 0. Suppose further that the
boundary condition (6.4) with the surface tension τ , such that,

(6.7) τ >
3 + 2

√
3

3
R,

holds a.e. on γ for a function F ∈ E1, which is analytic in Ω \ {∞} and has an
expansion of the form (6.3) at z = ∞. Then γ = {z ∈ C : (z/R) ∈ γλ}, where
λ = R/τ and γλ is the image of the unit circle under the conformal mapping

(6.8) z = ϕλ(w) =
1

w
− 2λw − λ2

3
w3
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from the unit disc onto Ωλ = ϕλ(D). The integrated analytic potential (6.3) has
the form

(6.9) F (z) = τ
w2 + λ

w(1 + λw2)
, where w = ϕ−1

λ (z/R).

For any given logarithmic capacity R = R(Ω) > 0 and surface tension τ such
that 0 ≤ τ ≤ R(3 + 2

√
3)/3, the problem (6.4) has no solutions in the class of

mathematical droplets with a Jordan boundary.

Proof. Let

(6.10) z = ϕ(w) = R

(
1

w
+ a0 + a1w + · · ·

)
be a conformal mapping from D onto Ω. Since the curve γ is rectifiable the
function h(w) = F (ϕ(w))ϕ′(w)w is defined a.e. on T. Equation (6.4) shows that
Imh(w) = 0 a.e. on T. Now by Lemma 4.1, h(w) can be continued analytically
across T. This implies that the quadratic differential

(6.11) Q(w) dw2 = −F 2(ϕ(w))(ϕ′(w))2 dw2

is analytic on D \ {0} and positive on T. Therefore, Q(w) dw2 can be continued
to a meromorphic quadratic differential on the whole Riemann sphere by the
reflection with respect to the unit circle. Since F (z) has a simple pole at z = ∞,
Q(w) dw2 has a pole of order six at w = 0. Furthermore, by reflection, the
point at infinity ζ = ∞ is also a pole of order six. Since for a meromorphic
quadratic differential on the Riemann sphere the difference between the number
of poles and the number of zeros counted with their multiplicities equals four cf.
[J], it follows that Q(w) dw2 has eight zeros in the plane and the set of zeros is
symmetric with respect to the unit circle. From (6.11) it is evident that each
zero is of even multiplicity. In summary, there is a constant C > 0 such that
Q(w) dw2 has the form

(6.12) Q(w) dw2 = −C2w−6(w − A)2(w −B)2(1− Āw)2(1− B̄w)2 dw2,

where |A| < 1, |B| < 1. Now (6.4), (6.11), and (6.12) yield

(6.13) |w2ϕ′(w)| = C

τ
|1− Āw|2|1− B̄w|2 a.e. on |w| = 1.

Since Ω is a Smirnov domain and ϕ′(z) 6= 0 in D, equation (6.13) implies that
for w ∈ D we have

(6.14) ϕ′(w) = C1w
−2(1− Āw)2(1− B̄w)2, where |C1| =

C

τ
.
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Hence

ϕ(w) = C1

(
− w−1 − 2(Ā+ B̄) logw + (Ā2 + B̄2 + 4ĀB̄)w

−ĀB̄(Ā+ B̄)w2 +
Ā2B̄2

3
w3 + c0

)
with some c0 ∈ C. Since ϕ is single-valued, we must have Ā + B̄ = 0. In
addition, it follows from the normalization (6.10) that C1 = −R. Therefore,
denoting λ = −Ā2, we obtain

(6.15) ϕ(w) = R

(
1

w
− 2λw − λ2

3
w3 + c0

)
.

Now from (6.11), (6.12), (6.14), and (6.15) we find

F (z) = τ
w2 + λ̄

w(1 + λw2)
= τ λ̄

(
1

w
+O(w)

)
=
τ λ̄

R
(z −Rc0 +O(w)) .

Comparing this with the expansion (6.3), we find λ = R/τ and c0 = 0. This
proves (6.9) and (6.8).

The function ϕ must also be univalent on D. This gives a constraint on the
range of λ. Indeed, the function (6.15) is univalent if and only if the function ϕλ

defined by (6.8) with λ = R/τ is univalent. Let w = eit. Then the curve γλ is
given by γλ = {x(t) + iy(t) : −π ≤ t ≤ π} with

x(t) = (2λ+ 1) cos t− λ2

3
cos 3t, y(t) = (2λ− 1) sin t− λ2

3
sin 3t,

where −π ≤ t ≤ π. Since x(t) = x(−t) and y(t) = −y(−t), we see that γ pos-
sesses symmetry with respect to the coordinate axes. Since γλ is a Jordan curve
which is symmetric with respect to the real axis, we necessarily have y(t) 6= 0 for
0 < t < π. This yields

(2λ− 1) sin t− λ2

3
sin 3t 6= 0, 0 < t < π,

which is equivalent to

sin2 t 6= 3

4

λ2 − 2λ+ 1

λ2
, 0 < t < π.

Therefore, for ϕλ to be univalent we must have 3(λ2 − 2λ+ 1) > 4λ2, or

(6.16) 0 ≤ λ < 2
√

3− 3.

For λ in this interval we have

x′(t) = −(2λ+ 1) sin t+ λ2 sin 3t = sin t(−1− 2λ+ 3λ2 − 4λ sin2 t) < 0,

since −1− 2λ + 3λ2 < 0 for 0 ≤ λ < 2
√

3− 3. Thus, Reϕ(eit) is decreasing on
0 < t < π and therefore ϕλ is univalent on T. This shows that the function (6.15)
maps D univalently onto a Jordan domain if and only if λ satisfies (6.16). Hence
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the problem under consideration is solvable in the class of Jordan droplets if and
only if R and τ satisfy (6.7). The proof is now complete.
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Figure 1. Droplets for τ = ∞, τ = 3, and τ = (3 + 2
√

3)/3.

Figure 1 displays the evolution of the curves γλ with surface tension τ = 1/λ
decreasing from τ = ∞ to τ = (3 + 2

√
3)/3. In particular, this reflects the fol-

lowing qualitative features of the shape change of mathematical droplets, which
also agrees with physical intuition.

1. All the curves γλ possess double symmetry — we cannot observe droplets in
equilibrium with integrated analytic potential (6.3) which are non-symmet-
ric.

2. If the surface tension dominates, i.e. τ � 1(= R), then the mathematical
droplets become almost perfect circles.

3. If the surface tension decreases to the critical value τ0 = (3 + 2
√

3)/3, the
free boundary of the mathematical droplet will be destroyed first at a single
“weakest” point.

4. The curves γλ, being convex for large values of τ = 1/λ, lose this property
when τ drops below a certain critical value τ1.
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To find τ1, we compute the curvature kλ(z) of γλ at the point z = ϕλ(w), where
λ = 1/τ . Using formulas (5.4) and (6.8), we obtain

kλ(z) =
1

|ϕ′λ(w)|
Re

(
1 +

wϕ′′λ(w)

ϕ′λ(w)

)
=

1

|ϕ′λ(w)|
Re

(
1− 2

1− λw2

1 + λw2

)
,

which is non-positive for all |w| = 1 if and only if 0 ≤ λ ≤ 1/3. Since λ = 1/τ ,
this shows that mathematical droplets γλ are convex if and only if τ ≥ τ1 = 3.

It is worth mentioning that the critical value of the surface tension τ1 = 3
corresponds to McLeod’s solution [M1] of the problem in Theorem 6.2. Indeed,
recovering the analytic potential g defined by (6.2) from the integrated analytic
potential F we get

g′(z) =

√
τ

R

√
λw4 − (1− 3λ2)w2 + λ

(1 + λw2)2
, where w = ϕ−1

λ (z/R).

The latter function is single-valued if and only if the polynomial under the radical
has no zeros in D. Then λ = 1/3 and g(ϕ(w)) = R(w − 1/w). This shows that
the series of mathematical droplets given by Theorem 6.2 contains the only one
(up to scaling) physical droplet discovered by E. B. McLeod [M1].

McLeod [M2] also employed Schiffer’s variational method to show that the same
shape (a rotation of the curve γ1/3) minimizes the ratio (P (Ω))2/|Reα1| among
all Jordan rectifiable curves γ such that the outer radius R(Ω) of the exterior Ω
of γ equals 1. Here P (Ω) stands for the perimeter of Ω and α1 = α1(Ω) denotes
the coefficient of z in the expansion (6.2) of the analytic potential. (The quantity
M(Ω) = 2πReα1(Ω), called the hydrodynamical mass of Ω, plays an important
role in hydrodynamics. In particular, M(Ω) = Mv(γ) + A(γ), where Mv(γ) is
the virtual mass of the flow about γ = ∂Ω and A(γ) is the mass of the bubble
bounded by γ assuming unit density.)

Let ϕ(w) be the univalent map of the unit disc D onto Ω defined by (6.6) with
R = 1. Thus, denoting α = a1, we have

(6.17) z = ϕ(w) = w−1 + αw + a2w
2 + · · · .

Let α1 = α1(Ω) be the coefficient of z−1 in the expansion (6.2) of the analytic
potential in the exterior of γ. From (6.6) we have α1 = −(1 + α). Hence
|Reα1| = 1 + Reα since |α| ≤ 1 by the Area Theorem. Thus, using notation Ωλ

from Theorem 6.2, McLeod’s result gives the inequality

(6.18)
P 2(Ω)

1 + Reα
≥ 3

5
P 2(Ω1/3) =

80π2

27
.

It is interesting to note that the same inequality is true for any locally univalent
function ϕ in D (not necessarily univalent) having expansion (6.17) at w = 0.
For a non-univalent function ϕ, P (Ω) will denote the perimeter of the image
Ω = ϕ(D) on the Riemann surface of ϕ−1. To show this, we first note that
transformation eiβϕ(eiβw) with β ∈ R preserves the perimeter of the image and
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the modulus of the coefficient of w. Therefore we may assume that α ≥ 0. Since
ϕ is locally univalent, ϕ′(w) 6= 0. Therefore the function

h(w) =
√
ϕ′(w) = iw−1

(
1− (α/2)w2 +

∞∑
k=2

βkw
k

)
is well-defined and analytic in D. Then

(6.19)

P (Ω) =

∫ 2π

0

|ϕ′(eiθ)| dθ =

∫ 2π

0

|h(eiθ)|2 dθ

= 2π

(
1 +

α2

4
+

∞∑
k=2

|βk|2
)
≥ 2π

(
1 +

α2

4

)
.

Equality holds in the above if and only if h(w) = iw−1(1− (α/2)w2), or equiva-
lently, if and only if ϕ(w) = ψα(w), where

(6.20) ψα(w) = w−1 + αw − α2

12
w3.

Let Ω(α) = ψα(D) and p(α) = P 2(Ω(α))/(4π2α). Then

p(α) =
(1 + (α2/4))2

1 + α
and p′(α) =

(4 + α2)(3α2 + 4α− 4)

16(1 + α)2
.

Since p′(2/3) = 0, α = 2/3 is a critical value of p(α) which minimizes p(α). Thus,
the domain Ω(2/3) minimizes the functional P 2(Ω)/(1 + Reα). Since Ω(1/3) is
a rotation of the domain Ω1/3 of Theorem 6.2, this proves inequality (6.18) for
locally univalent functions.

Although the proof of (6.18) given above only uses elementary complex analysis,
much deeper methods, such as Schiffer’s variational method, are needed to deal
with even slightly modified problems. We would like to mention two of them.

(I) Minimal perimeter problem. For a given α, 0 ≤ α < 1, find

P (α) = minP (ϕ(D)),

where the minimum is taken over all conformal mappings having expansion
(6.17). Inequality (6.19) shows that the function ψα, defined by (6.20), is
the unique extremal when it is univalent, i.e. for 0 ≤ α ≤ 4

√
3 − 6. But

for the so-called non-trivial range: 4
√

3 − 6 < α < 1, when ψα is not
univalent, there is no available technique to attack the problem. Recently
two similar problems in conformal mapping concerning minimal area rather
than minimal perimeter were solved in [AShS1] and [AShS2].

(II) The second question is to find

min
P (ϕ(D))

|α|
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over the same class of conformal mappings. Let p0(α) = P (Ω(α))/(2πα),
where Ω(α) is the domain defined above. Then

p0(α) =
1

α
+
α

4
, p′0(α) = − 1

α2
+

1

4
.

Since p′0(2) = 0, the function ψ2(w) minimizes the considered ratio in the
class of all analytic functions ϕ such that

√
ϕ′ is well-defined. Since ψ2 is

not univalent in D, extremal functions for this problem will be among the
“non-trivial” extremal functions of problem (I).

We should note that the study in [M1] and [Ga] were restricted to the case of con-
vex bubbles and droplets. Our Theorem 6.2 describes all possible shapes when
the whole boundary of a mathematical droplet is free. Nevertheless, this does not
cover the range of all possible values for the ratio τ : R (surface tension : logarith-
mic capacity). In the remaining part of the range, when 0 ≤ τ/R ≤ (3 + 2

√
3)/3

all mathematical droplets must have a non-free part of the boundary.

Inequality (6.7) gives a sharp lower bound for the surface tension τ , for which
there are Jordan mathematical droplets in equilibrium for the simplified bound-
ary value problem (6.4). Physical evidence, cf. [Ga], suggests that a similar
positive lower bound should exist for the original problem (6.1) as well. At least,
physical droplets cannot exist in the absence of surface tension, i.e. if τ = 0. We
do not know any numerical bounds for τ , which guarantee the existence or non-
existence of physical droplets in presence of significant pressure p. In contrast,
we will see in the next section that mathematical droplets do exists for a zero
surface tension and any positive pressure p.

A similar approach as in the proof of Theorem 6.2 can be used in some other
problems. To give a little perspective we mention two of them.

Theorem 6.3 (cf. [EKS]). Suppose γ is a rectifiable Jordan curve such that
its exterior Ω is a Smirnov domain. Suppose further that there is a function
F ∈ E1(Ω) analytic in Ω

⋃
{∞} and such that

(6.21) F (z) = ż a.e. on γ.

Then γ is a circle {z : |z − z0| = R with some z0 ∈ C and R > 0 and

F (z) =
−iR
z − z0

.

Under an additional assumption F (∞) = 0 this theorem was proved in [EKS].
The argument below shows that the assumption F (∞) = 0 is redundant.

Proof. Let F ∈ E1(Ω) satisfies equation (6.21) and

ϕ(w) = aw−1 + a0 + a1w + · · ·
be a conformal mapping from D onto Ω. Let Q(w) = F 2(ϕ(w))(ϕ′(w))2. Arguing
as in the proof of Theorem 6.2, we find that the quadratic differential Q(w) dw2
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can be continued by symmetry with respect to T to a quadratic differential
positive on T and analytic on D except at a pole of order four at w = 0. Then
Q(w) dw2 has the form

Q(w) dw2 = C2
1w

−4(w − A)2(1− Āw)2 dw2

with C1 > 0 and |A| < 1. Hence ϕ satisfies the equation

|w2ϕ′(w)| = C1|1− Āw|2 a.e. on T.

Since Ω is a Smirnov domain this implies that ϕ′(w) = Cw−2(1 − Āw)2 with
some C such that |C| = C1. Therefore

ϕ(w) = −C
(

1

w
+ 2Ā logw − Ā2w

)
+ z0,

where z0 ∈ C. Since ϕ is single-valued, A = 0 and ϕ(w) = −C/w + z0. Then γ
is a circle and F has the desired form.

Similar result holds also if F has a single pole at a prescribed finite point z0

under an additional constraint F (∞) = 0. The proof follows the lines of the
above argument and is therefore omitted.

Theorem 6.4. Suppose that γ, Ω, and F satisfy conditions of Theorem 6.3,
but F has a simple pole at a given finite point z0 ∈ Ω and F (∞) = 0. Then

γ =

{
z = aζ + z0 :

∣∣∣∣ζ − p

1− p2

∣∣∣∣ =
p2

1− p2

}
with some a ∈ C \ {0} and 0 < p < 1.

Theorem 6.3 shows that the boundary condition (6.21) forces the analytic func-
tion F to vanish at ∞. This phenomenon has a general nature: overdetermined
boundary conditions require a special type of contour and special behavior of a
solution function. In particular, it reflects the fact that some logarithmic terms
in the expansion of a Riemann mapping function must disappear after integra-
tion. In Section 7 we will explore this property to construct some solutions of
Problem 6.1.

7. Remarks and examples

In this section we will give examples of unbounded domains Ω, for which Prob-
lem 6.1 admits a solution F having a polar singularity at ∞. First we find math-
ematical droplets in the absence of surface tension. Notice that equation (6.1)
with τ = 0 defines the Schwarz function of γ. It follows from the known results
about Schwarz functions that γ must be an ellipse, cf. [D, Chapter 5] and [Sh,
Section 3.3]. To deduce this using an approach of this paper, we differentiate
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equation (6.1) with τ = 0 with respect to the arc length. Then we obtain a
quadratic differential of the type (5.3):

Q(w) dw2 = F ′(ϕ(w)) (ϕ′(w))
2
dw2,

where z = ϕ(w) is the Riemann mapping from D onto Ω normalized by conditions
(6.5). Now Q(w) dw2 is positive on T and has in D a single pole of order four at
w = 0. Therefore

Q(w) dw2 = −C2 (w − A)(w −B)(1− Āw)(1− B̄w)

w4
dw2

with some C > 0, |A| < 1, and |B| < 1. Recovering ϕ from the latter two
equations and taking into account normalization (6.5), we obtain:

ϕ(w) = R

(
1

w
+ (Ā+ B̄) logw − ĀB̄w

)
.

Since ϕ is single-valued we must have B = −A. Since scaling does not change
a shape we put R = 1. Then taking A = c, 0 < c < 1 we obtain a family of
functions ϕ(w) = w−1 + c2w, which gives a series of examples of mathematical
droplets — the ellipses with foci at the points z = ±2c. The corresponding
integrated analytic potential F has the derivative

F ′(z) = −p w
2 − c2

1− c2w2

with p = c−2. This gives an analytic potential g with a single-valued derivative
g′(z) =

√
F ′(z) only in two limit cases c = 0 and c = 1. Therefore neither of

the mathematical droplets in this set, which exist if the pressure exceeds the
logarithmic capacity, i.e. p > 1 = R, can be realized as a physical droplet.

In retrospect, we may observe a common feature of all problems with known
solutions, cf. Theorems 6.2, 6.3, and 6.4 — all solution curves are algebraic.
We think that for “most” non-zero values of p and τ the solution curves of
the boundary value Problem 6.1 are transcendental and in general cannot be
expressed as a finite combination of elementary functions. This might be a
reason why it is so difficult to describe them. But it is reasonable to expect that
for particular non-zero values of the parameters p and τ the solution curves are
algebraic. This is indeed the case as we will see next.

Example 7.1. For 0 ≤ λ < 2
√

3−3, let γλ be the curve defined in Theorem 6.2.
The function

ϕλ(w) =
1

w
− 2λw − λ2

3
w3

maps D conformally onto Ωλ = ϕλ(D). Let Sλ(z) be the Schwarz function of γλ.

Since γλ is symmetric with respect to the real axis, ϕλ(w̄) = ϕλ(w). This sym-
metry property implies that

Sλ(z) = ϕλ(1/ϕ
−1
λ (z)) = w − 2λ

1

w
− λ2

3

1

w3
,
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where w = ϕ−1
λ (z). This shows, in particular, that Sλ has a pole of order three

at ∞.

In conclusion, the function f(z) = pSλ(z) + (s/τ)F (z) with s ≥ 0 and F defined
by (6.9) is analytic in Ω except at a pole of order three at z = ∞ and satisfies
the boundary condition f(z) = pz̄ + is ˙̄z on γλ. Thus, for any real p and s, f(z)
solves problem (6.1) in the class of meromorphic functions having a single pole
of order three at ∞.

Example 7.2. A similar construction leads to a one-parameter family of math-
ematical droplets, i.e. domains Ω, for which Problem 6.1 admits solutions having
a single simple pole at ∞. Suppose that γ, Ω, and F satisfy the assumptions of
Theorem 6.4 with z0 = 0 ∈ Ω, but F (∞) 6= 0. Let ϕ be a conformal mapping
from D onto Ω such that ϕ(0) = ∞ and ϕ(c) = 0 for some 0 < c < 1. Now
the quadratic differential Q(w) dw2 = F 2(ϕ(w))(ϕ′(w))2 dw2 can be continued
by symmetry with respect to T to a quadratic differential on C̄, which has the
form

Q(w) dw2 = −C2 (w − A)2(w −B)2(1− Āw)2(1− B̄w)2

w4(w − c)2(1− cw)2
dw2,

where C > 0, |A| < 1, and |B| < 1. Then

|w2ϕ′(w)| = C
|(1− Āw)(1− B̄w)|2

|1− cw|2
a.e. on T.

Since Ω is a Smirnov domain the latter equation allows us to recover ϕ′ and
then ϕ:

(7.1) ϕ(w) = C1

(
1

w
− α1 logw − α2

1− cw
+ α3 log(1− cw)− α4w

)
+ C0.

Here |C1| = C, C0 ∈ C, and the coefficients are given by the following formulas

α1 = 2(c− (Ā+ B̄)),

α2 = c−3(c4 − 2c3Ā− 2c3B̄ + c2Ā2 + c2B̄2

−2Ā2B̄c− 2ĀB̄2c+ 4c2ĀB̄ + Ā2B̄2),

α3 = −2c−3(c4 − Āc3 − B̄c3 + Ā2B̄c+ ĀB̄2c− Ā2B̄2),

α4 = Ā2B̄2c−2.

To have a single-valued function ϕ, we must satisfy α1 = 0 or, equivalently,
A+B = c. This simplifies the coefficients as follows:

α2 =
Ā2B̄2

(Ā+ B̄)3
, α3 = −2ĀB̄(Ā2 + ĀB̄ + B̄2)

(Ā+ B̄)3
, α4 =

Ā2B̄2

(Ā+ B̄)2
.

Since we are looking for particular examples we are not interested in finding all
possible values of the parameters for which ϕ is univalent. Instead, we consider
the special case C1 = 1 and A2 + AB + B2 = 0. The latter together with the
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equation A+B = c gives A = ceiπ/3 and B = ce−iπ/3. Now ϕ has no logarithmic
terms and (7.1) reduces to

(7.2) ϕ(w) =
1

w
− c

1− cw
− c2w + C0.

The normalization ϕ(c) = 0 implies

C0 = −1− 2c2 − c4 + c6

c(1− c2)
.

After some work one can show that ϕ is univalent if and only if

0 < c < c0 =

√
5− 1

2
= 0.618 . . . .

For a fixed c, 0 < c < c0, let lc denote the image of the unit circle T under the
mapping (7.2). Figure 2 displays some typical shapes of the curves lc. Since

ϕ(w̄) = ϕ(w), the Schwarz function of γ has the form:

S(z) = ϕ(1/ϕ−1(z)) = w − cw

w − c
− c2

w
+ C0,

where w = ϕ−1(z). In particular, S(z) has simple poles at z = ∞ and z = 0
with the residues Res[S,∞] = 1 and

Res[S, 0] =
(1− c2 + c4)2

(1− c2)2
.

In terms of w = ϕ−1(z), the solution F can be expressed as

F (z) =

√
Q(w)

ϕ′(w)
= −i(w

2 − cw + c2)(1− cw)

(1− cw + c2w2)(w − c)
.

The function F is analytic in Ω except for a simple pole at z = 0 with the residue

Res[F, 0] = −i1− c2 + c4

1− c2
.

Finally, the function

Gc(z) = (1− c2)S(z) + i(1− c2 + c4)F (z)

is analytic in Ω = ϕ(D) except for a simple pole at ∞. Moreover, Gc satisfies
the boundary condition:

Gc(z) = pz̄ + iτ ˙̄z

with p = 1− c2 and τ = 1− c2 + c4.

Thus, the family of curves lc, 0 < c < c0 gives a series of mathematical droplets,
i.e. domains Ω for which the boundary value problem (6.1) is solvable in the
class of meromorphic functions having a single simple pole at ∞. A tedious
computation of the function

√
G′

c(z) shows that none of these mathematical
droplets can be realized as a physical droplet.
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Figure 2. Droplets lc for c = 0.09, c = 0.4, c = 0.5, c = 0.6 and
c0 = 0.618 . . ..
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Added after proofreading. After this paper was accepted we have become
aware of further papers relevant to the subject of our work. In particular, the
problem on the shape of two-dimensional physical bubbles was studied both nu-
merically and analytically in [MVK] and [Shan]. We stress once more that our
Theorem 6.2 gives a complete description of mathematical droplets for all possible
values of the surface tension and logarithmic capacity.
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