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EXISTENCE OF SOLUTIONS AND REGULARITY
NEAR THE CHARACTERISTIC BOUNDARY

FOR SUB-LAPLACIAN EQUATIONS ON CARNOT GROUPS

DIMITER VASSILEV

We prove that the best constant in the Folland–Stein embedding theorem on
Carnot groups is achieved. This implies the existence of a positive solution
of the Yamabe-type equation on Carnot groups. The second goal of the
paper is to show a certain regularity of the Green’s function and solutions
of the Yamabe equation involving the sub-Laplacian near the characteristic
boundary of a domain in the considered groups.

1. Introduction

In this paper we consider problems of existence and regularity of solutions to a
nonlinear Dirichlet problem involving sub-Laplacians on Carnot groups. The main
motivation comes from the classical Yamabe problem, the question of determining
the best constant in the Sobolev embedding inequality, and their CR counterparts.

A Carnot group is a simply connected and connected Lie group G, whose Lie
algebra g admits a stratification g =

⊕r
j=1 Vj with

[V1, Vj ] = Vj+1 for 1 ≤ j < r, [V1, Vr ] = {0}.

Let Q =
∑r

j=1 j dim Vj be the homogeneous dimension.
Our starting point is this embedding result of Folland and Stein, [Folland 1975]:

For any p ∈ (1, Q) there exists Sp = Sp(G) > 0 such that, for u ∈ C∞

0 (G),

(1-1)
(∫

G
|u|

p∗

d H
)1/p∗

≤ Sp

(∫
G

|Xu|
pd H

)1/p

.

Here, the horizontal gradient |Xu| is defined as |Xu| =
(∑m

j=1(X j u)2
)1/2, where

X = {X1,. . . ,Xm} is a basis of V1, p∗
= pQ/(Q − p), and d H is a fixed Haar

measure on G.
Unlike the Euclidean case [Talenti 1976; Aubin 1976b], the value of the best

possible constant or the nonnegative functions for which it is achieved is unknown.
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In the particular case when p =2 and G =Rn , this problem is related to the Yamabe
problem ([Trudinger 1968; Aubin 1976a; Schoen 1984], see also the survey article
[Lee and Parker 1987]); in the case of the Heisenberg group, it is related to the
CR Yamabe problem. The case of odd-dimensional spheres is equivalent to the
problem of determining the best constant in the L2 Folland–Stein inequality on
the Heisenberg group, and the functions for which it is achieved. The solution of
this problem is instrumental for solving the general case, which is complete after
the works of Jerison and Lee [1984; 1987; 1988; 1989], and Gamara and Yacoub
[Gamara 2001; Gamara and Yacoub 2001].

We note that, when p = 2, the Yamabe equation is the Euler–Lagrange equation
satisfied by the extremals of the naturally associated variational problem. It is also
of interest to study the Yamabe equation on sets different from the whole group,
especially in connection with certain blow-up arguments that appear, for example,
in questions of existence of solutions on domains with a nontrivial topology [Bahri
and Coron 1988; Brezis 1986; Citti and Uguzzoni 2001].

We consider similar problems in a general Carnot group. The method of con-
centration compactness of P. L. Lions can be used, and we show in Section 3 that
there exists a best constant in the Folland–Stein inequality. It is achieved on the
space D̊1,p(G), which is the closure of C∞

0 (G) with respect to the norm

‖u‖D̊1,p(G) =

(∫
G

|Xu|
pd H

)1/p

.

This method does not allow an explicit determination of the best constant or the
functions for which it is achieved. The problem can be formulated as a variational
problem. We consider the case p = 2 in detail. The Euler–Lagrange equation of
the nonnegative extremals leads to the Yamabe-type equation

(1-2) Lu = −u2∗
−1,

where Lu =
∑m

j=1 X2
j u.

While it is relatively easy to see that, in any domain, weak solutions to this
equation are bounded, further regularity is based on intricate subelliptic estimates.
In Section 4 we show that any weak solution of the equation

(1-3) Lpu =

n∑
j=1

X j
(
|Xu|

p−2 X j u
)
= −|u|

p∗
−2u in G.

is a bounded function. We shall present the proof in a somewhat more gen-
eral case. There are several similar results in the Riemannian case. Yamabe
[1960], proved the boundedness for solutions of the Yamabe problem on a man-
ifold without boundary; see also [Trudinger 1968]. For the ordinary Laplacian
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in a bounded domain, Brézis and Kato [1979] established a result similar to part
(1) of Theorem 4.1; for part (2), see [Brézis and Nirenberg 1983]. The proofs
rely on a suitable modification of the test-function and truncation ideas introduced
in Serrin’s seminal paper [1964] and in [Moser 1961]. We note that, in all these
results, u is assumed from the space L p(�), since this is part of the definition of
the considered Sobolev spaces. This is not true in the Sobolev spaces D̊1,p(�) that
we consider, since we only include the L p norm of the horizontal gradient in our
definition. Therefore, the results here are not exactly the same, besides our working
on a Carnot group. Subsequently, Serrin’s ideas were generalized to the subelliptic
setting in [Capogna et al. 1993] and, in different forms, also in [Holopainen 1992;
Holopainen and Rickman 1992; Lanconelli and Uguzzoni 1998; Xu 1990].

The rest of the paper concerns the regularity of solutions on bounded domains.
In Section 5 we show that, under certain geometric conditions on the boundary of
the C∞ connected bounded open set � ⊂ G, one can prove boundedness of the
horizontal gradient of the Green’s function. We shall also obtain estimates along
other vector fields. Similar results hold near the boundary of the domain for weak
nonnegative solutions of the following Yamabe-type equation

(1-4) Lu = −u2∗
−1, u ∈ D̊1,2(�), u ≥ 0.

In order to prove such estimates, we impose some geometrical conditions on the
boundary. In particular, we point to the “convexity condition” [Garofalo and Vas-
silev 2000], assumed to hold globally whenever we are working with nonlinear
equations, unless we are on the Heisenberg group. The reason for such an assump-
tion is that, at present, there is no proof of the boundary Schauder estimates in
Lipschitz spaces, or of 02,α regularity near the points from the noncharacteristic
portion of the boundary. Assuming the global validity of the convexity condition
allows us to avoid the use of Schauder estimates or extra a priori regularity assump-
tions. However, by using the Lipschitz Schauder theory near the noncharacteristic
boundary for domains on the Heisenberg group [Jerison 1981a], we present in
Section 5E the argument in the local setting, with the convexity assumption holding
only near the characteristic boundary.

An example in [Jerison 1981b] implies that the estimates we obtain at the char-
acteristic boundary fail without some assumption on the boundary. However, the
convexity condition is clearly not necessary for estimates of the type considered.
Boundedness of the horizontal gradient has been established for more general do-
mains, satisfying a uniform outer-ball condition [Capogna et al. 1998]. Verifying
such a condition is in general hard. A result as in the C1,1-boundary case in Rn is
not true. Also, the horizontal gradient involves only differentiation along vectors
from the first layer. We give estimates along vector fields involving differentiation
along vectors from other layers; in particular, we include the radial vector field.
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Lastly, in [Garofalo and Vassilev 2000] it was required that the domain be uni-
formly star-like near the characteristic boundary, which is unnecessary, as we will
show.

2. Preliminaries and notation

We introduce the relevant definitions and state some results which will be needed
in the sequel. Consider the Lie algebra g = ⊕

r
j=1Vj of G. We assume that there is

a scalar product on g, with respect to which the Vj ’s are mutually orthogonal.
Let X = {X1,. . . ,Xm} be a basis of V1, and continue to denote by X the cor-

responding system of sections on G. The sub-Laplacian associated with X is the
second-order partial differential operator on G given by

L = −

m∑
j=1

X∗

j X j =

m∑
j=1

X2
j

(recall that X∗

j =−X j in a Carnot group; see [Folland 1975]). From the assumption
on the Lie algebra, one immediately sees that the system X satisfies the well-known
finite-rank condition, and therefore that the operator L is hypoelliptic, thanks to
Hörmander’s theorem [1967]. However, it fails to be elliptic, and the loss of regu-
larity is measured by the step r of the stratification of g. For a function u on G, set

|Xu| =

( m∑
j=1
(X j u)2

)1/2
.

For 1 ≤ p< Q, define D̊1,p(G) as the closure of C∞

0 (G) with respect to the norm

(2-1) ‖u‖
D̊1,p(G) =

(∫
G

|Xu|
pd H

)1/p

.

We define the Sobolev exponent relative to p as the number p∗
= pQ/(Q − p),

where Q is the homogeneous dimension defined below. The relevance of such a
number is emphasized by the Folland–Stein inequality (1-1).

In any Carnot group, the exponential mapping exp : g → G is an analytic diffeo-
morphism. We use it to define analytic maps ξi : G → Vi , i = 1, . . . , r , through the
equation g = exp ξ(g), where ξ(g)= ξ1(g)+ · · · + ξr (g). With m = dim(V1), the
coordinates of ξ ’s projection in the basis X1,. . . ,Xm will be denoted by x1 =x1(g),
. . . , xm =xm(g), that is,

(2-2) xj (g)= 〈ξ(g), X j 〉, j = 1, . . . ,m.

We set x = x(g)= (x1, . . . , xm) ∈ Rm . Later we will need to exploit the properties
of the exponential coordinates in the second layer of the stratification of g. We
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thus fix an orthonormal basis Y1, . . . , Yk of V2 and, similarly to (2-2), define the
exponential coordinates in the second layer V2 of a point g ∈ G by setting

(2-3) yi (g)= 〈ξ(g), Yi 〉, i = 1 . . . k,

and y = (y1, . . . , yk) ∈ Rk .
Every Carnot group is naturally equipped with a family of nonisotropic dilations

defined by

(2-4) δλ(g)= exp ◦1λ ◦ exp−1(g), g ∈ G,

where exp : g → G is the exponential map and 1λ : g → g is defined by

1λ(ξ1 + · · · + ξr )= λξ1 + · · · + λrξr .

The topological dimension of G is N =
∑r

j=1 dim Vj , whereas the homogeneous
dimension of G, attached to the automorphisms {δλ}λ>0, is given by

Q =

r∑
j=1

j dim Vj .

One has d H(δλ(g)) = λQ d H(g), so that, with respect to the group dilations, the
number Q plays the role of a dimension. Let Z be the infinitesimal generator of
the one-parameter group of nonisotropic dilations {δλ}λ>0. Such a vector field is
characterized by the property that a function u : G → R is homogeneous of degree
s with respect to {δλ}λ>0 — that is, u

(
δλ(x)

)
= λsu(x) for every x ∈ G — if and

only if Zu = su.
The Euclidean distance to the origin | · | on g induces a homogeneous norm

| · |g on g, and (via the exponential map) a norm on the group G, in the following
way (see also [Folland 1975]): First, for ξ ∈ g with ξ = ξ1 +· · ·+ ξr , ξi ∈ Vi , set

(2-5) |ξ |g =

( r∑
i=1

|ξi |
2r !/ i

)2r !

;

then define |g|G = |ξ |g if g = exp ξ . Such a norm on G can be used to define a
pseudodistance on G:

(2-6) ρ(g, h)= |h−1g|G.

The pseudodistance ρ is equivalent to the Carnot–Carathéodory distance d( ·, · )
generated by the system X , that is, there exists a constant C = C(G) > 0 such that

(2-7) Cρ(g, h)≤ d(g, h)≤ C−1ρ(g, h), g, h ∈ G,

see [Nagel et al. 1985]. We will almost exclusively work with the distance d,
except in a few situations where we will find more convenient to use (2-6). The
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Carnot–Carathéodory balls are defined in the obvious way,

BR(x)≡ B(x, R)= {y ∈ G | d(x, y) < R}.

By left-translation and dilation it is easy to see that the Haar measure of B(x, R)
is proportional to RQ , where Q =

∑r
i=1 i dim Vi is the homogeneous dimension

of G. One has, for every f, g, h ∈ G and any λ > 0,

(2-8) d(g f, gh)= d( f, h), d
(
δλ(g), δλ(h)

)
= λd(g, h).

We also recall the Baker–Campbell–Hausdorff formula; see, for example, [Hör-
mander 1967]:

(2-9) exp ξ exp η = exp
(
ξ + η+

1
2 [ξ, η] + · · ·

)
, ξ, η ∈ g,

where the dots indicate a linear combination of terms of order three and higher,
which is finite due to the nilpotency of G. By definition, the order of an element
in Vj is j .

We next list some results which play an important role in this paper. To state
these, we recall that, given a bounded open set D ⊂ G and a function ϕ ∈ C(∂D),
the Dirichlet problem for D and a sub-Laplacian L consists in finding a solution
to Lw = 0 in D which takes value ϕ on the boundary.

Theorem 2.1 (Bony’s maximum principle [Bony 1969]). Let D ⊂ G be a con-
nected bounded open set, and ϕ ∈ C(∂D). There exists a unique L-harmonic func-
tion H D

ϕ that solves the Dirichlet problem in the sense of Perron–Wiener–Brelot.
Moreover, H D

ϕ satisfies
sup

D
|H D

ϕ | ≤ sup
∂D

|ϕ|.

Theorem 2.2 (Schauder-type interior estimates [Danielli and Garofalo 1998]). Let
D ⊂ G be an open set, and suppose that w is L-harmonic in D. For every g ∈ D
and r > 0 with B̄(g, r)⊂ D, one has

|X j1 X j2 . . . X jsw(g)| ≤
C
r s max

B̄(g,r)
|w|,

for s ∈ N, j1, . . . , js ∈ {1, . . . ,m}, and some constant C = C(G, s) > 0.

To state the next result, we introduce a definition. Given an open set D ⊂ G,
we denote by L1,∞(D) the space of those distributions u ∈ L∞(D) such that Xu ∈

L∞(D), endowed with the natural norm.

Theorem 2.3 (L∞ Poincaré inequality [Garofalo and Nhieu 1998]). For a Carnot
group G, there exists C = C(G) > 0 such that, if u ∈ L1,∞(B(g0, 3R)), then u can
be modified on a set of measure zero in B̄(g0, R) so as to satisfy

|u(g)− u(h)| ≤ C d(g, h)‖u‖L1,∞(B(g0,3R))
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for every g, h ∈ B̄(g0, R). If furthermore u ∈ C∞(B(g0, 3R)), then only the L∞

norm of Xu suffices in the right-hand side of the previous inequality.

We note explicitly that the theorem asserts that every function u ∈L1,∞(B(g0, 3R))
has a representative which is Lipschitz-continuous in B(g0, R) with respect to the
Carnot–Carathéodory distance d . The reverse implication also holds; see [Garofalo
and Nhieu 1998].

Finally, we recall a characterization of the nonisotropic Lipschitz spaces on
Carnot groups [Krantz 1982]:

Theorem 2.4. f ∈ 0α(G) if and only if f (gt) ∈3α for every horizontal curve gt .

Here 0α(G) and 3α denote, correspondingly, the nonisotropic Lipschitz space of
Folland and Stein on RN , and the isotropic Lipschitz space on R. A curve is called
horizontal if d

dt gt ∈ span{X1, . . . , Xm}.

3. Variational problems

We apply the concentration-compactness principle of Lions [1985a; 1985b] in the
homogeneous setting of a Carnot group G, to prove that, for any 1 < p < Q, the
best constant in the Folland–Stein embedding (1-1) is achieved. A simple argu-
ment shows that, without any loss of generality, we can consider only nonnegative
functions; we shall do that throughout this section. Consequently, we show that,
for any such p, the quasilinear equation with critical exponent,

(3-1) Lpu =

n∑
j=1

X j
(
|Xu|

p−2 X j u
)
= −u p∗

−1 in G,

possesses a weak nonnegative solution that is also, up to a constant, an extremal
for the following variational problem

(3-2) I def
= inf

{∫
G

|Xu|
p
∣∣∣∣ u ∈ C∞

0 (G),
∫

G
|u|

p∗

= 1
}
.

We used that Lp(cu) = cp−1Lpu to reduce the equation given by the Euler–
Lagrange multiplier to (3-1). We shall consider a similar problem when restricting
the test functions to those having with a certain symmetry. We prove that the
corresponding infimum is achieved again. The purpose of this section is to record
such basic results.

It is still an open question to find the norm of the Folland–Stein embedding. An
interesting and more accessible problem is obtained by requiring that the group
be of Heisenberg type. The precise value of the norm of the embedding when
considering only functions with symmetries and p = 2 was found in [Garofalo
and Vassilev 2001]. The proof required the existence result of this section. In
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the particular case of the Heisenberg group, this problem was solved without the
symmetry restriction by Jerison and Lee [1988].

3A. The best constant in the Folland–Stein inequality. A minimizing sequence
{un} ∈ C∞

0 (G) of the variational problem (3-2) is characterized by the properties

(3-3)
∫

G
|un|

p∗

= 1 and
∫

G
|Xun|

p
−−−→
n→∞

I.

Two crucial aspects of equation (3-1) and of the above variational problem are their
invariance with respect to group translations and dilations. The former is obvious,
since the vector fields X j are left-invariant. The latter must be suitably interpreted,
and follows from the observation that

(3-4) Lp(u ◦ δλ)= λpδλ ◦ Lpu.

If we thus define, for a solution u of (3-1) and for λ > 0, the rescaled function
uλ = λαu ◦ δλ, then it is clear that uλ satisfies (3-1) if and only if α = Q/p∗

=

(Q − p)/p. These considerations lead to the introduction, for u ∈ C∞

0 (G), of two
new functions:

(3-5) τh u def
= u ◦ τh, h ∈ G,

where τh : G → G is the left-translation operator τh(g)= hg; and

(3-6) uλ
def
= λQ/p∗

u ◦ δλ, λ > 0.

It is easy to see that the norms in the Folland–Stein inequality and the functionals
in the variational problem (3-2) are invariant under the transformations (3-5) and
(3-6). Only the second part requires a small computation, since d H is bi-invariant
under translations.

‖δλu‖
p∗

L p∗
(G)

=

∫
G
|u(δλg)|p∗

d H(g)=

∫
G
|u(g)|p∗

λ−Qd H(g)= λ−Q
‖u‖

p∗

L p∗
(G)
.

This shows that ‖uλ‖L p∗
(G)

= ‖u‖
L p∗

(G)
. Similarly,

‖δλu‖
p
D̊1,p(G)

= ‖λδλXu‖
p
L p∗

(G) = λp
‖δλXu‖

p
L p∗

(G) = λp−Q
‖u‖

p
D̊1,p(G)

.

Taking into account that p∗
= pQ/(Q−p), we obtain ‖Xuλ‖D̊1,p(G)=‖Xu‖D̊1,p(G).

The main result about the existence of global minimizers is this:

Theorem 3.1. Let G be a Carnot group, and consider the minimization problem
(3-2). Every minimizing sequence {un} of (3-2) is relatively compact in D̊1,p(G),
possibly after translating and dilating each of its elements using (3-5) and (3-6).
In particular, there exists a minimum of (3-2), and the equation

(3-7) Lpu = −u p∗
−1
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admits a nontrivial nonnegative solution u ∈ D̊1,p(G).

The proof of Theorem 3.1 is based on an adaptation of the concentration-com-
pactness principle. In such an adaptation, the Euclidean space Rn is replaced
by a Carnot group G, with its homogeneous structure and Carnot–Carathéodory
distance. We mention that the implementation of Lions’ program relies, among
others, on the Rellich–Kondrachov compact embedding. In the subelliptic setting,
the proof of this result requires a substantial amount of work. A general version of
it was proved in [Garofalo and Nhieu 1996]; it states that, if � denotes a bounded
X -PS domain (Poincaré–Sobolev domain) in a Carnot–Carathéodory space, then
the embedding

L1,p(�)⊂ Lq(�)

is compact provided that 1 ≤ q < p∗
= pQ/(Q − p). Here, L1,p(�) indicates

the Sobolev space of those functions f ∈ L p(�) such that X f ∈ L p(�), endowed
with the natural norm. Carnot groups are the basic models of Carnot–Carathéodory
spaces. We shall apply such a result to an increasing sequence of bounded domains
�k ⊂�k+1⊂ G such that �k ↗ G. As �k , we can take the Carnot–Carathéodory
ball Bk centered at the identity e ∈ G with radius k, since it was proved in [Franchi
et al. 1994; Garofalo and Nhieu 1996] that such sets are X -PS domains.

An important tool is the concentration function of a measure:

Definition 3.2. For a nonnegative measure dν on G, define the concentration
function Q on [0,∞) by

(3-8) Q(r) def
= sup

g∈G

(∫
Br (g)

dν
)
.

For a function f on G, we will call the concentration function of f the concentra-
tion function of the measure | f |

p∗

d H .

Similarly to Lions’ works, the crucial ingredients in the solution of the variational
problem are the next lemmata. For the proofs, we refer to [Lions 1984a; 1984b]. As
already mentioned, we have a suitable version of the Rellich–Kondrachov compact
embedding to replace the usual embedding used in the proof of the next lemma:

Lemma 3.3. Suppose νn is a sequence of probability measures on G. There exists a
subsequence, which we denote by dνn , such that exactly one of the following three
conditions holds:

(1) Compactness: There is a sequence (gn) ∈ G such that, for every ε > 0, there
exists R > 0 so that, for every n,∫

B(gn,R)
dνn ≥ 1 − ε.
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(2) Vanishing: For all R > 0, we have

lim
n→∞

(
sup
g∈G

∫
B(g,R)

dνn

)
= 0.

(3) Dichotomy: There exists a λ with 0 < λ < 1, such that, for every ε > 0, there
exist R > 0 and a sequence (gn) with the property: Given R′ > R, there exist
nonnegative measures ν1

n and ν2
n for which

0 ≤ ν1
n + ν2

n ≤ νn,

supp ν1
n ⊂ B(gn, R) and supp ν2

n ⊂ G \ B(gn, R′),∣∣∣λ−

∫
ν1

n

∣∣∣ + ∣∣∣(1 − λ)−

∫
ν2

n

∣∣∣ ≤ ε.

Remark 3.4. Using diagonal subsequences, we can also achieve

supp ν1
n ⊂ BRn (gn) and supp ν2

n ⊂ G \ B2Rn (gn),

lim
n→∞

∣∣∣λ−

∫
G
ν1

n

∣∣∣ + ∣∣∣(1 − λ)−

∫
G
ν2

n

∣∣∣ = 0.

Lemma 3.5. Suppose un ⇁ u weak-∗ in D̊1,p(G), µn = |Xun|
pd H ⇁ µ, and

νn = |un|
p∗

d H ⇁ ν weak-∗ in measure, where µ and ν are bounded nonnegative
measures on G. There exist points gj ∈ G and real numbers dj ≥ 0 and ej ≥ 0, at
most countably many nonzero, such that

ν = |u|
p∗

+
∑

j
djδgj

µ≥ |Xu|
pd H +

∑
j

ejδgj

I dj
p/p∗

≤ ej ,

where I is the constant from (3-2). In particular,∑
dj

p/p∗

<∞.

Proof of Theorem 3.1. Since p> 1, we can assume that un ⇁ u weak-∗ in D̊1,p(G)
for some u ∈ D̊1,p(G), by regarding D̊1,p(G) as the dual of D1,p′

(G), where p′ is
the Hölder conjugate of p. From the Folland–Stein embedding theorem, this is also
true for the weak-∗ convergence in L p∗

(G). We can also assume the minimizing
sequence is a.e. pointwise convergent on G. This follows easily from Rellich’s
theorem, applied successively to an exhaustion of G by an increasing sequence of
Carnot–Carathéodory balls.
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The sequential lower semicontinuity of the norms shows that

‖u‖L p∗
(G) ≤ lim‖un‖L p∗

(G) = 1,

‖u‖
D̊1,p(G) ≤ lim‖un‖D̊1,p(G) = I 1/p.

Thus, it is enough to prove that
∫

G|u|
p∗

= 1, since, by the previous relations and
the Folland–Stein inequality, and noticing that I = 1/S p

p , we have

(3-9) I ≥

∫
G
|Xu|

p
≥ I

(∫
G
|u|

p∗

)p/p∗

= I when
∫

G
|u|

p∗

= 1,

which would give that u is a minimizer. In other words, we reduce the proof to
showing that un → u in L p∗

(G), as weak-∗ and norm convergence imply strong
convergence.

Because of translation and dilation invariance, all the mentioned properties hold
if we replace (un)with any translated and rescaled sequence, which we shall denote
by (vn). We will consider the following measures,

dνn
def
= |vn|

p∗

d H, dµn
def
= |Xvn|

pd H.

where vn is a suitable translation and dilation of un that is to be defined in a moment.
Note that dνn is also a sequence of probability measures. From the weak-∗ com-
pactness of the unit ball, without loss of generality we can assume that dνn ⇁ dν
and dµn ⇁ dµ in the weak-∗ topology of all bounded nonnegative measures.

The desired convergence, that is, the fact that
∫

G|v|p∗

= 1, will be obtained by
applying the concentration-compactness principle, exactly as in [Lions 1985a] (see
also [Struwe 1990]). We shall see that ν is a probability measure, as well as that
dν =

∫
G|v|p∗

. Here v is the limit of the sequence (vn) taken in various spaces, as
we did for the sequence (un).

Let Q̂n(r) be the concentration function of un , that is,

(3-10) Q̂n(r)
def
= sup

h∈G

(∫
Br (h)

|un|
p∗

d H
)
.

Clearly, Q̂n(0) = 0, limr→∞ Q̂n(r) = 1, and Q̂n is a continuous nondecreasing
function. Therefore, for every n we can find an rn > 0 such that

(3-11) Q̂n

( 1
rn

)
=

1
2
.

Since the integral in (3-10) is absolutely continuous, it defines a continuous func-
tion of h, which, as un ∈ L p∗

(G), tends to zero when d(h, e)→ ∞. Consequently,
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the supremum is achieved, that is, for every n there exist a hn ∈ G such that

(3-12) Q̂n

( 1
rn

)
=

∫
B1/rn (hn)

|un(g)| d H(g).

The concentration functions Qn of the dilated and translated sequence

(3-13) vn
def
= r−Q/p∗

n δr−1
n
τgn u

satisfy

(3-14) Qn(1)=

∫
B1(e)

dνn and Qn(1)=
1
2
,

where we have set gn = δdn h−1
n .

The homogeneity properties of the metric are essential for proving (3-14). From
the definition of vn and (2-8),∫

Br (g)
|vn(h)|p∗

d H(h)=

∫
{d(g,h)<r}

r−Q
n |un(δr−1

n
τgn h)|p∗

d H(h)(3-15)

=

∫
{d(g,τ

g−1
n
δrn z)<r}

r−Q
n |un(z)|p∗

r Q
n d H(z)

=

∫
{d(τgn g,δrn z)<r}

|un(z)|p∗

d H(z)

=

∫
{rmd(δ

r−1
n
τgn g,z)<r}

|un(z)|p∗

d H(z)

=

∫
{d(h,z)<r/rn}

|un(z)|p∗

d H(z),

where h = δr−1
n
τgn g. By taking the supremum over g ∈ G, we obtain

(3-16) Qn(1)= Q̂n

( 1
rn

)
=

1
2
.

When g = e , we have

(3-17)
∫

B1(e)
|vn(h)|p∗

d H(h)=

∫
B1/rn (hn)

|un(z)|p∗

d H(z),

which shows that (3-14) holds.
At this point, we are ready to apply the lemmata and finish the proof. Notice that

the vanishing case in Lemma 3.5 is ruled out by the normalization Qn(1) = 1/2 .
We embed our variational problem in the family

(3-18) Iλ
def
= inf

{ ∫
G
|Xu|

p
∣∣∣∣ u ∈ C∞

0 (G),
∫

G
|u|

p∗

= λ

}
.
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Since Iλ = λp/p∗

I , we see that Iλ is strictly subadditive, that is,

(3-19) I1 < Iα + I1−α for every α ∈ (0, 1).

Assume first that the compactness case in Lemma 3.3 holds when applied to the
sequence dνn . Let gn be points as in the lemma and, for ε > 0, choose R = R(ε),
such that

(3-20)
∫

BR(gn)

dνn ≥ 1 − ε for every n.

If ε < 1/2 , then
∫

BR(gn)
dνn > 1/2 . Since by construction

∫
B1(e)

dνn = 1/2 while∫
G dνn = 1, we see that B1(e) and BR(gn) have a nonempty intersection, and thus

there exist a ball B2R+1(e)⊃ BR(gn). This implies that

(3-21)
∫

B2R+1(e)
dνn ≥

∫
BR(gn)

dνn ≥ 1 − ε for every n,

and therefore the condition (1) of Lemma 3.3 holds with gn ≡ e for every n. By
taking ε→ 0, we proved that

(3-22)
∫

G
dν = 1.

If we look at the sequence (dµn) now, we have dµn ⇁ dµ and
∫

G dµn → I , and
thus

∫
G dµ≤ I . On the other hand, Lemma 3.5 gives

dνn ⇁ dν =|v|p∗

+
∑

j
djδgj ,

dµn ⇁ dµ≥|Xv|pd H +
∑

j
ejδgj ,

for certain dj , ej ≥ 0 satisfying

(3-23) I dj
p/p∗

≤ ej .

We shall prove that all dj ’s are zero, and thus
∫

G |v|p∗

d H = 1. Let

α
def
=

∫
G

|v|p∗

d H < 1.

Since
∫

G dν = 1, we have
∑

dj = 1 −α. From
∫

G dµ≤ I we have∫
G

|Xv|pd H ≤ I −

∑
ej .

Now (3-23) gives

I = I1 ≥

∫
G

|Xv|pd H +

∑
ej ≥ Iα +

∑
I dj

p/p∗

≥ Iα +

∑
Idj .
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From the strict subadditivity (3-19) of Iλ, we conclude that exactly one of the
numbers α and dj is nonzero. We claim that α = 1 (and thus that all dj ’s are zero).
Suppose that there is a dj with dj = 1 and dν = δgj . From the normalization,
Qn(1)= 1/2 , and hence

(3-24) 1
2

≥

∫
B1(gj )

|vn|
p∗

d H →

∫
B1(gj )

dν = 1,

which is a contradiction. Thus, we proved that ‖v‖L p∗
(G) = α = 1 and vn → v in

L p∗

(G), which shows that v is a solution of the variational problem; see (3-9).
Suppose we have dichotomy. We have to show that this leads to a contradiction.

A simple process of taking a diagonal subsequence (see the remark after Lemma
3.3) shows that we can find a sequence Rn > 0 such that

supp ν1
n ⊂ BRn (gn), supp ν2

n ⊂ G \ B2Rn (gn),(3-25)

lim
n→∞

∣∣∣λ−

∫
G
ν1

n

∣∣∣ + ∣∣∣(1 − λ)−

∫
G
ν2

n

∣∣∣ = 0.(3-26)

We fix a number ε such that

(3-27) 0< ε < λp/p∗

+ (1 − λ)p/p∗

− 1.

Such a choice of ε is possible, as for 0 < λ < 1 and p/p∗ < 1 we have λp/p∗

+

(1 − λ)p/p∗

− 1> 0.
Let ϕ be a cut-off function 0 ≤ ϕ ∈ C∞

0

(
B2(e)

)
with ϕ ≡ 1 on B1(e), and set

ϕn = δR−1
n
τgnϕ. We have

(3-28)
∫

G
|Xvn|

pd H =

∫
G

|X (ϕnvn)|
pd H +

∫
G

|X
(
(1 −ϕn)vn

)
|

pd H + εn.

Note that the remainder term εn is expressed by an integral over an annulus

(3-29) An = B2Rn (gn) \ BRn (gn).

Furthermore, we claim that

(3-30) εn ≥ o(1)− ε
∫

G
|Xvn|

pd H, where o(1)→ 0 as n → ∞.

Indeed, using the inequality(
|a| + |b|

)p
≤ (1 + ε)|a|

p
+ Cε,p|b|

p,
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which holds for any 0< ε < 1, p ≥ 1, and a suitable constant Cε,p depending on
ε and p, we have

εn =

∫
An

|Xvn|
pd H −

∫
An

|X (ϕnvn)|
pd H −

∫
An

∣∣X
(
(1 −ϕn)vn

)∣∣pd H

≥

∫
An

|Xvn|
p(1 −ϕn

p
− (1 −ϕn)

p) d H − 2Cε,p

∫
An

|vn|
p
|Xϕn|

pd H

− ε

∫
An

|Xvn|
pd H.

Since p > 1 and 0 ≤ ϕ ≤ 1, it follows that 1 ≥ ϕn
p
+ (1 −ϕn)

p, and thus

(3-31) εn ≥ −C
∫

An

|vn|
p
|Xϕn|

pd H − ε

∫
G

|Xvn|
pd H.

First we use |Xϕn| ≤ C/Rn , and then we apply Hölder’s inequality on An ,

R−1
n ‖vn‖L p(An)

≤ R−1
n |An|

1/p − 1/p∗

‖vn‖L p∗
(An)

.

Since 1/p − 1/p∗
= 1/Q and, from the paragraph above (2-8),

(3-32) |An| ∼ RQ
n ,

we obtain

(3-33) R−1
n ‖vn‖L p(An)

≤ C‖vn‖L p∗
(An)

.

The last term in the above inequality can be estimated as follows:

‖vn‖
p∗

L p∗
(An)

=

∫
An

dνn =

∫
G

dνn −

∫
G\An

dνn(3-34)

≤

∫
G

dνn −

∫
G\An

dν1
n −

∫
G\An

dν2
n

=

∫
G

dνn −

∫
G

dν1
n −

∫
G

dν2
n .

Hence, the claim (3-30) follows from

(3-35) R−1
n ‖vn‖L p(An)

≤ C
(∫

G
dνn −

∫
G

dν1
n −

∫
G

dν2
n

)1/p∗

→ 0 as n → ∞.
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Continuing with the proof that the dichotomy case does not occur, we use the
definition of I , see (2-1) and (3-2), together with the above inequalities, to get

‖vn‖
p
D̊1,p(G)

= ‖ϕmvn‖
p
D̊1,p(G)

+ ‖(1 −ϕn)vn‖
p
D̊1,p(G)

+ εn

≥ I
(
‖ϕmvn‖

p
L p∗

(G)
+ ‖(1 −ϕn)vn‖

p
L p∗

(G)

)
+ εn

≥ I
((∫

BRn (gn)

dνn

)p/p∗

+

(∫
G\BRn (gn)

dνn

)p/p∗)
+ εn

≥ I
((∫

G
dν1

n

)p/p∗

+

(∫
G

dν2
n

)p/p∗)
+ εn.

Letting n → ∞, we obtain

I = lim
n→∞

‖vn‖
p
D̊1,p(G)

≥ I
(
λp/p∗

+ (1−λ)p/p∗)
− ε I,

which is a contradiction with the choice of ε in (3-27), and hence the dichotomy
case of Lemma 3.3 cannot occur. The proof of the theorem is finished. �

3B. The best constant in the presence of symmetries. We consider here the same
problem as before, but we restrict the class of test functions.

Definition 3.6. Let G be a Carnot group with Lie algebra g = V1 ⊕ V2 · · · ⊕ Vn .
We say that a function U : G → R has partial symmetry with respect to g0 if there
exist an element g0 ∈ G such that for every g = exp(ξ1 +ξ2 +· · ·+ξn)∈ G one has

U (g0 g)= u
(
|ξ1(g)|, . . . , |ξn−1(g)|, ξn(g)

)
,

for some function u : [0,∞)× · · · × [0,∞)× Vn → R.
A function U is said to have cylindrical symmetry if there exist g0 ∈ G and

ϕ : [0,∞)× · · · × [0,∞)→ R for which

U (g0 g)= ϕ
(
|ξ1(g)|, |ξ2(g)|, . . . , |ξn(g)|

)
,

for every g ∈ G.

We also define the spaces D̊
1,p
ps (G) and D̊

1,p
cyl (G) by

D̊1,p
ps (G)

def
=

{
u ∈ D̊1,p(�)

∣∣ u(g)= u
(
|ξ1(g)|, . . . , |ξn−1(g)|, ξn(g)

)}
,(3-36)

D̊
1,p
cyl (G)

def
=

{
u ∈ D̊1,p(�)

∣∣ u(g)= u
(
|ξ1(g)|, |ξ2(g)|, . . . , |ξn(g)|

)}
.(3-37)

The effect of the symmetries (see also [Lions 1985b]) is manifested in the fact
that, if the limit measure given by Lemma 3.5 concentrates at a point, then it
must concentrate on the whole orbit of the group of symmetries. Therefore, in
the cylindrical case there could be no points of concentration except at the origin,
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while in the partially symmetric case the points of concentration lie in the center
of the group.

Theorem 3.7. (1) The norm of the embedding D̊
1,p
ps (G)⊂ L p∗

(G) is achieved.

(2) The norm of the embedding D̊
1,p
cyl (G)⊂ L p∗

(G) is achieved.

To rule out the dichotomy case in the first part of the theorem, we prove:

Lemma 3.8. Under the conditions of Lemma 3.3, the points gn in the dichotomy
part can be taken from the center of the group.

Proof. Define the concentration function of νn by

(3-38) Qps
n

def
= sup

h∈C(G)

(∫
Br (h)

dνn

)
.

The rest of the proof is identical to the proof of Lemma 3.3, with the remark that,
in the dichotomy part, the definition of Qps

n shows that the points gn can be taken
to belong to the center. �

Proof of Theorem 3.7. We argue as for Theorem 3.1.

(1) Finding the norm of the embedding D̊
1,p
ps (G)⊂ D̊1,p(�) leads to the variational

problem

(3-39) I ps
≡ I ps

1
def
= inf

(∫
G
|Xu|

p
: u ∈ D̊1,p

ps (G),
∫

G
|u|

p∗

= 1
)
.

We take a minimizing sequence (un), that is,

(3-40)
∫

G
|un|

p∗

= 1 and
∫

G
|Xun|

p
−−−→
n→∞

I ps.

It is clear that D̊
1,p
ps (G) is invariant under the dilations (3-6). Using the Baker–

Campbell–Hausdorff formula, it is easy to see that D̊
1,p
ps (G) is also invariant under

the translations (3-5) by elements in the center C(G) of G. In order to extract a
suitable dilated and translated subsequence of {un}, we have to make sure that we
translate always by elements belonging to C(G). For this, we define the concen-
tration function of un as

(3-41) Q̂ps
n (r)

def
= sup

h∈C(G)

(∫
Br (h)

|un|
p∗

d H
)
.

We can fix rn > 0 and hn ∈ C(G) such that (3-11) and (3-12) hold. Define the
sequence {vn} as in (3-13). As mentioned above, vn ∈ D̊

1,p
ps (G) as well. Equa-

tion (3-15) holds without any changes. By taking the supremum over g ∈ C(G)
we obtain (3-16), and by using (3-17) we obtain (3-14). At this point, we apply
Lemma 3.8. The case of vanishing is ruled out from the normalization (3-14) of
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the sequence {vn}. Suppose we have dichotomy. As before, we take a sequence
Rn > 0 such that (3-25) and (3-26) hold. We choose a cut-off function ϕ from the
space D̊

1,p
ps (G), also satisfying

(3-42) suppϕ ⊂�2(e) and ϕ ≡ 1 on �1(e),

where �r (g) denotes a gauge ball centered at g and of radius r , that is,

(3-43) �r (g)= {h ∈ G | N (h−1g) < r}.

This can be done by setting ϕ = η(N (g)), where η(t) is a smooth function on the
real line, supported where |t |< 2 and with η ≡ 1 on |t | ≤ 1. We define the cut-off
functions ϕn as before, by ϕn = δR−1

n
τgnϕ. From Baker–Campbell–Hausdorff, they

have partial symmetry with respect to the identity, since gn ∈ C(G) (see Lemma
3.8), and the gauge is a function with partial symmetry G. By setting

(3-44) An =�2Rn (gn) \�Rn (gn)

and noting that

(3-45) |An| ∼ RQ
n ,

we see that (3-30) holds. Now, from the definition of Ips, keeping in mind that ϕn

and vn have partial symmetry with respect to the identity, we obtain

‖vn‖
p
D̊1,p(G)

= ‖ϕmvn‖
p
D̊1,p(G)

+ ‖(1 −ϕn)vn‖
p
D̊1,p(G)

+ εn

≥ Ips
(
‖ϕmvn‖

p
L p∗

(G)
+ ‖(1 −ϕn)vn‖

p
L p∗

(G)

)
+ εn

≥ Ips

((∫
BRn (gn)

dνn

)p/p∗

+

(∫
G\BRn (gn)

dνn

)p/p∗)
+ εn

≥ Ips

((∫
G

dν1
n

)p/p∗

+

(∫
G

dν2
n

)p/p∗)
+ εn

≥ Ips
(
λp/p∗

+ (1−λ)p/p∗)
+ εn.

Letting n → ∞, we come, as in (3-30), to

(3-46) lim
n→∞

‖vn‖
p
D̊1,p(G)

≥ Ips
(
λp/p∗

+ (1−λ)p/p∗)
> Ips,

since 0<λ< 1 and p/p∗ < 1. This contradicts that ‖vn‖
p
D̊1,p(G)

→ I ps as n → ∞,
which shows that the dichotomy case of Lemma 3.8 cannot occur. Hence, the
compactness case holds. As in Theorem 3.1, we see that∫

G
dν = 1.



EXISTENCE AND REGULARITY FOR SUB-LAPLACIAN EQUATIONS 379

Next, we apply Lemma 3.5, with I replaced by Ips. The important fact here is that
the partial symmetry of the sequence {vn} implies that the points of concentration
of dν, if they occur, must be in the center of the group. Having this in mind together
with the definitions of the concentration functions, we can justify the validity of
(3-24), and finish the proof of part (1).

(2) The vanishing case is ruled out by using the dilation (but not translation, because
of the symmetries) invariance, and by normalizing the minimizing sequence with
the condition Qn(1)= 1/2 ; see (3-14).

Suppose that the dichotomy case occurs. We shall see that this leads to a con-
tradiction. The points {gn} in the dichotomy part of Lemma 3.3 must be a bounded
sequence. If not, let ε = λ/2 and R as in the lemma. Because of the invariance
under rotations in the layers of the functions vn and the Haar measure d H (which is
just the Lebesgue measure), for any arbitrarily fixed natural number N0 we can find
a point gn and N0 points on the orbit of gn under rotations in one of the layers, such
that the balls with radius R centered at all these points do not intersect. This leads
to a contradiction, since the integral of the probability measure dνn over each of
these balls is greater than λ/2. Thus, {gn} is a bounded sequence. This is, however,
impossible since dνn are probability measures.

Therefore, the compactness case holds. As in the dichotomy part, we see that
the sequence {gn} dν can concentrate only at the origin e. This is impossible. �

4. Global boundedness of weak solutions

Let p ∈ (1, Q) and denote by p∗ the Sobolev conjugate p∗
= pQ/(Q − p), and by

p′ the Hölder conjugate p′
= p/(p − 1). Let u ∈ D̊1,p(�) be a weak solution, not

necessarily bounded, of the equation (1-3) in an open set �⊂ G. “Weak solution”
means that, for every ϕ ∈ C∞

0 (�), we have

(4-1)
∫
�

|Xu|
p−2

〈Xu, Xϕ〉 d H =

∫
�

|u|
p∗

−2uϕ d H.

Note that u p∗
−1

∈ L p∗/(p∗
−1)(�) = L(p

∗)′ . From the definition of D̊1,p(�), we
obtain that (4-1) holds for every ϕ ∈ D̊1,p(�). The main result of this section is
that weak solutions as above are bounded functions. In the next theorem we prove
a more general result.

Theorem 4.1. Let u ∈ D̊1,p(�) be a weak solution to the equation

(4-2)
m∑

i=1

X i (|Xu|
p−2 X i u)= −V |u|

p−2u in �,



380 DIMITER VASSILEV

that is,

(4-3)
∫
�

|Xu|
p−2

〈Xu, Xϕ〉 d H =

∫
�

V |u|
p−2uϕ d H,

for every ϕ ∈ C∞

0 (�).

(1) If V ∈ L Q/p(�), then u ∈ Lq(�) for every p∗
≤ q <∞.

(2) If V ∈ L t(�)∩ L Q/p(�) for some t > Q/p, then u ∈ L∞(�).

Proof. The assumption that V ∈ L Q/p(�), together with the Folland–Stein in-
equality, shows that (4-3) holds true for any ϕ ∈ D̊1,p(�). This can be seen by
approximating in the space D̊1,p(�) by a sequence of test functions ϕn ∈ C∞

0 (�),
which will allow us to put the limit function in the left-hand side of (4-3). On
the other hand, the Folland–Stein inequality implies that ϕn → ϕ in L p∗

(�). Set
t0 = Q/p, and its Hölder conjugate t ′

0 = t0/(t0 − 1). An easy computation gives

1
t0

+
p − 1

p∗
= 1 −

1
p∗

=
1

(p∗)′
.

Hölder’s inequality then shows that V |u|
p−2u ∈ L(p

∗)′(�), which allows us to pass
to the limit in the right-hand side of (4-3). We turn to the proofs of (1) and (2).

(1) It is enough to prove that, if u ∈ D̊1,p(�)∩ Lq(�) with q ≥ p∗, then u ∈ Lκq

with κ = p∗/p > 1. Let G(t) be a continuous, piecewise-smooth, and globally
Lipschitz function on the real line, and set

(4-4) F(u)=

∫ u

0
|G ′(t)|pdt.

Clearly, except at finitely many points, F is a differentiable function with a bounded
and continuous derivative. From the chain rule (see [Garofalo and Nhieu 1996], for
example) there follows that F(u) ∈ D̊1,p(�) is a legitimate test function in (4-3).
The left-hand side, taking into account that F ′(u)= |G ′(u)|p, can be rewritten as∫

�

|Xu|
p−2

〈Xu, X F(u)〉 d H =

∫
�

|XG(u)|p.

The Folland–Stein inequality (1-1) gives

(4-5)
∫
�

|Xu|
p−2

〈Xu, X F(u)〉 d H ≥ Sp

(∫
�

|G(u)|p∗

)p/p∗

.

We choose G(t) as

G(t)=

(sign t)|t |q/p if 0 ≤ |t | ≤ l,

l(q/p)−1t if l < |t |.
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From the power growth of G, besides the preceding properties, this function also
satisfies

(4-6) |u|
p−1

|F(u)| ≤ C(q)|G(u)|p
≤ C(q)|u|

q .

The constant C(q) depends also on p, but for us this is a fixed quantity. At this
moment, the value of C(q) is not important, but an easy calculation shows that
C(q) ≤ Cq p−1, with C depending on p; we will use this in part (2). Note that
pt ′

0 = p∗. Leave M > 0 to be fixed in a moment, and estimate the integral in the
right-hand side of (4-3):

(4-7)
∫
�

V |u|
p−2uF(u) d H

=

∫
(|V |≤M)

V |u|
p−2uF(u) d H +

∫
(|V |>M)

V |u|
p−2uF(u) d H

≤ M
∫
(|V |≤M)

|u|
p−1 F(u) d H

+

(∫
(|V |>M)

|V |
t0d H

)1/t0(∫
�

(
|u|

p−1 F(u)
)t ′0d H

)1/t ′0

≤ C(q)M
∫
�

|G(u)|pd H

+ C(q)
(∫

(|V |>M)
|V |

t0d H
)1/t0(∫

�

|G(u)|p∗

d H
)p/p∗

.

At this point, we fix an M sufficiently large so that

C(q)
(∫

(|V |>M)
|V |

t0d H
)1/t0

≤
Sp

2
,

which can be done because V ∈ L t0 . Putting together (4-5) and (4-7) we come to
our main inequality,

Sp

2

(∫
�

|G(u)|p∗

d H
)p/p∗

≤ C(q)M
∫
�

|G(u)|pd H ≤ C(q)M
∫
�

|u|
qd H.

By the Fatou and Lebesgue dominated convergence theorem, we can let l in the
definition of G go to infinity, and obtain

Sp

2

(∫
�

|u|
qp∗/pd H

)p/p∗

≤ C(q)M
∫
�

|u|
qd H.

The proof of (1) is finished.
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(2) It is enough to prove that the Lq(�) norms of u are uniformly bounded by
some sufficiently large but fixed Lq0 norm of u, q0 ≥ p∗, which is finite from (1).
We shall do this by iteration. We use the function F(u) from part (1) in the weak
form (4-3) of our equation. The left-hand side is estimated from below as before,
in (4-5). This time, though, we use Hölder’s inequality to estimate from above the
right-hand side:∫

�

V |u|
p−2uF(u) d H ≤ ‖V ‖t

∥∥|u|
p−1 F(u)

∥∥
t ′(4-8)

≤ ‖V ‖t
∥∥C(q)|G(u)|p

∥∥
t ′ ≤ C(q)‖V ‖t ‖u‖

q
qt ′ .

With the estimate from below, we come to

Sp‖G(u)‖p
p∗ ≤ C(q)‖V ‖t ‖u‖

q
qt ′ .

Letting l → ∞, we obtain

(4-9)
∥∥|u|

q/p
∥∥p

p∗ ≤
C(q)

Sp
‖V ‖t ‖u‖

q
qt ′ .

Set δ = p∗/(pt ′). The assumption t > Q/p implies δ > 1, since the latter is equiv-
alent to t ′ < p∗/p = t ′

0, as t0 = Q/p. With this notation we can rewrite (4-9) as

(4-10) ‖u‖δqt ′ ≤

(C(q)
Sp

)1/q
‖V ‖

1/q
t ‖u‖qt ′ .

Recall that C(q)≤ Cq p−1. At this point, we define q0 = p∗t ′ and qk = δkq0. After
a simple induction, we obtain

(4-11) ‖u‖qk ≤

k−1∏
j=0

(
Cq p−1

j

)t ′/qj
‖V ‖

t ′
∑k−1

j=0 1/qj
t ‖u‖q0 .

We observe that the right-hand side is finite,

(4-12)
∞∑

j=0

1
qj

=
1
q0

∞∑
j=1

1
δ j <∞ and

∞∑
j=1

log qj

qj
<∞,

because δ > 1. Letting j → ∞, we obtain

‖u‖∞ ≤ C‖u‖q0 . �

Remark 4.2. When � is a bounded open set, we trivially have V ∈ L Q/p(�)

whenever V ∈ L t(�) with t > Q/p. Also, in this case one can obtain a uniform
estimate of the L∞(�) norm of u by its L p∗

(�) norm that does not depend on the
distribution function of V , as we had in the preceding theorem. This can even be
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achieved in the unbounded case, assuming only that V ∈ L Q/p(�), but requiring
u ∈ L p(�).

With the previous theorem proved, we turn to our original equation (1-3):

Theorem 4.3. Take p ∈ (1, Q) and let � ⊂ G be an open set. If u ∈ D̊1,p(�) is a
weak solution to the equation

Lpu =

n∑
j=1

X j
(
|Xu|

p−2 X j u
)
= −|u|

p∗
−2 u in �,

then u ∈ L∞(�).

Proof. We define V = |u|
p∗

−p. From the Folland–Stein inequality we have u ∈

L p∗

(�), and thus V ∈ L p∗/(p∗
−p)(�). Since p∗/(p∗

− p) = Q/p, part (1) of
Theorem 4.1 shows that u ∈ Lq(�) for p∗

≤ q <∞. Therefore, V ∈ Lq/(p∗
−p)(�)

for any such q and thus, by part (2) of the same theorem, we conclude that u ∈

L∞(�). �

5. Regularity near the characteristic boundary

We start by introducing the geometric assumptions on the domain, and describe
the regularity of the weak solutions to the Yamabe equation (1-4), which can be
obtained from well-known results.

Let �⊂ G be a C∞ domain whose boundary ∂� is an orientable hypersurface.
We assume the existence of ρ ∈ C∞(G) and γ� > 0 such that, for some R ∈ R,

(5-1) �= {g ∈ G | ρ(g) < R},

and such that |Dρ(g)| ≥ γ� > 0 for every g in some relatively compact neighbor-
hood K of ∂�. We shall denote by U a bounded open set such that ∂�⊂ U , and
set ω = � ∩ U . We stress that, with this assumption, ∂ω is a compact set inside
�. However, in Sections 5B, 5C, and 5E we shall make a different assumption,
requiring that U contain only the characteristic points of the boundary, and hence
∂ω will reach ∂�.

The assumptions on the domains are:

• A-condition: There exist A, r0 > 0 such that, for every g ∈ ∂� and r ∈ (0, r0),

(5-2)
∣∣(G \�)∩ B(g, r)

∣∣ ≥ A |B(g, r)|.

• Convexity: There exists M1 > 0 such that the defining function ρ of � satisfies
the differential inequality

(5-3) Lρ ≥
2

M1
〈Xρ, Xψ〉 in ω,
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where ψ(g) def
= |x(g)|2.

We remark that the A-condition is fulfilled if, for example, � satisfies the uni-
form corkscrew condition, see [Capogna and Garofalo 1998; Capogna et al. 1998].
These papers contain an extensive study of examples of domains that, in particular,
satisfy (5-2). The A-condition allows us to adapt to the present setting Moser’s
[1961] classical iteration arguments. On the other hand, the convexity condition
allows the construction of useful barriers. It is satisfied if, for example, ρ is a
strictly L-superharmonic function.

From Theorem 4.3, we know that u ∈ L∞(�). This crucial information allows
us to implement the local regularity theory of Folland and Stein [1974; Folland
1975] to conclude that u ∈ C∞(�).

The A-condition (5-2) permits us to adapt to the present setting the classical
arguments that lead, via Moser’s iteration, to u ∈ 00,α(�) for some 0 < α < 1;
see for example [Gilbarg and Trudinger 1983, Section 8.10]. Extending u by zero
outside �, we can assume henceforth that

(5-4) u ∈ 00,α(G)∩ C∞(�).

Given the domain � and an open neighborhood U , fixed as in the preceding dis-
cussion, we assume that M0 > 0 has been chosen so that it fulfill the condition

(5-5) U ⊂
{
g ∈ G

∣∣ |x(g)|2 ≤ mM0/4
}
.

We shall consider the Riemannian distance dR( ·, · ) on G, defined using the Eu-
clidean metric on g via the exponential map; that is, if g = exp ξ and h = exp η,
we set

(5-6) dR(g, h)= |ξ − η|.

It is straightforward to estimate the Riemannian distance by the Carnot–Carathéo-
dory distance:

(5-7) dR(g, h)≤ d(g, h).

The estimate in the other direction was proven by Tanaka [1975]. He works in a
more general situation than ours, so we state the result as relevant to our setting.

Theorem 5.1. Let G be a Carnot group of step r , and take g0 ∈ G. For every ball
B(g0, R) there exists a constant C = C(G, R) such that, if g, h ∈ B(g0, R), then

(5-8) d(g, h)≤ C dR(g, h)1/r .

5A. Barrier functions. The barrier functions defined in the next theorem are cru-
cial to the rest of the section. The convexity property of the boundary is essentially
what makes these functions useful.
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Theorem 5.2. Let � ⊂ G be a smooth connected bounded open set that satisfies
the convexity condition (5-3). Let M ≥ max{M0,M1}. For 0< α ≤ 1, we define

9α = (R − ρ)α e−ψ/M .

Under the stated hypothesis, for every g ∈ ω,

(5-9) L9α(g)≤ −
m
M
9α(g).

We remark that, when working with L-harmonic functions, one takes α = 1.
We also consider α < 1 because of its use in the case of nonlinear equations, for
example, Yamabe-type equations. The proof of the above theorem can be found in
[Garofalo and Vassilev 2000].

Let η be a smooth vector field defined in U that is transversal to the boundary,
that is,

(5-10) ηρ(g0)≡

( d
dt
ρ(gt)

)∣∣∣
t=0

6= 0, g0 ∈ ∂�,

where d
dt gt = η(gt).

Using the compactness of ∂�, we can assume, possibly after taking a smaller
U , that there exists a constant δ > 0 such that

(5-11) ηρ(g0)≥ δ > 0 for g0 ∈ ∂�.

We note that the transversality condition (5-11) implies that the trajectories of η that
start from points of ∂� fill a full open set ω, interior to �. Possibly by shrinking
the set U , we can assume that ω = � ∩ U . To fix the notation, we suppose that
there exists t0 ∈ (0, 1) such that

gt ∈ ω for 0< t < t0 and g0 ∈ ∂�.

We shall hereafter use this generic transversal vector field and notation.

Lemma 5.3. There exist C1,C2 > 0 such that, for every g0 ∈ ∂� and 0 ≤ t ≤ t0,

(5-12) C1 tα ≤9α(gt)≤ C2 tα.

Proof. Under the assumptions we made, the proof follows from the Taylor formula.
Indeed,

(5-13) R − ρ(gt)= tηρ(g0)
(
1 + O(t)

)
,

where O(t) denotes a function bounded by Ct , uniformly in g0 ∈ ∂� and 0≤ t ≤ t0.
It is clear from the latter identity that (5-12) follows by using (5-11), the smooth-

ness of ρ, and the boundedness of �. �
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5B. Lipschitz estimates near the boundary. We start with a theorem about the
Green’s function, since its proof is very simple because of the existence of barriers.

An important observation is that, thanks to the results of Derridj [1971], the
Green’s function is a smooth function up to the noncharacteristic boundary; indeed,
its L-Laplacian vanishes near the boundary, and hence it is a smooth function.
Therefore, when working with equations with a smooth right-hand side, we shall
consider ω = U ∩�, where U is a sufficiently small open neighborhood of the
characteristic set 6 defined in (5-37), rather than ∂� ⊂ U as we do in the case
of the Yamabe equation; see the definitions of the convexity and A-conditions in
Section 5A.

Theorem 5.4. Let u ∈ C(ω̄) satisfy

Lu = 0 in ω, u = 0 on ∂�.

If the convexity condition is satisfied in a neighborhood ω of the characteristic
boundary 6, then there exists a constant C = C(G, �, u) such that

(5-14) |u(g)| ≤ C dR(g, ∂�) for every g ∈ ω.

Remark 5.5. Note that in this theorem the right-hand side uses the Riemannian
distance. This is important for the estimates on derivatives that involve vectors
not only from the first layer. Clearly, the same inequality holds for the Carnot–
Carathéodory distance.

Proof. The proof uses 9 as a barrier, and Bony’s maximum principle. As we saw
before the statement of the theorem, we have

u ∈ C∞(ω̄ \6).

Equation (5-9) with 9 =91 shows that

±Lu(g)= 0 ≥ LC9(g), g ∈ ω.

On the other hand, for a sufficiently large constant C , we have the estimate

(5-15) C9(g)≥ |u(g)| on ∂ω.

To see that (5-15) holds, we argue as follows. Its validity is clear on ∂� since both
u and 9 vanish there. On the other hand, the compact set ∂ω ∩� is at a fixed
distance away from the characteristic boundary, and the estimate (5-15) follows
since 9, u ∈ C∞(∂ω ∩�) and from Lemma 5.3; see the proof of Theorem 5.14
for further details.

We can now apply Bony’s maximum principle (Theorem 2.1) and conclude that
the bound holds inside as well:

|u(g)| ≤ C9(g), g ∈ ω.
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This implies that u satisfies the Riemannian Lipschitz estimate

(5-16) |u(g)| ≤ CdR(g, ∂�), g ∈ ω,

which completes the proof. �

The next theorem was proved in [Garofalo and Vassilev 2000] by also requiring
that � be uniformly starlike along 6. A minor modification shows that this is
unnecessary. We shall use gt as in (5-10).

Theorem 5.6. Let � be a C∞ open bounded set in a Carnot group G, and u
a solution of the Yamabe equation (1-4). If the convexity and A-conditions are
satisfied, then there exists a constant C = C(G, �, u) such that

u(g)≤ C dR(g, ∂�) for every g ∈ ω.

Proof. We begin by observing that, thanks to (5-4) and u = 0 on ∂�, we have, for
any g0 ∈ ∂�,

(5-17) u(gt)≤ C d(gt , g0)
α.

Theorem 5.1 now gives, for every g0 ∈ ∂� and 0 ≤ t ≤ t0,

(5-18) d(gt , g0)≤ CdR(gt , g0)
1/r

≤ Ct1/r

for some constant C = C(�) > 0. Using (5-17) and (5-18), and setting α0 = α/r ,
we infer that

(5-19) u(gt)≤ Ctα0

for every g0 ∈ ∂� and 0 ≤ t ≤ t0 < 1.
We now let σ = 2∗

−1 = (Q +2)/(Q −2). In the sequel it will be important that
σ > 1. Since it is clear that (5-19) continues to hold if in the right-hand side we
raise t to any exponent smaller than α0, we assume in what follows that σα0 < 1
and that there is some n ∈ N for which

(5-20) σ nα0 = 1.

Next, we use the barriers constructed in Theorem 5.2. For any point gt ∈ ω we
have, from (1-4), (5-19), (5-12), and (5-9), that

−Lu(gt) = u(gt)
σ

≤ Ctσα0

≤ CC−1
1 9σα0(gt) ≤ −CC−1

1 Mm−1L9σα0(gt)

= −L(C∗9σα0)(gt).

Keeping in mind that, as g0 varies in ∂� and t in (0, t0), the point gt covers ω, we
have proved that

L(C∗9σα0 − u)≤ 0 in ω.
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At this point, we observe that (possibly using a constant larger than C∗) we also
have the estimate

(5-21) C∗9σα0 ≥ u on ∂ω.

To see that (5-21) holds, we argue as follows. It is clear that (5-21) holds on
∂ω∩ ∂�, since both u and 9σα0 vanish there. On the other hand, the compact set
∂ω ∩� is at a fixed distance away from the boundary, and therefore, using that
u and 9σα0 are smooth there and 9σα0 does not vanish, one trivially obtains the
estimate by using the maximum of u.

We can now apply to ω Bony’s maximum principle from Theorem 2.1 to infer
that a similar estimate also holds in ω. From this result and from the right-hand
side of (5-12), we conclude that, for every g0 ∈ ω and 0< t < t0,

(5-22) u(gt)≤ Ctσα0,

which shows that we have improved on (5-19). It is now clear that, by repeating
the above arguments n times, where n is as in (5-20), we shall reach the desired
conclusion (5-16). �

5C. Estimates for the Green’s function.

Theorem 5.7. Let u ∈ C∞(ω̄\∂�)∩ C(ω̄) satisfy

Lu = 0 in ω, u = 0 on ∂�.

If the convexity condition (5-3) is satisfied, then

Xu ∈ L∞(ω).

The proof of Theorem 5.7 is an immediate consequence of Theorem 5.4, with the
help of the Schauder-type estimates proved in [Danielli and Garofalo 1998].

Proof. Fix an arbitrary g ∈ ω. With r = dist(g, ∂ω)/2, consider the ball B(g, r)⊂
B̄(g, r)⊂ω. Applying the interior Schauder estimates to the L-harmonic function
u, one has

(5-23) |Xu(g)| ≤
C
r

sup
B(g,r)

|u|,

for some constant C =C(G). At this point, we invoke Theorem 5.4, which implies,
for any g′

∈ B(g, r), the inequality

|u(g′)| ≤ C ′d(g′, ∂�) ≤ C ′
(
d(g′, g)+ d(g, ∂�)

)
≤ 2C ′r,

with a constant C ′
= C ′(G, ω, u). Substitution in (5-23) finishes the proof. �
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In the next theorems we show the boundedness of derivatives along some trans-
versal to the boundary vector fields. We denote by 6 the characteristic boundary,
which is defined in (5-37). Also, as in Theorem 5.4, ω = U ∩� where U is an
open neighborhood of 6. We further set 1= ∂�∩ U .

Theorem 5.8. Suppose η is a vector field from the center of the Lie algebra of G.
Let η̃ be the corresponding left-invariant vector field. Assume further that � ⊂ G
satisfies the convexity condition (5-3) and η̃ is transversal to 6. If u satisfies

Lu = 0 in ω, u = 0 on ∂�,

then
η̃u ∈ L∞(ω).

Proof. For t very close to 0, we define ωt =
{
g exp tη

∣∣ 0< t < t0, g ∈ ω
}
∩ω and

∂1t =
{
g0 exp tη

∣∣ g0 ∈1
}
, and consider the difference quotients

(5-24) ϕt =
1
t
(
Rexp tηu − u

)
, g ∈ ωt ,

where Rh u(g)= u(gh) is the right-translations operator. We claim that there exists
a constant C > 0 such that, for all t sufficiently close to 0 and g ∈ ωt , one has

(5-25) |ϕt(g)| ≤ C.

Suppose the claim (5-25) is true. Passing to the limit as t → 0, we conclude that
|η̃u(g)| ≤ C for every g ∈ ω, thus establishing the theorem.

We turn to the proof of (5-25). Note that

(5-26) Lϕt(g)= 0.

That is, each of the functions ϕt is L-harmonic when u is harmonic. This follows
since the considered L-Laplacian is left invariant and, when η is in the center of g,
we have that h = exp tη is in the center of the group, and hence the right and left
translations by h coincide.

From Bony’s maximum principle (Theorem 2.1), it is therefore enough to prove
that, for some t1 close to 0, (5-25) holds for g ∈ ∂ωt and t ∈ (0, t1). Note that
∂ωt = 1t ∪ (∂ω∩�). We analyze the two portions separately. Since any point
g ∈1t can be written as g = g0 exp tη for some g0 ∈1, we have

(5-27) ϕt(g)=
u(g0 exp tη)− u(g0)

t
.

We recall Theorem 5.4, which gives

(5-28) |u(g0 exp tη)| ≤ C dR(g0 exp tη, g0)≤ Ct,
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with a fixed constant C when g0 belongs to a fixed compact set. This estimate
shows that

(5-29) |ϕt(g)| ≤ C, g ∈ ∂�t .

Finally, the same inequality on ∂ω∩� follows from the C∞ regularity of u in �.
In conclusion, we have proved the claim (5-25), and therefore the theorem. �

Remark 5.9. The same proof can be used to show boundedness of the derivative
along the radial vector field, assuming that it is transversal to ∂�. The reason is
that the corresponding difference quotients are L-harmonic as well.

5D. Regularity of solutions of the Yamabe equation. Let u be a weak nonnegative
solution of the Yamabe-type equation (1-4). We note again that, because of the
present lack of boundary Schauder estimates (except in the case of the Heisenberg
group: see 5.13), in the next theorem the convexity assumption is required to hold
globally. Accordingly, for domains in the Heisenberg group, convexity will be
assumed only near the characteristic boundary; see Theorem 5.14.

Theorem 5.10. Let � be a C∞ open bounded set in a Carnot group G, and u a
solution of (1-4). If the convexity assumption (5-3) and the A-condition (5-2) are
satisfied, then

Xu ∈ L∞(�).

Proof. Since u is smooth away from ∂�, in order to prove the theorem it will be
enough to show that

(5-30) Xu ∈ L∞(ω),

where ω is fixed as before.
We begin by introducing v = u2∗

−1
∗ Γ , where Γ is the positive fundamental

solution of L, that is, LΓ = −δ. According to [Folland 1975, Corollary 2.8], v
satisfies the equation Lv = −u2∗

−1. Since by (5-4) u2∗
−1 is in 00,β(G) for some

β ∈ (0, 1) (and u is compactly supported in G), from [Folland 1975, Theorem 6.1]
we have

(5-31) v ∈ 0
2,β
loc (G).

Therefore, if we let w def
= u − v, to prove (5-30) it is enough to show it for w, that

is, to prove that Xw ∈ L∞(ω). We notice that w is L-harmonic, that is, Lw = 0
in �.

From Theorem 5.6,

u(g)≤ Cd(g, ∂�) for every g ∈ ω.
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Since we know that u ∈ C∞(� \ω), we conclude that

(5-32) u(g)≤ Cd(g, ∂�) for every g ∈�;

see Theorem 2.3. Fix a point g ∈ ω. With r = dist(g, ∂�)/2, consider the ball
B(g, r)⊂ B̄(g, r)⊂�. Applying the interior Schauder estimates in Theorem 2.2
to the L-harmonic function w−w(g), one has

(5-33) |Xw(g)| ≤
C
r

sup
B(g,r)

(w−w(g)).

Note that (5-32) gives, for g′
∈ B(g, r),

(5-34) u(g′) ≤ C dist(g′, ∂�) ≤ C
(
d(g′, g)+ dist(g, ∂�)

)
≤ Cr.

Since w = u − v, in view of (5-34) and (5-32) one has, for g′
∈ B(g, r),

(5-35)
∣∣w(g′)−w(g)

∣∣ ≤
(
u(g′)+u(g)

)
+

∣∣v(g′)−v(g)
∣∣ ≤ C

(
r +|v(g′)−v(g)|

)
.

Finally, we observe that (5-31) implies that v ∈ L1,∞(�) Applying Theorem 2.3
once more, we conclude that

|v(g)− v(g′)| ≤ C d(g, g′) for g, g′
∈�.

Substitution of this information in (5-35) gives

sup
B(g,r)

(w−w(g))≤ Cr.

Combining the latter inequality with (5-33) brings the sought-for conclusion Xw ∈

L∞(ω). This finishes the proof of Theorem 5.10. �

To end this section, we note that one can show the boundedness of the radial
derivative of solutions of the Yamabe equation. This was done in [Garofalo and
Vassilev 2000, Theorem 4.7], which we state below. The proof requires that G
be of step 2 and the considered domain be C∞, bounded, connected, uniformly
starlike with respect to one of its points, and satisfying (5-2) and (5-3).

Theorem 5.11. Let G be a Carnot group of step 2. Consider a C∞ connected,
uniformly starlike, bounded open set � ⊂ G satisfying (5-2) and (5-3). If u is a
weak solution of (1-4), then

(5-36) Zu ∈ L∞(�).

5E. The estimates near the characteristic boundary for a domain in the Heisen-
berg group. Let � be a smooth domain in a Carnot group. Denote by 6 its char-
acteristic set with respect to the system X = {X1, . . . , Xm}, that is,

(5-37) 6 =
{
g ∈ ∂�

∣∣ X j (g) ∈ Tg(∂�), j = 1, . . . ,m
}
.
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Clearly, when the domain is bounded this is a compact subset of the boundary.
In the next well-known theorem we denote by N =

∑r
j=1 dim Vj the topological

dimension of G. The symbol HN−1 denotes the (N−1)-dimensional Hausdorff
measure constructed using the Riemannian distance on G.

Theorem 5.12. Let �⊂ G be a C∞ domain. One has

HN−1(6)= 0.

This result is due to Derridj [1972]. A more refined version has been recently
proved by Franchi and Wheeden [1997].

We now consider the Heisenberg group Hn and take � ⊂ Hn . We shall use the
notation used until now, except that U will be a sufficiently small neighborhood of
6— that is, 6 b U — and ω = U ∩� as before. We also set 1 = ∂�∩ U . We
recall the following Schauder estimates [Jerison 1981a]:

Theorem 5.13. Let � be a bounded C∞ domain in the Heisenberg group Hn , and
let ϕ ∈ C∞

0 (H
n) be supported in a small neighborhood of a noncharacteristic point

g0 ∈ ∂�. Given f ∈ 0k,α(�), k ∈ N ∪{0}, 0< α < 1, for the unique solution u to
the Dirichlet problem for the Kohn sub-Laplacian

(5-38) Lu = f in �, u = 0 on ∂�,

one has ϕu ∈ 0k+2,α(�).

Following the arguments in the preceding sections, we can prove the following:

Theorem 5.14. Let � be a smooth connected bounded open set in Hn , satisfying
the A-condition. Suppose that the convexity condition is satisfied in an interior
neighborhood ω of its characteristic set. If u is a weak nonnegative solution of
the CR Yamabe equation, then the horizontal gradient of u is bounded in �. If in
addition ∂� is uniformly starlike along6, then the radial derivative Zu is bounded
in �.

Proof. As already mentioned, u ∈ 00,α(Hn) ∩ C∞(�). From Theorem 5.13, by
taking into account that (Q + 2)/(Q − 2) > 1, we have u ∈ 0

2,α
loc (� \6). Now we

can argue as in Theorem 5.10, which holds as long as we have Theorem 5.6 and
Theorem 5.11, with the only difference that now ∂� should be replaced with 1.
However, by doing this we see that ∂ω =1∪ (∂ω\1), with ∂ω \1 reaching ∂�.
There are two places where this is important:

(1) in Theorem 5.6, for (5-21);

(2) in Theorem 5.11, for the bound on ∂ωλ \ ∂�λ, in the proof’s last paragraph.

We start with (1). The set3=
(
∂ω∩�

)
\1 is at a fixed distance away from the

characteristic set 6. Therefore, for every g0 ∈3, there exists j ∈ {1, . . . ,m} such
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that X jρ(g0) 6= 0. By continuity, the trajectories of X j fill a (sufficiently small)
full neighborhood Vg0 of g0. This means that there exists t0 = t (g0) > 0 such that
every g ∈ �∩ Vg0 can be written as g1 exp t X j for some g1 ∈ ∂�∩ Vg0 and some
t ∈ (0, t0). Using the uniform transversality of X j to ∂� in �∩ Vg0 and Taylor’s
formula, we infer the existence of C = C(g0) > 0 such that

(5-39)
∣∣R − ρ(g1 exp t X j )

∣∣ ≥ C |t |

for every g1 ∈ ∂�∩Vg0 and 0< t < t0. We now use that u ∈0
2,α
loc (�̄\6) to deduce

the existence of a constant C∗
= C∗(u, g0) > 0 such that

u(g1 exp t X j )≤ C∗
|t | ≤ C∗

|t |ασ0

for every g1 ∈ ∂�∩ Vg0 and 0 < t < t0. The latter inequality and (5-39) allow us
to conclude that (5-21) does hold in the set �∩ Vg0 , for a constant depending on
u and g0. By a finite-covering argument, we see that (5-21) continues to hold in
the intersection of a small neighborhood of ∂� with 3. We can thus separate from
∂�. Once inside �, we can use the C∞ smoothness of u to conclude that (5-21)
holds on the remaining portion of ∂ω∩� as well. This proves (1).

The embedding theorem 5.25 in [Folland 1975] implies that

(5-40) 0
2,β
loc (G)⊂3

1,β/2
loc (G)= C1,β/2

loc (G),

where the latter space denotes the standard Hölder class with respect to the Rie-
mannian distance dR( ·, · ) on G. The proof of (2) follows from the above embed-
ding. �

Remark 5.15. The previous theorem can be proved for any group of step 2, by
requiring also that u ∈ 0

2,α
loc (�̄ \6). With this assumption, we can also prove that

η̃u ∈ L∞(�),

provided that η̃ is transversal to 6. Here, η ∈ V2 and η̃ is the corresponding left-
invariant vector field on a group G of step 2.

We want to give an example of domains in groups of step 2 satisfying the as-
sumptions of the preceding sections. Let G be a Carnot group of step 2. Using
exponential coordinates, we define the function

(5-41) fε(g)=
(
(ε2

+ |x(g)|2)2 + 16|y(g)|2
)1/4

, ε ∈ R.

For R > 0 and ε ∈ R with ε2 < R2, consider the C∞ bounded open set

(5-42) �R,ε = {g ∈ G | fε(g) < R}.

When ε = 0, it is clear that �R,ε is nothing but a gauge pseudo-ball centered at
the group identity e, except that the natural gauge was defined in (2-5) without the
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factor 16. Here, we have introduced such a factor for the purpose of keeping a
consistent definition with the case of groups of Heisenberg type. For all practical
purposes, the reader can ignore it and identify f0 in (5-41) with (2-5). For g ∈ G,
we set �R,ε(g)= {h ∈ G | fε(g−1h) < R} = g�R,ε.

Theorem 5.16. Let G be a Carnot group of step 2. For every ε ∈ R with ε2 < R2,
the domain �R,ε(g) satisfies the A-condition, the convexity condition (globally),
and is uniformly starlike.

For the proof of this theorem see [Garofalo and Vassilev 2000].
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