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ABSTRACT. We report on some aspects and recent progress in certain problems in the sub-Riemannian CR and quaternionic
contact (QC) geometries. The focus are the corresponding Yamabe problems on the round spheres, the Lichnerowicz-Obata
first eigenvalue estimates, and the relation between these two problems. A motivation from the Riemannian case highlights
new and old ideas which are then developed in the settings of Iwasawa sub-Riemannian geometries.
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1. INTRODUCTION

As the title suggests, the goal of this paper is to report on some aspects of certain problems in the sub-Riemannian
CR and quaternionic contact (QC) geometries. It seems appropriate in lieu of an extensive Introduction to begin with a
section about the corresponding problems in the Riemannian case. Besides an introduction to the discussed problems
we give key steps of the proofs of some well known results highlighting ideas which can be used, although with a
considerable amount of extra analysis in the sub-Riemannian setting. In the later sections we show the difficulties and
current state of the art in the corresponding results on CR and quaternionic contact manifolds. However, this article
is not designed to be a complete survey of the subjects, especially in the case of the Yamabe problem, but rather a
collection of particular results with which we have been involved directly while giving references to important works
in the area, some of which are covered in this volume.

Convention 1.1. A convention due to traditions: when considering eigenvalue problems, it is more convenient to use
the non-negative (sub-)Laplacian. Correspondingly, 4u = −trg(∇2u) for a function u and metric g. On the other
hand the (sub-)Laplacian appearing in the Yamabe problem is the ”usual” negative (sub-)Laplacian4u = trg(∇2u).

2. BACKGROUND - THE RIEMANNIAN PROBLEMS

The only new result here is Proposition 2.4. This fact is exploited later in a new simplified proof of the Obata type
theorem in the qc-setting. Interestingly, the CR case presents another type of behavior.

2.1. The Lichnerowicz and Obata first eigenvalue theorems. The relation between the spectrum of the Laplacian
and geometric quantities has been a topic of continued interest. One such relation was given by Lichnerowcz [175]
who showed that on a compact Riemannian manifold (M, g) of dimension n for which the Ricci curvature satisfies
Ric(X,X) ≥ (n − 1)g(X,X) the first positive eigenvalue λ1 of the (positive) Laplace operator 4f = −trg∇2f

satisfies the inequality λ1 ≥ n. Here ∇ is the Levi-Civita connection of g. In particular, n is the smallest eigenvalue
of the Laplacian on compact Einstein spaces of scalar curvature equal to n(n − 1)-the scalar curvature of the round
unit sphere. Subsequently, Obata [189] proved that equality is achieved iff the Riemannian manifold is isometric
to the round unit sphere. It should be noted that the smallest possible value n is achieved on the round unit sphere
by the restrictions of the linear functions to the unit sphere (spherical harmonics of degree one), which give the
associated eigenspace. Later, Gallot [95] generalized these results to statements involving the higher eigenvalues and
corresponding eigenfunctions of the Laplace operator.

The above described results of Lichnerowicz and Obata we want to discuss in detail are summarized in the next
theorem.

Theorem 2.1. Suppose (M, g) is a compact Riemannian manifold of dimension n which satisfies a positive lower
Ricci bound

(2.1) Ric(X,X) ≥ (n− 1)g(X,X).

a) If λ is a non-zero eigenvalue of the (positive) Laplacian,4f = λf , then λ ≥ n, see [175].
b) If there is λ = n, then (M, g) is isometric with the round sphere Sn(1), see [188]

Let us briefly sketch the proof of Theorem 2.1 including a new observation, Proposition 2.4, which will be exploited
in the sub-Riemannian setting. The key to Lichnerowicz’ inequality is Bochner’s identity (4 ≥ 0),

(2.2) − 1

2
4|∇f |2 = |∇df |2 − g(∇(4f),∇f) +Ric(∇f,∇f).
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After an integration over the compact manifold we find

0 =

∫
M

|(∇df)0|2 +
1

n
(4f)2 − g(∇(4f),∇f) +Ric(∇f,∇f) dvolg.

Let us assume at this point the inequality Ric(∇f,∇f) ≥ (n − 1)|∇f |2 for any eigenfunction f , 4f = λf . We
obtain then the inequality

0 =

∫
M

|(∇df)0|2 +
1

n
λ|∇f |2 − λ|∇f |2 +Ric(∇f,∇f) dvolg

=

∫
M

|(∇df)0|2 dvolg +

∫
M

Ric(∇f,∇f)− n− 1

n
λ|∇f |2 dvolg

≥
∫
M

|(∇df)0|2 dvolg +
n− 1

n

∫
M

(n− λ)|∇f |2 dvolg.

Hence (∇df)0 = 0 and 0 ≥ n − λ, which proves Lichnerowicz’ estimate. Furthermore, if the lowest possible
eigenvalue is achieved then the trace-free part of the Riemannian Hessian of an eigenfunction f with eigenvalue
λ = n vanishes, i.e., it satisfies the system

(2.3) ∇2f = −fg.

Obata’s result which describes the case of equality was preceded by several results where the case of equality was
characterized under the additional assumption that g is Einstein [231] or has constant scalar curvature [119]. It turns
out that besides Obata’s proof these assumptions can also be removed as we found in Proposition 2.4. Nevertheless,
even under the assumption that g is Einstein the proof that (M, g) = Sn requires further delicate analysis involving
geodesics and the distance function from a point. Furthermore, Obata showed in fact a more general result, namely,
on a complete Riemannian manifold (M, g) equation (2.3) above allows a non-constant solution iff the manifold is
isometric to the round unit sphere Sn.

Remark 2.2. A good reference for Hessian equations characterizing the spaces of constant curvature is [155]. For
example, if (M, g) is compact Riemannian manifold admitting a non-constant solution to ∇2f = 4f

n g then (M, g) is
conformally diffeomorphic to the unit round sphere. Furthermore, if the scalar curvature of (M, g) is constant then
(M, g) is isometric to a Euclidean sphere of certain radius.

Thanks to the Bonnet-Myers and S.-Y. Cheng’s improved Toponogov theorems we can sketch the proof of this fact
as described in details in [53, Chapter III.4]. First, we note that assuming (M, g) is complete and satisfies (2.1) we
have

(i) (Bonnet-Myers) M is compact, the diameter d(M) ≤ π and π1(M) is finite;
(ii) (improved Toponogov theorem) d(M) = π iff M is isometric to Sn(1), [56].

The Hessian equation (2.3) implies that if γ(t) is unit speed geodesics we have (f ◦ γ)′′+ f ◦ γ = 0, hence f(γ(t)) =

A cos t + B sin t for some constants A and B. Let p ∈ M be such that f(p) = maxM f which exists since M is
compact. For any unit tangent vector ξ ∈ Tp(M) the unit speed geodesic γξ(t) from p in the direction of ξ satisfies
f(γξ(t)) = f(p) cos t sinc the derivative at t = 0 is zero. Therefore, f(γξ(t)) is injective for 0 ≤ t ≤ π which implies
d(M) ≥ π. This shows that d(M) = π and by Cheng’s theorem we conclude M = Sn.

Remark 2.3. We remark explicitly that the above approach to Obata’s theorem cannot be used in sub-Riemannian set-
ting in which case both (i) and (ii) are very challenging open problems with the exception of some results generalizing
(i) in some special cases, see Section 2.4.

We turn to our result mentioned in context above.

Proposition 2.4. Suppose (M, g) is a compact Riemannian manifold of dimension n which satisfies (2.1). If the lowest
possible eigenvalue is achieved,4f = nf for some function f , then (M, g) is an Einstein space.

Proof. The proof follows from several calculations and a use of the divergence formula. By the proof of Lichnerow-
icz’ estimate the eigenfunction f satisfies (2.3). Differentiating (2.3) and using Ricci’s identity ∇3f(X,Y, Z) −
∇3f(Y,X,Z) = −R(X,Y, Z,∇f) we find the next formula for the curvature tensor

(2.4) R(X,Y, Z,∇f) = df(X)g(Y,Z)− df(Y )g(X,Z).



4 STEFAN IVANOV AND DIMITER VASSILEV

Taking a trace in the above formula we see

(2.5) Ric(X,∇f) = (n− 1)df(X).

A differentiation of (2.5) and another use of (2.3) gives

(2.6) (∇ZRic)(Y,∇f) = fRic(X,Y )− (n− 1)fg(X,Y ).

On the other hand, taking the covariant derivative of (2.4) and then using (2.3) for∇V (∇f), we obtain

(∇VR)(Z,X, Y,∇f) = fR(Z,X, Y, V )− fg(V,Z)g(X,Y ) + fg(V,X)g(Z, Y ).

Therefore, taking a trace, it follows.

(2.7) (∇∗R) = Y,X,∇f) = fRic(X,Y )− (n− 1)fg(X,Y ).

A substitution of (2.7) in the formula (∇ZRic0) = (∇ZRic)(X,Y ) − 1
ndS(Z)g(X,Y ) with Z = ∇f gives the key

identity

(2.8) (∇∇fRic0)(X,Y ) = 2fRic0(X,Y ) − 2S

n
g(X,Y ) − 2(n − 1)fg(X,Y ) − 1

n
dS(∇f)g(X,Y ).

Hence, L∇f |Ric0|2k = 4kf |Ric0|2k. Integrating over compact manifold M with respect to the Riemannian volume
we obtain∫

M

|Ric0|2kf2 dvolg =
1

n

∫
M

g(∇|Ric0|2kf,∇f) dvolg

=
1

n

∫
M

|Ric0|2k|∇f |2 dvol +
4k

n

∫
M

|Ric0|2kf2 dvolg.

Therefore,

(n− 4k)

∫
M

|Ric0|2kf2 dvolg =

∫
M

|Ric0|2k|∇f |2 dvolg,

hence choosing k > n/4 it follows Ric0 = 0, i.e., g is an Einstein metric. �

It should be noted that (2.3) is obtained in connection with infinitesimal conformal transformations on Einstein
spaces, see 2.12. Thus the unit sphere is characterized as the only complete Einstein Riemannian manifold of scalar
curvature n(n− 1) admitting a non-homothetic conformal transformation, [119], [189], [218], [231], see also later in
this Section for relations with the Yamabe problem on the Euclidean sphere. In addition, this result can be considered
as a characterization of the unit sphere as a compact Einstein space which admits an eigenfunction belonging to the
possible smallest eigenvalue of the Laplacian for compact Einstein spaces.

We remark that it is natural to consider characterizations of the unit sphere by its second eigenvalue 2(n+ l)k of the
Laplacian. In this case, the gradients of the corresponding eigenfunctions are infinitesimal projective transformations,
which also gives a system of differential equations of order three satisfied by the divergence of an infinitesimal projec-
tive transformation on an Einstein space. Furthermore, it is shown that the complete Riemannian manifold admitting
a non-trivial solution for the system is isometric to the unit sphere provided that the manifold is simply connected,
, [80], [98], [27], [190], [189]. There are results in the Kähler case where an infinitesimal holomorphically projec-
tive transformation plays a role similar to that of projective one on Riemannian manifolds, [190]. We shall seek a
characterization of the model CR and qc unit spheres through the first eigenfunctions of the respective sub-Laplacians

2.2. Conformal transformations. Let (M, g) and (M ′, g′) be two Riemannian manifold of dimension n. A smooth
map F : M →M ′ is called a conformal map if F ∗g′ = φ−2 g for some smooth positive function φ. For our goals we
shall consider (M, g) = (M ′, g′), F a diffeomorphism, and let ḡ = F ∗g′. In this case, we say that F is a conformal
diffeomorphism while the metrics g and ḡ are called (point-wise) conformal to each other. For n ≥ 3, we shall need
the following well known formulas relating the traceless Ricci and scalar curvatures of the metrics g and ḡ,

Ric0 = Ric0 + (n− 2)φ−1(∇2φ)0(2.9)

S̄ = φ2S + 2(n− 1)φ4φ− n(n− 1)|∇φ|2,(2.10)

where∇ is the Levi-Civita connection of g,4φ = trg∇2φ, and (∇2φ)0 is the traceless part of the Hessian of φ.
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A conformal vector field on a compact Riemannian manifold (M, g) is a vector field X whose flow consists of
conformal transformations (diffeomorphisms). In the case the flow is a one-parameter group of isometries the vector
field X is called a Killing field. For M compact, the algebra c(M, g) of conformal vector fields is exactly the group
of conformal diffeomorphisms C(M, g) of (M, g). It is worth recalling [230] and [175] that X is a conformal vector
field iff

(2.11) LXg =
2

n
(divgX)g,

where LX is the Lie derivative operator and divgX is the divergence operator (divgX) volg = LXvolg defined
with the help of Riemannian volume element volg associated to g. In particular, a gradient vector field X = ∇φ is
infinitesimal conformal vector iff

(2.12) (∇2φ)0 = 0.

A short calculation, see [230], [175] or [232, (1.11)], shows that if X is a conformal vector field then

(2.13) 4(div X) = − 1

n− 1
(div X)S − n

2(n− 1)
X(S).

2.3. The Yamabe problem - Obata’s uniqueness theorem. The Yamabe type equation has its origin in both geome-
try and analysis. Yamabe [228] considered the question of finding a conformal transformations of a given Riemannian
metric on a compact manifold to one with a constant scalar curvature, see also [219] and [10, 11, 12, 9]. When
the ambient space is the Euclidean space Rn, G. Talenti [214] and T. Aubin [10, 11, 12] described all positive so-
lutions of a more general equation, that is the Euler - Lagrange equation associated with the best constant, i.e., the
norm, in the Lp Sobolev embedding theorem. With the help of the stereographic projection, which is a conformal
transformation, Yamabe’s question for the standard round sphere turns into the L2 case of Talenti’s question. The
solution of these special cases is an important step in solving the general Yamabe problem, the solution of which in
the case of a compact Riemannian manifold was completed in the 80’s after the work of T. Aubin and R. Schoen
[10, 11, 12, 9, 206, 207, 208], see also [167]. It should be noted that the ”solution” used the positive mass theorem
of R. Schoen and S.-T. Yau [210]. An alternative approach was developed by A. Bahri [13] where solutions of the
Yamabe equation were obtained through ”higher” energies of the Yamabe functional. As well known, in general, there
is no uniqueness of the metric of constant scalar curvature within a fixed conformal class. However, with the exception
of the round sphere, according to Obata’s theorem uniqueness (up to isometry) holds in a conformal class containing
an Einstein metric.

2.3.1. The Yamabe problem and functional. Let (Mn, g) be a compact Riemannian manifold of dimension n. The
Yamabe problem is to find a metric ḡ point-wise conformal to the Riemannnian metric g of constant scalar curvature
S̄. Clearly, this is a type of uniformization problem which is one generalization of the classical surface case.

2.3.2. Riemann surfaces - the 2-D case. In the 2-D case, where we are dealing with the uniformization of a closed
orientable surface, if we set ḡ = eφg, then the equation which needs to be solved is

4φ−K = −K̄eφ,

for some constant S̄, where S is the Gaussian curvature of g. By the Gauss-Bonnet formula

2πχ(M) =

∫
M

K dvg,

which determines the sign of K̄. By the uniformization theorem of the universal cover M̂ of M , M is biholomorphic
to M̂/G for someG-properly discontinuous subgroup ofAut(M̂). Thus, depending on the sign, (M, g) is hyperbolic,
parabolic, or elliptic Riemann surface, i.e., it is conformal to one of constant Gauss curvature −1, 0, 1. Explicitly,
depending on its genus, M is conformal (in fact biholomorphic) to a surface in one of next three cases:

(1) H/Γ, for a properly discontinuous Γ subgroup of PSL(2, R)-the automorphism group of the unit disc D,
when the genus of M at least two;

(2) C/Λ-elliptic curve, corresponding to a lattice Λ = {n1ω1 + n2ω2 | n1, n2 ∈ Z}, ω/ω2 /∈ R when the genus
of M is one;

(3) S2 of genus 0.
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2.3.3. The higher dimensional cases. For n ≥ 3 such a complete picture is not possible. It is customary to take the
conformal factor in a way which is best suited for the problem, accordingly we begin with the form exhibiting the
relation the critical Sobolev exponent. As well known, if we write the conformal factor in the form ḡ = u4/(n−2) g

then the Yamabe problem becomes an existence problem for a positive solution to the Yamabe equation, see (2.10),

(2.14) 4
n− 1

n− 2
4u− S · u = −S · u2∗−1.

where 4u = trg(∇du), S and S are the scalar curvatures of g and ḡ, and 2∗ = 2n
n−2 is the Sobolev conjugate

exponent.
The Yamabe problem 2.3.1 is of variational nature as we remind next. The critical points of the Einstein-Hilbert

(total scalar curvature) functional

Υ(ḡ) =

(∫
M

S̄ dvḡ

)
/

(∫
M

dvḡ

)2/2∗

are Einstein metrics. The Yamabe functional is obtained by restricting Υ(ḡ) to the conformal class [g] = {ḡ =

u4/(n−2)g | 0 < u ∈ C∞(M)} and defining (a conformally invariant functional)

(2.15) Υg(u) =

(∫
M

4
n− 1

n− 2
|∇u|2 + S u2 dvg

)
/

(∫
M

u2∗ dvg

)2/2∗

.

The critical points, i.e., the solutions of d
dtΥ(u+tφ)|t=0

= 0, φ ∈ C∞(M), are metrics of constant scalar curvature
(Yamabe metrics) since they are given by the solutions of (2.14) with S̄ the corresponding ”critical” energy level. The
Yamabe constant of (M, g) is

Υ(M, [g]) ≡ Υ([g]) = inf{Υg(u) : u > 0}.
The Yamabe invariant is the supremum λ(M) = sup[g] Υ([g]).

According to the result of Aubin and Talenti, for the round unit sphere Υ(Sn, [gst]) = n(n−1)ω
2/n
n . The existence

of a Yamabe metric is the content of the next theorem, which collects a number of remarkable results, see for example
[167] for a full account,

Theorem 2.5 (N. Trudinger, Th. Aubin, R. Schoen; A. Bahri). Let (Mn, g), n ≥ 3, be a compact Riemannian
manifold. There is a ḡ ∈ [g], s.t., S̄ = const.

The main steps in proof of the above theorem are as follows, see [167, 9] for a full account.
• We have Υ([g]) ≤ Υ(Sn, st). The Yamabe problem can be solved on any compact manifold M with Υ([g]) <

Υ(Sn, [gst]), see [228], [219], and [11].
• If n ≥ 6 then Υ(Sn, [gst])−Υ([g]) ≥ c‖W g‖2, hence the Yamabe problem can be solved if n ≥ 6 and M is

not locally conformally flat, see [11].
• If 3 ≤ n ≤ 5, or ifM is locally conformally flat, then the Yamabe problem has a solution since Υ(Sn, [gst])−

Υ([g]) ≥ cmo, where mo is the mass of a one point blow-up (stereographic projection) of M , see [206].
• If M is locally conformally flat a critical point of the Yamabe functional exists (which may be of higher than

Υ(M, [g]) energy), see [13].
Given the above existence of a Yamabe metric on every compact Riemannian manifold it is natural to study the question
of uniqueness. When Υ(M, [g]) ≤ 0 the Yamabe metric is unique in its conformal class as implied by the maximum
principle. However, for Υ(M, [g]) > 0 this is no longer true. An example of non-uniqueness is provided by the round
unit sphere as described next in 2.3.4. Another example was given by [208] in S1(R)×Sn. Remarkably, in the case of
the sphere the set of solutions is non-compact (in the C2 topology), see further below, and it was conjectured in [208]
that this is the only case, which became known as the compactness conjecture, see the review [34] for further details
and references. In short, the conjecture is true in the following cases:

• for a locally conformally flat manifold (different from the round sphere) [204] and [205];
• for n ≤ 7, see [173] and [180];
• for 8 ≤ n ≤ 24 provided that the positive mass theorem holds (this covers all cases of a spin manifold), see

[173], [172] for 8 ≤ n ≤ 11 and [147] for 12 ≤ n ≤ 24.
Furthermore, the conjecture is not true for n ≥ 25, see [33] and [35]. Putting the compactness conjecture aside we
turn to the uniqueness result of Obata.
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2.3.4. Obata’s uniqueness theorem for the Yamabe problem. The main result here is that the conformal class of an
Einstein metric on a connected compact Riemannian manifold (M, ḡ) contains a unique Yamabe metric unless M
is the round unit sphere Sn in Rn+1. It should be noted that if M is not conformal to the round sphere the Yamabe
metrics are nondegenerate global minima of the Einstein-Hilbert functional. The structure of the set of Yamabe metrics
in conformal classes near a nondegenerate constant scalar curvature metric was considered in the smooth case in [150].
An extension of Obata’s result to a local uniqueness result for the Yamabe problem in conformal classes near to that
of a nondegenerate solution was established in [75]. After this short background we turn to Obata’s theorem.

Theorem 2.6 ([188] and [187]). a) Let (M, ḡ) be a connected compact Riemannian manifold which is Einstein and
ḡ = φ−2g. If S̄ = S = n(n− 1), then φ = 1 unless (M, ḡ) = (Sn, gst).

b) If g is a Riemannian metric conformal to gst, gst = φ−2g, with scalar curvature S = n(n− 1), then g is obtained
from gst by a conformal diffeomorphism of the sphere, i.e., there is Φ ∈ Diff (Sn) such that g = Φ∗gst and up
to an additive constant φ is an eigenfunction for the first eigenvalue of the Laplacian on the round sphere. In
particular, ∇φ is a gradient conformal field and for some t we have Φ = exp(t∇φ)-the one parameter group of
diffeomorphisms generated by∇φ.

Proof. In the proof of part a) we use the argument of [29] and [167] which is very close to Obata’s argument but uses
the ”new” metric as a background metric rather than the given Einstein metric. Suppose ḡ is Einstein, hence by (2.9)
we have

0 = Rico = Rico +
n− 2

φ
(∇2φ)0.

Therefore, (∇2φ)0 = − φ
n−2Ric0. From the contracted Bianchi identity and S=const we have ∇∗Ric = 1

2∇S = 0,

hence ∇∗ (Ric(∇φ, .)) = (∇∗Ric)(∇φ) + g(Ric,∇2φ) = 1
2g(∇S,∇φ) − φ

n−2 |Rico|
2. Integration over M and an

application of the divergence theorem shows that g is also an Einstein metric, Rico = 0. This implies (∇2φ)0 = 0,
hence ∇φ is a gradient conformal vector field, see (2.12). Now, from (2.13) taking into account S = n(n − 1) it
follows4(4φ+nφ) = 0, hence by the maximum principle we have4u = −nu, where u = φ+a for some constant
a. Notice that we also have (∇2u)0 = 0. Hence by Obata’s result in the eigenvalue Theorem 2.1 either u =const or
g is isometric to gst and u is a restriction of a linear function to Sn, u = (aoxo + · · ·+ anxn)|Sn , which implies the
claimed form of φ. �

We note that in the case of the round sphere, once we proved that g is also Einstein, we can conclude that g is
isometric to gst since it is Einstein and conformally flat, W = 0, see [155], [156], [181], [148] for further details and
references on conformal transformations between Einstein spaces in a variety of spaces. Thus, there is an isometry
Φ : (Sn, g)→ (Sn, gst), Φ∗gst = φ−2gst hence F ∈ C(Sn, gst). Part b) of the above theorem shows that Φ belongs
to the largest connected subgroup of C(Sn, gst) and determines the exact form of φ. The same conclusion can be
reached with the help of the stereographic projection and relates the analysis to the Liuoville’s theorem and the best
constant in the L2 Sobolev embedding theorem in Euclidean space. In fact, using the stereographic projection we can
reduce to a conformal map of the Euclidean space, which sends the Euclidean metric to a conformal to it Einstein
metric. By a purely local argument, see [36], the resulting system can be integrated, in effect proving also Liuoville’s
theorem, which gives the form of φ after transferring the equations back to the unit sphere. Such argument was used
in the quaternionic contact setting [120] to classify all qc-Einstein structures on the unit 4n + 3 dimensional sphere
(quaternionic Heisenberg group) conformal to the standard qc-structure on the unit sphere. We will come back to the
qc-Liouville theorem later in the paper, see Section 8.5.

In any case, the key point here which will be used in the sub-Riemannian CR or QC setting is that Obata’s argument
shows the validity of a system of partial differential equations, namely, (∇2φ)0 = 0 assuming (2.10) holds with ḡ being
Einstein and g of constant scalar curvature. On the other hand, using the stereographic projection, Yamabe’s equation
on the round sphere turns into (2.14) for the Euclidean Laplacian with S = 0 and S̄=const after interchanging the
roles of g and ḡ, i.e., assuming that g is the ”background” standard constant curvature metric and ḡ is the ”new”
conformal to g metric of constant scalar curvature. This is nothing but the equation characterizing the extremals of the
variational problem associated to the L2 Sobolev embedding theorem. An alternative to Obata’s argument is then the
symmetrization argument (described briefly in Section 3).
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2.4. Sub-Riemannian comparison results and Yamabe type problems - a summary. The interest in relations
between the spectrum of the Laplacian and geometric quantities justified the interest in Lichnerowicz-Obata type
theorems in other geometric settings such as Riemannian foliations (and the eigenvalues of the basic Laplacian) [164,
163], [141] and [194], to CR geometry (and the eigenvalues of the sub-Laplacian) [109], [15], [48, 46, 47], [49],
[61], [169], and to general sub-Riemannian geometries, see [16] and [117]. Complete results have been achieved in
the settings of (strictly pseudoconvex) CR, [109],[46, 47], [48], [61],[170, 171],[131, 132], and QC, [127, 126, 128],
geometries which shall be covered in Sections 7 and 8.

As far as other comparison results are concerned we mention
(i) [202] for a Bonnet-Myers type theorem on general 3-D CR manifolds;
(ii) [118], where a Bonnet-Myers type theorem on a three dimensional Sasakian was proved.
Both of the above papers use analysis of the second-variation formula for sub-Riemannian geodesics.
(iii) [52] for an isoperimetric inequalities and volume comparison theorems on CR manifolds.
(iv) [16], [17], [18], [19], [111, 110] where an extension to the sub-Riemannian setting of the Bakry-Emery tech-

nique on curvature-dimension inequalities are used to obtain Myers-type theorems, volume doubling, Li-Yau, Sobolev
and Harnack inequalities, Liouville theorem. Such inequalities are obtained usually under a transverse symmetry as-
sumption. The latter means that we are actually dealing with a Riemannian manifold with bundle like metrics which
are foliated by totally geodesic leaves. Thi scondition equivalent to vanishing torsion in the QC setting (qc-Einstein)
and is not very far from the Sasakian case (vanishing torsion) in the CR case.

(v) [1], [3], [2], where sub-Riemannian geodesics and measure-contraction properties are used to establish for
Sasakian manifolds results such as a Bishop comparison theorem, Laplacian and Hessian comparison, volume dou-
bling, Poncaré and Harnack inequalities, and Liuoville theorem. comparison results in the Sasakian case.

(vi) [117] for Lichnerowicz type estimates and a Bonnet-Myers theorems in some special sub-Riemannian geome-
tries.

A variant of the Yamabe problem in the setting of a compact strictly pseudoconvex pseudohermitian manifold
(called here simply CR manifold) is the CR Yamabe problem where one seeks in a fixed pseudoconformal class of
pseudo-Hermitian structures on a compact CR manifold one with constant scalar curvature (of the canonical Tanaka-
Webster connection). After the works of D. Jerison & J. Lee [137] - [140] and N.Gamara & R. Yacoub [96], [97]
the CR Yamabe problem on a compact manifold is complete. The case of the standard CR structure on the unit
sphere in Cn is equivalent to the problem of determining the best constant in the L2 Folland & Stein [90] Sobolev
type embedding inequality on the Heisenberg group. The best constant in the L2 Folland & Stein inequality together
with the minimizers were determined recently using a different from [139] method by Frank & Lieb [92], see also
[32]. Nevertheless this simpler approach does not yield the uniqueness result of D. Jerison & J. Lee. A positive mass
theorem in the three dimensional case was proven recently in [58].

In the other case of interest, the qc-Yamabe problem was studied in [120, 121, 122] and [225]. According to [225]
the Yamabe constant of a compact qc manifold is less than or equal to that of the standard qc sphere. Furthermore, if
the constant is strictly less than the corresponding constant of the sphere, the qc-Yamabe problem has a solution, i.e.,
there is a conformal 3-contact form for which the qc-scalar curvature is constant. The Yamabe constant of the standard
qc structure on the unit (4n+ 3)-dimensional sphere was determined in [122] with the help of a clever center of mass
argument following in the footsteps of the CR case [92] and [32]. However, due to the limitations of the method [122]
does not exclude the possibility that in the qc-conformal class of the standard qc structure there are qc Yamabe metrics
of higher energies. The seven dimensional case was settled completely earlier in [121]. A conformal curvature tensor
was found in [129], which should prove useful in establishing existence of a solution to the qc-Yamabe problem in the
qc locally non-flat case.

Finally, we mention [62, 63] where the sharp Hardy-Littlewood-Sobolev inequalities in the quaternion and octonian
versions of the approach found by Frank and Lieb was developed. In particular, at this point the sharp constants in the
Hardy-Littlewood-Sobolev inequalities on all groups of Iwasawa type are known.

3. THE FOLLAND-STEIN INEQUALITY ON GROUPS OF IWASAWA TYPE

We start by recalling the following embedding theorem due to Folland and Stein [90]. Let G be a Carnot group
G of homogeneous dimension Q, fixed metric g on the the ”horizontal” bundle spanned by the first layer and Haar
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measure dH . For any 1 < p < Q there exists Sp = Sp(G) > 0 such that for u ∈ C∞o (G) we have

(3.1)
(∫

G

|u|p
∗
dH

)1/p∗

≤ Sp

(∫
G

|Xu|p dH
)1/p

,

where |Xu| =
∑m
j=1 |Xju|2 withX1, . . . , Xm denoting an orthonormal basis of the first layer of G and p∗ = pQ

Q−p . In
the case G = Rn this embedding is nothing but the Sobolev embedding theorem. We insist on X1, . . . , Xm denoting
an orthonormal basis of the first layer in order to have a well defined constant which obviously depends on the chosen
(left invariant) metric. For the sake of brevity we do not give the definition of a Carnot group since our focus is in the
particular case of groups of Iwasawa type, in which case there is a natural metric. Also, the case p = 1 which we did
not include above, is the isoperimetric inequality, see [41] for the proof in a much wider setting, which as well known
[82, 182], see also [214] and [203], implies the whole range of inequalities (3.1).

The most basic fact of the above inequality is its invariance under translations and dilations. The latter fact deter-
mines the relation between the exponents p and p∗ appearing in both sides. For a function u ∈ C∞o (G) we let

(3.2) τhu
def
= u ◦ τh, h ∈ G,

where τh : G→ G is the operator of left-translation τh(g) = hg, and also

(3.3) uλ ≡ λQ/p* δλu
def
= λQ/p* u ◦ δλ, λ > 0.

Here, δλ is the non-isotropic dilation

(3.4) δλ(g) = exp ◦∆λ ◦ exp−1(g), g ∈ G,

where exp : g→ G is the exponential map and ∆λ : g→ g is defined by ∆λ(ξ1 + ...+ ξr) = λξ1 + ...+ λrξr. It is
easy to see that the norms in the two sides of the Folland-Stein inequality are invariant under the translations (3.2) and
the rescaling (3.3).

Let Sp be the best constant in the Folland-Stein inequality, i.e., the smallest constant for which (3.1) holds. The

equality is achieved on the space
o

D 1,p(G), where for a domain Ω ⊂ G the space
o

D 1,p(Ω) is defined as the closure
of C∞o (Ω) with respect to the norm

(3.5) ‖u‖ o

D 1,p(Ω)
=

(∫
Ω

|Xu|pdH
)1/p

.

This fact was proved in [221] with the help of P.L. Lions’ method of concentration compactness. The question of
determining the norm of the embedding, i.e., the value of the best constant is open with the exception of the Euclidean
case and the p = 2 case on the (two step Carnot) groups of Iwasawa type. In the Euclidean case, a symmetrization
argument involving symmetric decreasing rearrangement, see [215], can be used to show that equality is achieved for
radial functions which can be determined explicitly. As of now there is no such argument in the non-Euclidean setting
which to a large degree is the reason for the much more sophisticated analysis in the sub-Riemannian setting. However,
the recently found approach [92] and [32] based on the center of mass argument allows the determination of the sharp
constant (in fact in the Hardy-Littlewood-Sobolev inequality) in the geometric setting of groups of Iwasawa type when
p = 2. This analysis exploits the Cayley transform and the conformal invariance of the associated Euler-Lagrange
equation which is the Yamabe equation on the corresponding Iwasawa group,

(3.6) 4u = −u
Q+2
Q−2 , u ∈

o

D 1,2(G), u ≥ 0.

Of course, in order to give a geometric meaning of the equation one needs to use the relevant geometries and their
”canonical” connections which we do Section 4.2. In the Euclidean and CR cases these are just the well known
Levi-Civita and Tanaka-Webster connections. In the quaternionic and octonian case the geometric picture emerged
only after the work of Biquard [25, 26]. The goal of this section is to give some ideas surrounding the analysis of
the Yamabe equation as a partial differential equation and some of the known results on the optimal constants which
largely belong to the area of analysis. The key results on the optimal constants are summarized in the following two
theorems in which m is the dimension of the first layer, while k is the dimension of the center of the Iwasawa algebra.
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Theorem 3.1 ([139],[92],[121, 122],[62]). Let G be a group of Iwasawa type. For every u ∈ D1,2(G) one has the
Folland-Stein inequality (3.1) with

(3.7) S2 =
1√

m(m+ 2(k − 1))
4

k
m+2k π−

m+k
2(m+2k)

(
Γ(m+ k)

Γ
(
m+k

2

) ) 1
m+2k

.

An extremal is given by the function

(3.8) F (g) = γ(m, k)
[
(1 + |x(g)|2)2 + 16|y(g)|2)

]−(Q−2)/4
,

where

γ(m, k) =

[
4k π−(m+k)/2(m+2k) Γ(m+ k)

Γ((m+ k)/2)

](m+2(k−1))/2(m+2k)

.

Any other non-negative extremal is obtained from F by (3.2) and (3.3).

We remark that (3.8) is a solution to the Yamabe equation on any group of Heisenberg type [100], see also [143,
Proposition 2] for an equation related to the case of Iwasawa groups. It also should be noted that [139] and [121]
actually determine all critical points of the associated to (3.1) variational problem rather than only the functions with
lowest energy. In fact, [139] solves completely the Yamabe equation (3.6) on the Heisenberg group while [121]
achieves this on the seven dimensional quaternionic Heisenberg group (the higher dimensional cases are still open).
We report on the ideas behind these proofs in Sections 5.1 and 6.1.2 which involve ideas inspired by Theorem 2.6. In
the remaining cases of Iwasawa type groups the partial result in the next Theorem 3.2 supports the general agreement
that (3.8) gives all solutions.

Theorem 3.2 ([99]). All partially symmetric solutions of the Yamabe equation on a group of Iwasawa type are given
(3.8) up to dilation and translation.

For the definition of partially symmetric solution we refer to Section 3.4.

3.1. Groups of H-type and the Iwasawa groups. Let n be a 2-step nilpotent Lie algebra equipped with a scalar
product < ., . > for which n = V1 ⊕ V2-an orthogonal direct sum, V2 is the center of n. Consider the map J : V2 →
End(V1) defined by

(3.9) < J(ξ2)ξ′1, ξ
′′
1 > = < ξ2, [ξ

′
1, ξ
′′
1 ] >, for ξ2 ∈ V2 and ξ′1, ξ

′′
1 ∈ V1.

By definition we have that J(ξ2) is skew-symmetric. Adding the additional condition that it is actually an almost
complex structure on V1 when ξ2 is of unit length [142] motivates the next definitions. A 2-step nilpotent Lie algebra
n is said to be of Heisenberg type if for every ξ2 ∈ V2, with |ξ2| = 1, the map J(ξ2) : V1 → V1 is orthogonal. A
simply connected connected Lie group G is called of Heisenberg type (or H-type) if its Lie algebra n is of Heisenberg
type. We shall use the exponential coordinates and regard G = exp n, so that the product of two elements of N is

(3.10) (ξ1, ξ2) · (ξ′1, ξ′2) = (ξ1 + ξ′1, ξ2 + ξ′2 +
1

2
[ξ1, ξ

′
1]),

taking into account the Baker-Campbell-Hausdorff formula. Correspondingly we shall use Vi, i = 1, 2 to also denote
the sub-bundle of left invariant vector fields which coincides with the given Vi at the identity element. In [142]
Kaplan found the explicit form of the fundamental solution of the sub-Laplacian on every group of H-type, where the
sub-Laplacian is the operator

(3.11) 4 =

m∑
j=1

X2
j ,

for vector fields Xj , j = 1, . . . ,m which are an orthonormal basis of V1.
On a group N of Heisenberg type there is a very important homogeneous norm (gauge) given by

(3.12) N(g) =
(
|ξ1(g)|4 + 16|ξ2(g)|2

)1/4
,

which induces a left-invariant distance. Kaplan proved in [142] that in a group of Heisenberg type, in particular in
every Iwasawa group, the fundamental solution Γ of the sub-Laplacian L, see (3.11), is given by the formula

(3.13) Γ(g, h) = CQ N(h−1g)−(Q−2), g, h ∈ N, g 6= h,
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where CQ is a suitable constant.

Remark 3.3. It is known that the distance induced by the gauge (3.12) is the Gromov limit of a one parameter family
of Riemannian metrics on the group N [152], see also [23] and [43].

Kaplan and Putz [144], see also [[152], Proposition 1.1], observed that the nilpotent part N in the Iwasawa decom-
position G = NAK of every semisimple Lie group G of real rank one is of Heisenberg type. We shall refer to such a
group as Iwasawa group and call the corresponding Lie algebra Iwasawa algebra.

The Heisenberg type groups allowed for the generalization of many important concepts in harmonic analysis and
geometry, see [144], [145], [152], [74] and the references therein, in addition to the above cited papers. Another
milestone was achieved in [65], which allowed for avoiding the classification rank one symmetric spaces and the
heavy machinery of the semisimple Lie group theory, when studying the non-compact symmetric spaces of real rank
one. Specifically, in [65] the authors considered the H-type algebras satisfying the so called J2 condition defined in
[65], see also [66].

Definition 3.4. We say that the H-type algebra n satisfies the J2 condition if for every ξ2, ξ′2 ∈ V2 which are orthogonal
to each other, < ξ2, ξ

′
2 >= 0, there exists ξ′′2 ∈ V2 such that

(3.14) J(ξ2)J(ξ′2) = J(ξ′′2 ).

A noteworthy result here is the following Theorem of [65], see also [64], which can be used to show that if N is an
H-type group, then the Riemannian space S = NA is symmetric iff the Lie algebra n of N satisfies the J2 condition,
see [[65], Theorem 6.1].

Theorem 3.5. If n is an H-type algebra satisfying the J2-condition, then n is an Iwasawa type algebra.

This fundamental result has many consequences among them allowing a unified proof of some classical results on
symmetric spaces, in addition to some beautiful properties of extensions of the classical Cayley transform, inversion
and Kelvin transform, which are of a particular importance for our goals.

From a geometric point of view, the above Iwasawa groups can be seen as the nilpotent part in the Iwasawa de-
composition of the isometry group of the non-compact symmetric spaces M of real rank one. Such a space can be
expressed as a homogeneous space G/K where G is the identity component of the isometry group of M , i.e., one of
the simple Lorentz groups SOo(n, 1), SU(n, 1), Sp(n, 1) or F4(−20), andK is a maximal compact subgroup ofG, see
[114], namely, K = SO(n), SU(n), Sp(n)Sp(1), or Spin(9), respectively, see for example [227, Theorem 8.12.2]
or [114]. Thus M = Hn

K is one of the hyperbolic spaces over the real, complex, quaternion or Cayley (octonion) num-
bers, respectively. As well known, these spaces carry canonical Riemannian metrics with sectional curvature k = −1

for K = R and −1 < k < −1/4 in the remaining cases cases. Here, K denotes one of the real division algebras: the
real numbers R, the complex numbers C, the quaternions H, or the octonions O.

Writing G = NAK and letting S = NA, A-one-dimensional Abelian subalgebra, we have that S is a closed
subgroup of G, which is isometric with the hyperbolic space M , thus giving the corresponding hyperbolic space a
Lie group structure. The nilpotent part N is isometrically isomorphic to Rn in the degenerate case when the Iwasawa
group is Abelian or to one of the Heisenberg groups G (K) = Kn × ImK with the group law given by

(3.15) (qo, ωo) ◦ (q, ω) = (qo + q, ω + ωo + 2 Im qo q̄),

where q, qo ∈ Kn and ω, ωo ∈ ImK. In particular, in the non-Euclidean case the Lie algebra n of N has center of
dimension dimV2 = 1, 3, or 7.

Iwasawa groups are distinguished also by the properties of the sphere product S1(R1)×S2(R2), where, for j = 1, 2,
Sj(Rj) is the sphere of radius Rj in Vj-the two layers of the 2-step nilpotent Lie algebra. In fact, for a group of
Iwasawa type the Kostant double-transitivity theorem shows that the action of A(N) is transitive, where as before
A(N) stands for the orthogonal automorphisms of N , see [66, Proposition 6.1]. This fact points to the importance of
the bi-radial or cylindrically symmetric functions. Notice that both the fundamental solution of the sub-Laplacian and
the known solutions of the Yamabe equation have such symmetry, see (3.13) and (3.8).

Motivated by the way the Iwasawa type groups appear as ”boundaries” of the hyperbolic spaces, Damek [72]
introduced a generalization of the hyperbolic spaces as follows. For a group N of H-type consider a semidirect
product with a one dimensional Abelian group, i.e., take the multiplicative group A = R+ acting on an H-type group
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by dilations given in exponential coordinates by the formula δa(ξ1, ξ2) = (a1/2ξ1, aξ2) and define S = NA as the
corresponding semidirect product. Thus, the Lie algebra of S is s = V1 ⊕ V2 ⊕ a, n = V1 ⊕ V2, with the bracket
extending the one on n by adding the rules

(3.16) [ζ, ξ1] =
1

2
ξ1, [ζ, ξ2] = ξ2 ξi ∈ Vi,

where ζ is a unit vector in a, so that S is the connected simply connected Lie group with Lie algebra s. In the
coordinates (ξ1, ξ2, a) = exp(ξ1 + ξ2) exp(log aζ), a > 0, which parameterize S = exp s, the product rule of S is
given by the formula

(3.17) (ξ1, ξ2, a) · (ξ′1, ξ′2, a′) = (ξ1 + a1/2ξ′1, ξ2 + aξ′2 +
1

2
a1/2[ξ1, ξ

′
1], aa′),

for all (ξ1, ξ2, a), (ξ′1, ξ
′
2, a
′) ∈ n× R+. Notice that S is a solvable group. We equip the Lie algebra s with the inner

product

(3.18) < (ξ1, ξ2, a), (ξ̃1, ξ̃2, ã) >=< (ξ1, ξ2), (ξ̃1, ξ̃2) > +aã

using the fixed inner product on n and then define a corresponding translation invariant Riemannian metric on S. The
main result of [72] is that the group of isometries Isom(S) of S is as small as it can be and equals A(S) n S with S
acting by left translations, unless N is one of the Heisenberg groups (3.15), i.e., S is one of the classical hyperbolic
spaces. Here, A(S) denotes the group of automorphisms of S (or s) that preserve the left-invariant metric on S. The
spaces constructed in this manner became known as Damek-Ricci spaces, see [24] for more details. It was shown in
[73] that the just described solvable extension of H-type groups, which are not of Iwasawa type, provide noncompact
counter-examples to a conjecture of Lichnerowicz, which asserted that harmonic Riemannian spaces must be rank one
symmetric spaces.

3.2. The Cayley transform. In this section we focus on the Cayley transform, of which we shall make extensive use
later. Here, we give the well known abstract definition valid in the setting of groups of H-type. Other explicit formulas
will be given in the CR and QC cases in Sections 4.3 and 4.5.4. Starting from an H-type group, its solvable extension
S defined above has the following realizations, [74], [65] and [66].

First, consider the ”Siegel domain” or an upper-half plane model of the hyperbolic space

(3.19) D = {p = (ξ1, ξ2, a) ∈ s = V1 ⊕ V2 ⊕ a : a >
1

4
|ξ1|2}.

Consider the map Θ : S → S,

(3.20) Θ(ξ1, ξ2, a) = (ξ1, ξ2, a+
1

4
|ξ1|2),

which is injective map of S into itself. Here we use a to denote the element aζ ∈ A, ζ defined after (3.16), and
we regard D as a subset of S using the exponential coordinates. Thus, the group S acts simply transitively on D by
conjugating left multiplication in the group S by Θ, s · p = Θs · (Θ−1p) for s ∈ S and p ∈ D, while N acts simply
transitively on the level sets of h = a− 1

4 |ξ1|
2. In particular, we can define an invariant metric on D by pulling via Θ

the left-invariant metric (3.18) of S to D, thus making Θ an isometry, cf. [[66], (3.3)].
Second, there is the ”ball” model of S,

(3.21) B = {(ξ1, ξ2, a) ∈ s = V1 ⊕ V2 ⊕ a : |ξ1|2 + |ξ2|2 + a2 < 1},

equipped with the metric obtained from D via the inverse of the so called Cayley transform C : B → D defined by
C(ξ1, ξ2, a) = (ξ1

′, ξ2
′, a′), where

(3.22)
ξ′1 =

2

(1− a)2 + |ξ2|2
((1− a)ξ1 + J(ξ2)ξ1) ,

ξ′2 =
2

(1− a)2 + |ξ2|2
ξ2, a′ =

1− a2 − |ξ2|2

(1− a)2 + |ξ2|2
.
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The inverse map C−1 : D → B is given by C−1(ξ1
′, ξ2

′, a′) = (ξ1, ξ2, a), where

(3.23)

ξ1 =
2

(1 + a′)2 + |ξ2′|2
((1 + a′)ξ1

′ − J(ξ2
′)ξ1
′) ,

ξ2 =
2

(1 + a′)2 + |ξ2′|2
ξ2
′, a =

−1 + a′
2 − |ξ2′|2

(1 + a′)2 + |ξ2′|2
.

For other versions of the Cayley transform see [[83], Chapter X]. The Jacobian of C and its determinant were computed
in [74]. The latter is given by the formula detC′(ξ1, ξ2, a) = 2m+k+1

(
(1− a)2 + |ξ2|2

)−(m+2k+2)/2
, where, as

before, m = dimV1, k = dimV2.
It is very important and we shall make use of the fact that the Cayley transform can be extended by continuity to a

bijection (denoted by the same letter!)

(3.24) C : ∂B \ {(0, 0, 1)} → ∂D,

where (0, 0, 1) (referred to as ”ζ” for short) is the point on the sphere where ξ1 = ξ2 = 0 and the third component is
ζ in agreement with out notation set after equation (3.20). The boundaries of the ball and Siegel domain models are,
respectively,

(3.25) Σ ≡ ∂D = {p = (ξ′1, ξ
′
2, a
′) ∈ s = V1 ⊕ V2 ⊕ a : a′ =

1

4
|ξ′1|2}

and

(3.26) ∂B = {(ξ1, ξ2, a) ∈ s = V1 ⊕ V2 ⊕ a : |ξ1|2 + |ξ2|2 + a2 = 1},

The group of Heisenberg type N can be identified with Σ via the map

(3.27) (ξ′1, ξ
′
2) 7→ (ξ′1, ξ

′
2,

1

4
|ξ′1|2).

With this identification we obtain the form of the Cayley transform (stereographic projection) identifying the sphere
minus the point ”ζ” and the H-type group, C : ∂B \ {(0, 0, 1)} → N defined by C(ξ1, ξ2, a) = (ξ1

′, ξ2
′), where

(3.28)
ξ′1 =

2

(1− a)2 + |ξ2|2
((1− a)ξ1 + J(ξ2)ξ1) ,

ξ′2 =
2

(1− a)2 + |ξ2|2
ξ2.

Later, we shall make use of this ”boundary” Cayley transform in the case of the Heisenberg and quaternionic Heisen-
berg group in which place we shall give some other explicit formulas. In particular, we shall use that the Cayley
transform is a pseudoconformal map in the CR case and quaternionic contact conformal transformation in the QC
case. The Cayley transform is also a 1-quasiconformal map [14], see also [8]. The definition of the ”horizontal” space
in the tangent bundle of the sphere and the distance function on the sphere require a few more details for which we
refer to [66] and [14]. Multicontact maps and their rigidity in Carnot groups have been studied in [196], [198], [153],
[69], [70], [40], [76], [191], [192], [193].

3.3. Regularity of solutions to the Yamabe equation. In order for the geometric analysis to proceed we need the
next regularity result for the Euler-Lagrange equation associated to the problem of the optimal constant in (3.1).

Theorem 3.6. Let Ω be an open set in a Carnot group G. Suppose u ∈
o

D 1,p(Ω) is a weak solution to the equation

(3.29)
m∑
i=1

Xi(|Xu|p−2Xiu) = − V up−1 in Ω.

a) If u ≥ 0 and V ∈ Lt(Ω) for some t > Q
p , then u satisfies the Harnack inequality: for any Carnot-Carathédory

(or gauge) ball BR0
(g0) ⊂ Ω there exists a constant C0 > 0 such that

(3.30) esssup
BR

u ≤ C0 essinf
BR

u,

for any Carnot-Carathédory (or gauge) ball BR(g) such that B4R(g) ⊂ BR0
(g0).

b) If u ∈
o

D 1,p(Ω) is a weak solution to (3.29) and V ∈ Lt(Ω) ∩ LQ/p(Ω), then u ∈ Γα(Ω) for some 0 < α < 1.
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c) If u ∈
o

D 1,2(Ω) is a non-negative solution of the Yamabe equation on the domain Ω,

(3.31) 4u = −u2∗−1,

then either u > 0 and u ∈ C∞ (Ω) or u ≡ 0.

The Hölder regularity of weak solutions of equation (3.29) follows from a suitable adaptation of the classical De
Giorgi-Nash-Moser result. The higher regularity when p = 2 follows by an iteration argument based on sub-elliptic
regularity. A detailed proof of Theorem 3.6 can be found in [130, Theorem 1.6.9]. It is simply a combination of
the fundamental Harnack’s inequality of [42, Theorem 3.1] (valid for Hörmander type operators), the boundedness
of the weak solution [221, Theorem 4.1], the regularity of [42, Theorem 3.35], and the sub-elliptic regularity result
concerning Hörmander type operators acting on non-isotropic Sobolev or Lipschitz spaces of [90, 88], see also [89]
for a general overview and further details. Note that these results together with the idea of [90] to ”osculate” with the
Heisenberg group carry over to obtain C∞ regularity in the CR and QC settings, see [137, 138] and [225] for details.

3.4. Solution of the Yamabe type equation with partial symmetry. By Theorem 3.6 any weak solution of the
Yamabe equation is actually a smooth bounded function which is everywhere strictly positive, u > 0 and u ∈ C∞ (Ω).
The symmetries we are concerned are the following.

Definition 3.7. Let G be a Carnot group of step two with Lie algebra g = V1⊕V2. We say that a function U : G→ R
has partial symmetry (with respect to a point go ∈ G) if there exists a function u : [0,∞)×V2 → R such that for every
g = exp(x(g) + y(g)) ∈ G one has τgo U(g) = u(|x(g)|, y(g)). A function U is said to have cylindrical symmetry
(with respect to go ∈ G) if there exists φ : [0,∞) × [0,∞) → R for which τgo U(g) = φ(|x(g)|, |y(g)|), for every
g ∈ G.

The proof of Theorem 3.2 due to [99] consists of two steps, first one shows that any entire solution with partial
symmetry is cylindrically symmetric and then that all entire solutions with cylindrical symmetries.

The proof of the first result relies an adaption of the method of moving hyper-planes due to Alexandrov [4] and
Serrin [211]. The moving plane technique was developed further in the two celebrated papers [104], [105] by Gidas,
Ni and Nirenberg to obtain symmetry for semi-linear equations with critical growth in Rn or in a ball. In our proof we
incorporate some important simplification of the proof in [105] due to Chen and Li [54]. We mention that a crucial role
is played by the knowledge of the explicit solutions (3.8) and also by the inversion and the related Kelvin transform
introduced by Korányi for the Heisenberg group [151], and subsequently generalized to groups of Heisenberg type in
[68], [65], see also [100] for properties of the Kelvin transform.

The proof of the second main result has been strongly influenced by the approach of Jerison and Lee for the
Heisenberg group, see Theorem 7.8 in [138]. After a change in the dependent variable, which relates the Yamabe
equation to a new non-linear pde in a quadrant of the Poincaré half-plane, one is led to prove that the only positive
solutions of the latter are quadratic polynomials of a certain type.

Besides ideas from Jerison and Lee’s paper, the proof has some features of the method of the so-called P -functions
introduced by Weinberger in [222]. Given a solution u of a certain partial differential equation, such method is based
on the construction of a suitable non-linear function of u and grad u, a P -function, which is itself solution (or sub-
solution) to a related partial differential equation, and therefore satisfies a maximum principle. In fact, starting with

a cylindrical solution U of the Yamabe equation 3.6, the function φ = v−4/(Q−2) where v =
(
Q−2

4

)−(Q−2)/2

U

satisfies

(3.32) Lφ = (
Q− 2

4
+ 1)

|Xφ|2

φ
+
Q− 2

4
.

By the cylindrical symmetry assumption Φ is a function of the variables

(3.33) y =
|ξ1|2

4
, x = |xi2|,

which satisfies the equation

(3.34) ∆φ =
n+ 2

2

|∇φ|2

φ
− a

x
φx −

b

y
φy +

n

2y
,
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in Ω = {(x, y) ∈ R2 | x > 0, y > 0} with a = k − 1 ≥ 0, b = m
2 ≥ 1 and n = a + b ≥ 1. The case k = 1

corresponds to the Heisenberg group Hn, and it was considered earlier in [138]. A long calculation shows that with
h = xaybφ−(n+1),

F = 2 < ∇φ,∇φx > −2
n

2b
φxy − φx

|∇φ|2

φ
and G = −2 < ∇φ,∇φy > +2

n

2b
φyy + (φy − δ)

|∇φ|2

φ
,

the following identity holds true

(hF )x − (hG)y = h

{[
2 ||∇2φ||2 − (∆φ)2

]
+

n+ 2

n

(
∆φ− |∇φ|

2

φ

)2

+
2ab

n

(
φx
x
− (

φy
y
− n

2by
)

)2}
.

An integration over the first quadrant, noting that the integrals are finite as a consequence of the properties of the
Kelvin transform on a group of Iwasawa type, we obtain

(3.35) 2 ||∇2φ||2 = (∆φ)2, ∆φ− |∇φ|
2

φ
= 0,

φx
x

=
φy
y
− n

2by
.

We remark that the Kelvin transform allows us to find the asymptotic behavior of every solution of the Yamabe
equation, including all its derivatives. The behaviour at infinity of a finite energy solution can be found in more
general settings with the method of [159]. From the first two equations in (3.35) we conclude (see, e.g., [222] or also
[138]) that φ must be of form

(3.36) φ(x, y) = A2 (x2 + y2) + 2Aαx+ 2Bβy + α2 + β2

for some numbers A,B, α and β, with A2 = B2. On the other hand, the third equation in (3.35) implies that α = 0

and β = n
4bB . Recalling that x = |ξ2|, y = |ξ1|2/4 one easily concludes from the above that

(3.37) φ(|ξ1|, |ξ2|) =
A2

16

[
(
a+ b

bA2
+ |ξ1|2)2 + 16|ξ2|2

]
for some A 6= 0, hence

(3.38) φ(|ξ1|, |ξ2|) =
Q− 2

16mε2
[(ε2 + |ξ1|2)2 + 16|ξ2|2]

where ε2 = Q−2
mA . Finally, the relation between Φ and U , we obtain

U(g) = Cε ((ε2 + |x(g)|2)2 + 16|y(g)|2)−(Q−2)/4,

with Cε = [m(Q − 2)ε2](Q−2)/4. All other cylindrically symmetric solutions are obtained from this one by left-
translation, which completes the proof of Theorem 3.2.

We remark that (3.34) was used in [220], see also [179], to establish the sharp constant and the extremals in a L2

Hardy-Sobolev inequality involving distance to a lower dimensional subspace.

3.5. The best constant in the L2 Folland-Stein inequality on the quaternionic Heisenberg groups. In this section
we explain the ideas behind the proof of Theorem 3.1.

The proof relies on the realization made in [32] and used more recently in [92] that the ”center of mass” idea of
Szegö [213] and Hersch [115] can be used to find the sharp form of (logarithmic) Hardy-Littlewood-Sobolev type
inequalities on the Heisenberg group. This method does not give all solutions of the Yamabe equation on the Iwasawa
group, but is enough to determine the best constant.

The Cayley transform and the conformal nature of the problem are crucial for its solution. Another key is Theo-
rem 4.1 which will be used to see that the constants are the only minimizers on the sphere among all positive local
minimizers which viewed as densities place the center of mass of the sphere at the origin. We shall focus here on the
qc case [122] but the argument is valid in any of the groups of Iwasawa type using the just mentioned facts.

Let η̃, cf. (4.29), be the standard qc structure on the unit sphere S4n+3. Szegö and Hersch’s center of mass method
suggests the following lemma.

Lemma 3.8. For every v ∈ L1(S4n+3) with
∫
S4n+3 v V olη̃ = 1 there is a quaternionic contact conformal transfor-

mation ψ : (S4n+3, η̃)→ (S4n+3, η̃) such that ∫
S4n+3

ψ v V olη̃ = 0.
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Proof. Fix a point P ∈ S4n+3 on the quaternionic sphere and denote by N its antipodal point and consider the local
coordinate system near P defined by the Cayley transform CN fromN , see (4.5.4). We know that CN is a quaternionic
contact conformal transformation between S4n+3\N and the quaternionic Heisenberg group, cf. (4.31). Notice that in
this coordinate system P is mapped to the identity of the group. For every r, 0 < r < 1, let ψr,P be the qc conformal
transformation of the sphere, which in the fixed coordinate chart is given on the group by a dilation with center the
identity by a factor δr. If we select a coordinate system in R4n+4 = Hn × H so that P = (1, 0) and N = (−1, 0).
Applying the Cayley transform (4.5.4) to (q∗, p∗) = ψr,P (q, p) we have

q∗ = 2r
(
1 + r2(1 + p)−1(1− p)

)−1
(1 + p) q

p∗ =
(
1 + r2(1 + p)−1(1− p)

)−1 (
1− r2(1 + p)−1(1− p)

)
, i.e,

Consider the map Ψ : B → B̄, where B ( B̄ ) is the open (closed) unit ball in R4n+4, by the formula

Ψ(rP ) =

∫
S4n+3

ψ1−r,P v V olη̃.

Notice that Ψ can be continuously extended to B̄ since for any point P on the sphere, where r = 1, we have
ψ1−r,P (Q) → P when r → 1. In particular, Ψ = id on S4n+3. Since the sphere is not a homotopy retract of
the closed ball it follows that there are r and P ∈ S4n+3 such that Ψ(rP ) = 0, i.e.,

∫
S4n+3 ψ1−r,P v V olη̃ = 0. Thus,

ψ = ψ1−r,P has the required property. �

In the next step one proves that there is a minimizer of the Folland-Stein inequality which satisfies the zero center
of mass condition. A number of well known invariance properties of the Yamabe functional are exploited. For the rest
of the Section, given a qc form η and a function u we will denote by∇ηu the horizontal gradient of u.

We shall call a (positive) function u on the sphere a well centered function when viewing u2∗ as a density it places
the center of mass of the sphere at the origin, i.e.,

(3.39)
∫
S4n+3

P u2∗(P )V olη̃ = 0, P ∈ R4n+4 = Hn ×H.

For the next Lemma recall the functionals Eη̃ and Nη̃ introduced in (4.6).

Lemma 3.9. Let v be a smooth positive function on the sphere with Nη̃(u) = 1. There is a well centered smooth
positive function u such that Eη̃(u) = Eη̃(v) and Nη̃(u) = 1. In particular, the Yamabe constant (4.7) is achieved for
a positive function u which is well centered, i.e., for a function u satisfying (3.39).

Proof. Given a positive function v on the sphere
∫
S4n+3 v

2∗ V olη̃ = 1, consider the function

(3.40) u = φ−1(v ◦ ψ−1),

where ψ is the qc conformal map of Lemma 3.8, η ≡ (ψ−1)∗η̃, and φ is the corresponding conformal factor of ψ. The
claim of the Lemma follows directly from the conformal invariance (4.10). �

The next step shows that a well centered minimizer has to be constant.

Lemma 3.10. If u is a well centered local minimum of the problem (4.7) for M = (S4n+3, η̃), then u ≡ const.

Proof. Let ζ be a smooth function on the sphere S4n+3. Recalling (4.6), with the help of the divergence formula (4.4)
we obtain the formula

(3.41) E(ζu) =

∫
S4n+3

ζ2
(

4
Q+ 2

Q− 2
|∇η̃u|2 + S̃ u2

)
V olη̃ − 4

Q+ 2

Q− 2

∫
S4n+3

u2ζ 4̃ζ V olη̃.

At this point we let ζ be an eigenfunction corresponding to the first eigenvalue of the sub-Laplacian 4̃ associated to η̃,
4̃ζ = −λ1ζ. Remarkably, the first eigenspace of the standard sub-Laplacian is spanned by restrictions to the sphere
of the linear (coordinate functions) in R4n+4 = Hn ×H, see Theorem 4.1.

Computing the second variation δ2Υ(u)v = d2

dt2 Υ(u + tv)|t=0
of Υ(u) we see that the local minimum condition

δ2Υ(u)v ≥ 0 implies

E(v)− (2∗ − 1)E(u)

∫
S4n+3

u2∗−2v2 V olη̃ ≥ 0
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for any function v such that
∫
S4n+3 u

2∗−1v V olη̃ = 0. Therefore, for ζ being any of the coordinate functions in Hn×H
we have (taking v = ζu and recalling that u is well centered)

E(ζu)− (2∗ − 1)E(u)

∫
S4n+3

u2∗ζ2 V olη̃ ≥ 0,

which after a summation over all coordinate functions and a use of (3.41) gives

E(u)− (2∗ − 1)E(u) + 4λ1(2∗ − 1)

∫
S4n+3

u2 V olη̃ ≥ 0,

which implies, recall 2∗ − 1 = (Q+ 2)/(Q− 2),

0 ≤ 4(2∗ − 1) (2∗ − 2)

∫
S4n+3

|∇η̃u|2 V olη̃ ≤
(

4λ1(2∗ − 1)− (2∗ − 2) S̃
)∫

S4n+3

u2∗ V olη̃.

By Theorem a 4.1 we have actually equality λ1 = S̃/(Q+ 2), hence |∇η̃u| = 0, which completes the proof. �

After these preliminaries we turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. Let F be a minimizer (local minimum) of the Yamabe functional E on G (H) and f the corre-
sponding function on the sphere defined with the help of the Cayley transform by

(3.42) f = C∗(FΦ−1),

where Φ is a solution of the Yamabe equation on G (H) defined in (4.32). By the conformality of the qc structures on
the group and the sphere we have by (4.8) V olΘ = Φ2∗V olΘ̃, hence F 2∗V olΘ̃ = f2∗φ−2∗V olη̃ , where φ = C∗(Φ).
This, together with the Yamabe equation implies that the Yamabe integral is preserved

(3.43)
∫
G (H)

a|∇Θ̃F |2 V olΘ̃ =

∫
S4n+3

(
a|∇η̃f |2 + S̃f2

)
V olη̃,

where a = 4(Q + 2)/(Q − 2). By Lemma 3.9 and (3.40) the function f0 = φ−1(f ◦ ψ−1) will be well centered
minimizer (local minimum) of the Yamabe functional Υ on S4n+3. The latter claim uses also the fact that the map
v 7→ u of equation (3.40) is one-to-one and onto on the space of smooth positive functions on the sphere. Now, from
Lemma 3.10 we conclude that go = const. Looking back at the corresponding functions on the group we see that

F0 = γ
[
(1 + |q′|2)2 + |ω′|2

]−(Q−2)/4

for some γ = const. > 0. Furthermore, the proof of Lemma 3.8 shows that F0 is obtained from F by a translation
(3.2) and dilation (3.3).

Remark 3.11. We remark that the above argument shows that any local minimum of the Yamabe functional Υ on the
sphere (or the Iwasawa group) has to be a global one.

The Yamabe constant of the sphere is calculated immediately by taking a constant function in the Yamabe functional
and a use of (4.34).

The remaining part of the proof (the value of the best constant S2) is quite straightforward. Since it involves mainly
calculations depending on the chosen normalization of the contact form we refer to [130, Section 6.7] for the details.
This completes the proof of Theorem 3.1. �

Remark 3.12. One should keep in mind that the the standard basis (4.27) is not an orthonormal basis which turns the
group G (H) into a group of H-type, cf. also (4.16) and the paragraph above it. The two constants differ by a multiple
of 4−k in the general case of a group of Iwasawa type with center of dimension k. For more details on the relation
between the Haar measure and the volume form associated to the contact form, as well as the exact relation between
the best constants computed with respect to different bases see [130, p. 188–189].
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4. SUB-RIEMANNIAN GEOMETRY AS CONFORMAL INFINITIES

4.1. Riemannian case. Let (N,h) be a Riemannian manifold with boundary M = ∂N with defining function r > 0

on interior of N which vanishes of order one on M . Suppose that r2 · h extends continuously to M thus defining a
”conformal structure” on the boundary M . Fefferman & Graham [84] reversed the construction and used ”canonical
asymptotically hyperbolic (AH) filling” metrics to obtain conformal invariants. This is of interest also because of
the AdS/CFT correspondence in physics relating gravitational theories on N with conformal theories on M . More
specifically, if one can associate to a conformal class on M a canonical AH filling, then the Riemannian invariants for
the interior metric give conformal invariants of the boundary structure.

For a basic example, consider on the open unit ball B in Rn the hyperbolic metric

h =
4

ρ2
geuc, ρ = 1− |x|2.

The conformal infinity is the conformal class of geuc|∂B - the standard metric on the unit sphere. Graham & Lee [107]
gave the first general examples of AH Einstein metrics. The idea has been very useful especially due to its relation
with the AdS/CFT correspondence [178] in physics.

4.2. Conformal Infinities and Iwasawa Sub-Riemannian geometries. The main references here are [25, 26] where
the sub-Riemannian structures and geometries on the spheres at infinity of the hyperbolic spaces were used as model
spaces for a wide class of sub-Riemannian structures which we shall call Iwasawa Sub-Riemannian geometries. As a
motivation we start with a few examples based on the real, complex and quaternion hyperbolic cases which. An explicit
description of the octonian hyperbolic plane and the ball model can be found in [185] while [25] is the reference for
the corresponding conformal infinity.

On the open unit ball B in Cn+1 consider the Bergman metric

h =
4

ρ
geuc +

1

ρ2

(
(dρ)2 + (Idρ)2

)
, ρ = 1− |x|2.

Notice that as ρ→ 0 we have that ρ · h is finite only on H-the so called horizontal space, H = Ker (I dρ), which is
the kernel of the contact form θ = I dρ. The conformal infinity of ρ·h is the conformal class of a pseudohermitian CR
structure defined by H and θ. If we look for Kähler-Einstein deformations Cheng & Yau [59] showed that any smooth
(in fact C2) strictly pseudoconvex domain in Cn+1 admits a unique complete Kähler-Einstein metric of constant
holomorphic sectional curvature −1 which is asymptotic to the CR-structure of the boundary, see also [183] for an
extension to an arbitrary bounded domain of holomorphy.

In the quaternion case, consider the open unit ball B in Hn+1 consider the hyperbolic metric h = 4
ρgeuc +

1
ρ2

(
(dρ)2 + (I1dρ)2 + (I2dρ)2 + (I3dρ)2

)
. The conformal infinity is the conformal class of a quaternionic contact

structure. In fact, ρ·h defines a conformal class of degenerate metrics with kernel

H = ∩3
j=1Ker (Ij dρ).

Biquard showed that the infinite dimensional family [160] of complete quaternionic-Kähler deformations of the quater-
nion hyperbolic metric have conformal infinities which provide an infinite dimensional family of examples of qc struc-
tures. Conversely, according to [25] every real analytic qc structure on a manifold M of dimension at least eleven is
the conformal infinity of a unique quaternionic-Kähler metric defined in a neighborhood of M .

Finally, [25] considered CR and qc structures as boundaries of infinity of Einstein metrics rather than only as
boundaries at infinity of Kähler-Einstein and quaternionic-Kähler metrics, respectively. In fact, [25] showed that in
each of the three cases (complex, quaternionic, octoninoic) any small perturbation of the standard Carnot-Carathéodory
structure on the boundary is the conformal infinity of an essentially unique Einstein metric on the unit ball, which is
asymptotically symmetric. Various explicit examples of qc structures were constructed in [6].

In the above examples the geometry at the conformal infinity is asymptotic to the hyperbolic geometry of the cor-
responding symmetric space of noncompact type of real rank one G/K, see paragraphs after Theorem 3.5. The cor-
responding geometries at infinity are conformal metrics, CR structures, quaternionic-contact structures or octonionic
contact structures as we define below following [25, 26]. The symmetric case belongs to the parabolic geometries
modelled on G/P , where P is a minimal parabolic subgroup of G, see [38]. We mention another class of asymp-
totic geometries considered in [7] which are no longer asymptotic to a symmetric space, but the model at infinity is
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a homogeneous Einstein space, which may vary from point to point on the boundary at infinity. Such a construction
is motivated by Heber [113] who showed that every deformation of the solvable group S = NA carries a unique
homogeneous Einstein metric. Thus, deformations of the nilpotent Lie algebra n give a homogeneous Einstein metric
on the corresponding solvable group S.

Leaving the real case aside, we turn to the precise definition of the general (sub-Riemannian) geometric setting of
the above constructions. Let G be one of the groups U(n), Sp(n)Sp(1) or Spin(7), corresponding to the complex,
quaternionic or octonionic cases, respectively, recalling the homogeneous models of the corresponding boundary
spheres of the hyperbolic space, namely, S2n+1 = U(n + 1)/U(n), S4n+3 = Sp(n + 1)Sp(1)/Sp(n)Sp(1) or
S7 = Spin(9)/Spin(7). Let M be a manifold with a 1-form η with values in R,R3 or R7, respectively, whose kernel
H = Ker η - the so called horizontal distribution - is of co-dimension k = 1, 3 or 7, respectively. Following Biquard
[25], a Carnot-Carathéodory metric (positive definite symmetric two tensor) compatible with dη is defined to be a
metric g on H such that:

i) in the complex case, the restriction ω = 1
2dη|H is a symplectic form onH compatible with g, i.e., ω(·, ·) = g(I·, ·)

where I is an almost complex structure on H;
ii) in the quaternionic case, the three 2-forms ωi = 1

2dηi|H , i = 1, 2, 3, on H are the fundamental forms of a
quaternionic structure compatible with g, i.e., ωi(·, ·) = g(Ii·, ·) for almost complex structures Ii satisfying the
quaternionic commutation relations;

iii) in the octonionic case, the seven 2-forms ωi = 1
2dηi|H , i = 1, . . . , 7 onH provide a Spin(7) structure compatible

with g, i.e., ωi(·, ·) = g(Ii·, ·) for almost complex structures Ii satisfying the octonionic commutation relations.

We shall call the geometric structures above Iwasawa sub-Riemannian geometries since at every point the osculating
nilpotent group [90], [201] is isomorphic to the corresponding (non-degenerate) Iwasawa group. For simplicity, the
above definition of CR, qc and octonionic contact structures requires the existence of a global 1-form defining H . The
obstructions to global existence of such a form in the CR and qc cases are the first Stiefel-Whitney class and the first
Pontryagin class of M , respectively.

The complex case defines a strictly pseudoconvex almost CR manifold with a fixed pseudo-Hermitian structure,
which is a CR structure when the integrability condition [IX, IY ] − [X,Y ] ∈ H for X,Y ∈ H holds. In the
quaternionic and octonionic cases, a distribution H for which a Carnot-Carathéodory H-metric exists will be called
a quaternionic contact structure or an octonionic contact structure. The focus here will be mainly the CR and qc
cases. Note that the topological dimensions of these manifolds are 2n + 1 and 4n + 3, respectively. The so called
homogeneous dimension of M is Q = m+ 2k where m = dim H and k = codim H . We shall denote with V olη the
volume forms

V olη = η ∧ (dη)n and V olη = η1 ∧ η2 ∧ η3 ∧ Ωn,

in the CR (n = m/2) and qc (n = m/4) case respectively, where Ω = ω1∧ω1 +ω2∧ω2 +ω3∧ω3 is the fundamental
4-form. There is a Riemannian metric on M obtained by extending in a natural way the horizontal metric g to a true
Riemannian metric, denoted by h, explicitly given by

(4.1) h = g +

k∑
i=1

(ηi)
2.

The Riemannian volume form is up to a constant multiple the just defined volume form V olη .
For each of the considered geometries there is a canonically defined connection ∇ = ∇η with torsion T . In the

integrable CR case this is the Tanaka-Webster connection, see [215]and [223]. In the qc and octonionic cases this is
the Biquard connection, see [25, 26] and [78]. The curvature tensor of the corresponding canonical connection∇ and
the associated (0,4) tensor, which is denoted with the same letter, are

(4.2) R(A,B)C = [∇A,∇B ]C −∇[A,B]C, R(A,B,C,D)
def
= h(R(A,B)C,D).

Let {e1, . . . , em}, m = dimH , be a local orthonormal basis of the horizontal space H , g(ea, eb) = δab. The Ricci
type and scalar curvature tensors are obtained by taking horizontal traces

(4.3) Ric(A,B) =

m∑
b=1

R(eb, A,B, eb), S =

m∑
a,b=1

R(eb, ea, ea, eb), A,B ∈ T (M),
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which manifests the sub-Riemannian nature of these tensors. In the qc case these tensors are called qc-Ricci tensor
and qc-scalar curvature tensor of the Biquard connection.

The (horizontal) divergence of a horizontal vector field/one-form σ ∈ Λ1 (H) defined by ∇∗ σ = trg∇σ =

∇σ(ea, ea) supplies the ”integration by parts” over compact M formula, [215], [120], see also [225],

(4.4)
∫
M

(∇∗σ)V olη = 0.

4.2.1. The first eigenvalue on the sphere.

Theorem 4.1. The eigenspaces of the first eigenvalue of the sub-Laplacian of the canonical Iwasawa sub-Riemannian
structures on the spheres at infinity of the hyperbolic spaces are the restrictions of all real-linear functions in the
corresponding Eucliden space to the sphere.

The exact value of the eigenvalue depends on the normalization of the ”standard” form η, which will be made
explicit later. Of course, in the real case the eigenspace is the space of spherical harmonics of order one. Various
proofs of Theorem 4.1 are possible. The simplest proof is a direct computation based on the explicit definition of
the corresponding sub-Laplacians, see [92, 32] for the complex case, [122, Lemma 2.3] for the quaternion, and [62]
for the octonian cases. Alternatively, one can relate the sub-Laplacian to the corrsponding Laplace-Beltrami operator
on the sphere, see (7.17) and (8.1) for the complex and quaternion case. Finally, the result follows from an abstract
approach as in [8] where the corresponding ”spherical harmonics” are studied.

4.2.2. The Yamabe problem on Iwasawa sub-Riemannian manifolds.

Definition 4.2. The ”conformal” class of [η] consists of all 1-forms η̄ = φ4/(Q−2)Ψη for a smooth positive function
φ and Ψ ∈ SO(k) with smooth functions as entries.

In the CR case Ψ ≡ 1, while in the QC case Ψ is an SO(3) matrix with entries smooth functions. We note that
the canonical connection is independent of Ψ, but depends on φ, which brings us to the Yamabe type problems. The
Yamabe functional is

(4.5) Υ[η](φ) =

(∫
M

(
cn|∇φ|2 + S φ2

)
V olη

)/(∫
M

φ2∗ V olη

)2/2∗

,

where cn is a constant, 2∗ = 2Q/(Q − 2), ∇ = ∇η is the connection of η, S is the scalar curvature (4.3) of (M, η)

and |∇φ| =
(∑m

a=1(dφ(ea))2
)1/2

is the length of the horizontal gradient. In the QC case cn = 4n+2
n+1 while in the CR

case cn = 4(n+1)
n . It will be useful to introduce the functionals

(4.6) Eη(φ)
def
=

∫
M

(
cn |∇ηφ|2 + S φ2

)
V olη, Nη(φ) =

(∫
M

φ2∗ V olη

)2/2∗

,

hence the Yamabe functional can be written as Υ(φ)=E(φ)/N(φ) (dropping the subscript η when there is no confu-
sion). The Yamabe constant is

(4.7) Υ(M, [η]) = inf{Υ[η](φ) : φ ∈ C∞(M)} = inf{Eη(φ) : Nη(φ) = 1, φ ∈ C∞(M)}.

In the above notation we tacitly introduced [η] as a subscript. The reason for this notation is that the Yamabe functional
is conformally invariant, which follows from the formulas relating the (sub-Riemannian) scalar curvatures of the
associated to η and η̄ connections, see below, together with the formula for the change of the volume form,

(4.8) V olη = φ2∗ V olη̃.

Finding the Yamabe constant in the case of the standard Iwasawa sub-Riemannian structures on the unit spheres is
equivalent to the problem of determining the best constant in the L2 Folland & Stein [90] Sobolev type embedding
inequality on the corresponding Heisenberg group. As noted earlier the best constant in the L2 Folland & Stein
inequality together with the minimizers were determined recently in [92, 122, 62] by the method of Frank & Lieb [92],
see also [32]. Nevertheless this simpler approach does not yield the conjectured uniqueness (up to an automorphism)
in the case of the spheres.

Finding the Yamabe constant is closely related to the Yamabe problem which seeks all Iwasawa sub-Riemannian
structures of constant scalar curvature conformal to a given structure η. In fact, taking the conformal factor in the form
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η̄ = φ4/(Q−2)η as we did above, a calculation (done separately for each of the cases) gives the following Yamabe
equation,

(4.9) Lφ
def
= cn 4φ− S φ = − S φ2∗−1,

where4 is the horizontal sub-Laplacian, 4φ = trgH (∇du), S and S are the scalar curvatures corresponding to the
associated to η and η̄ canonical connections.

A natural question is to find all solutions of the Yamabe equation (4.9). As usual the two fundamental problems are
related by noting that on a compact manifoldM with a fixed conformal class [η] the Yamabe equation characterizes the
non-negative extremals of the Yamabe functional. The operator Lφ in (4.9) is the so called conformal sub-Laplacian.
Using the divergence formula (4.4) we can write equation (4.9) in the form

(4.10) φ−1v L̄(φ−1v) V olη̄ = vL(v) V olη,

for any v ∈ C∞(M), which makes explicit the conformal invariance. Here L̄ denotes the conformal sub-Laplacian
associated to the canonical connection∇ of η̄.

4.3. CR Manifolds. A CR manifold is a smooth manifold M of real dimension 2n+1, with a fixed n-dimensional
complex sub-bundle H of the complexified tangent bundle CTM satisfying H ∩ H = 0 and [H,H] ⊂ H. If we
let H = ReH ⊕H, the real sub-bundle H is equipped with a formally integrable almost complex structure J . We
assume that M is oriented and there exists a globally defined compatible contact form η such that the horizontal
space is given by H = Ker η. In other words, the hermitian bilinear form g(X,Y ) = 1/2 dη(JX, Y ) is non-
degenerate. The CR structure is called strictly pseudoconvex if g is a positive definite tensor on H . For brevity we
shall frequently use the term CR manifold to refer to a strictly pseudoconvex pseudohermitian manifold. In other
words, unless specified otherwise a CR manifold will be an integrable strictly pseudoconvex CR manifold with a fixed
pseudohermitian stricture.

The almost complex structure J is formally integrable in the sense that ([JX, Y ]+[X, JY ]) ∈ H and the Nijenhuis
tensor vanishes NJ(X,Y ) = [JX, JY ]− [X,Y ]−J [JX, Y ]−J [X, JY ] = 0. A CR manifold (M,η, g) with a fixed

compatible contact form θ is called a pseudohermitian manifold. In this case the 2-form dη|H
def
= 2ω is called the

fundamental form. The contact form whose kernel is the horizontal space H is determined up to a conformal factor,
i.e., θ̄ = νθ for a positive smooth function ν, defines another pseudohermitian structure called pseudo-conformal to
the original one.

A Riemannian metric is defined in the usual way, written with a slight imprecision as h = g + η2. The vector field
ξ dual to η with respect to g satisfying ξydη = 0 is called the Reeb vector field.

4.3.1. Invariant decompositions. As usual any endomorphism Ψ ofH can be decomposed with respect to the complex
structure J uniquely into its U(n)-invariant (2, 0) + (0, 2) and (1, 1) parts. In short we will denote these components
correspondingly by Ψ[−1] and Ψ[1]. Furthermore, we shall use the same notation for the corresponding two tensor,
Ψ(X,Y ) = g(ΨX,Y ). Explicitly, Ψ = Ψ = Ψ[1] + Ψ[−1], where

(4.11) Ψ[1](X,Y ) =
1

2
[Ψ(X,Y ) + Ψ(JX, JY )] , Ψ[−1](X,Y ) =

1

2
[Ψ(X,Y )−Ψ(JX, JY )] .

The above notation is justified by the fact that the (2, 0) + (0, 2) and (1, 1) components are the projections on the

eigenspaces of the operator Υ = J ⊗ J, (ΥΨ)(X,Y )
def
= Ψ(JX, JY ) corresponding, respectively, to the eigenval-

ues−1 and 1. Note that both the metric g and the 2-form ω belong to the [1]-component, since g(X,Y ) = g(JX, JY )

and ω(X,Y ) = ω(JX, JY ). Furthermore, the two components are orthogonal to each other with respect to g.
The Tanaka-Webster connection [215, 223, 222] is the unique linear connection ∇ with torsion T preserving a

given pseudohermitian structure, i.e., it has the properties that the almost complex structure J and the contact form are
parallel,∇ξ = ∇J = ∇η = ∇g = 0, and the torsion tensor is of pure type, i.e., for X, Y ∈ H we have

T (X,Y ) = dη(X,Y )ξ = 2ω(X,Y )ξ,

T (ξ,X) ∈ H, g(T (ξ,X), Y ) = g(T (ξ, Y ), X) = −g(T (ξ, JX), JY ).(4.12)

The (Webster) torsion A of the pseudohermitian manifold is the symmetric tensor A
def
= T (ξ, .) : H → H . Clearly,

equation (4.12) shows that A ∈ Ψ[−1]. It is also well known [215] that A is the obstruction for a pseudohermitian
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manifold to be Sasakian. We recall that a contact manifold (M,η) is Sasakian if its Riemannian cone C = M × R+

with metric t2h+ dt2 is Kähler (see e.g. [27, 31]).

4.3.2. Curvature tensors of the Tanaka-Webster connection. The curvature tensors are defined in a standard fashion
using (4.2) and (4.3), noting again that traces are taken only on the horizontal space. The Ricci 2-form is defined by
ρ(A,B) = 1

2 R(A,B, ea, Jea).The horizontal part of the Ricci 2-form is (1,1)-form with respect to J and the first
Bianchi identity implies

(4.13) ρ(X,JY ) =
1

2
R(ea, Jea, X, JY ).

The tensor ρ(X, JY ) ∈ Ψ[1] is a symmetric tensor and is frequently also called the Webster Ricci tensor. The CR
Ricci tensor has the following type decomposition in J invariant and skew-invariant forms [215], [223], see also [77]
and [130, Chapter 7]

(4.14) Ric(X,Y ) = ρ(JX, Y ) + 2(n− 1)A(JX, Y ).

It is well known that a pseudohermitian manifold with a flat Tanaka-Webster connection is locally isomorphic to the
(complex) Heisenberg group. For n > 1 the vanishing of the horizontal part of the Tanaka-Webster connection implies
the vanishing of the whole curvature. If n = 1, in addition to the vanishing of the horizontal part of the curvature one
needs also the vanishing of the pseudohermitian torsion to have zero curvature.

4.3.3. The Heisenberg group. Given the ubiquitous role of the Heisenberg group G (C) ≡ Cn × R in analysis and
being the flat model of the considered CR geometries since the Tanaka-Webster connection coincides with the invariant
flat connection on the group. We shall write explicitly a number of formulas in this special setting, which also will be
made explicit in Section 4.5 for quaternionic contact structures in which case the quaternionic Heisenberg group will
play the role of the flat model space. The group G (C) arises as the nilpotent part in the Iwasawa decomposition of the
complex hyperbolic space. Thus, G (C) is a Lie group whose underlying manifold is Cn × R with group law given
by (3.15) where for z, z′ ∈ Cn we let z · z′ =

∑n
j=1 zjz

′
j . A (real) basis for the Lie algebra of left-invariant vector

fields on G (C) is given by

(4.15) Xj =
∂

∂xj
+ 2yj

∂

∂t
, Xn+j ≡ Yj =

∂

∂yj
− 2xj

∂

∂t
, ξ = 2

∂

∂t
, j = 1, ..., n,

with corresponding contact form

Θ̃ =
1

2
dt+

n∑
j=1

(xjdyj − yjdxj) =
1

2
dt+

n∑
j=1

=(z̄jdzj)

Here, we have identified z = x + iy ∈ Cn, with the real vector (x, y) ∈ R2n. Since [Xj , Yk] = −4δjk
∂
∂t , the Lie

algebra is generated by the system X = {X1, ..., X2n}. The sub-Laplacian is L =
∑2n
j=1X

2
j which is the real part

of the Kohn complex Laplacian. In this case the exponential map is the identity and, as for any group of step two, we
have the the parabolic dilations δλ(z, t) = (λz, λ2t). The corresponding homogeneous dimension is Q = 2n+ 2.

In regards to the theory of groups of Heisenberg type, cf. Section 3, some care has to be taken when defining the
scalar product which turns G (C) into a group of Heisenberg type. For example, the standard inner product of Cn×R,
i.e., the inner product in which the basis of left invariant vector fields given in (4.15) is an orthonormal basis will not
make the Heisenberg group G (C) a group of Heisenberg type. An orthonormal basis of an H-type compatible metric
is given by, j = 1, ..., n,

(4.16) Xj =
∂

∂xj
+ 2yj

∂

∂t
, Xn+j ≡ Yj =

∂

∂yj
− 2xj

∂

∂t
, T =

1

4

∂

∂t

and homogeneous gauge (3.12) given by N(z, t) = (|z|4 + 16t2)1/4, |z| =
(∑n

j=1(x2
j + y2

j )
)1/2

.
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4.4. The CR sphere and the Cayley transform. The simplest CR manifolds are the three hyperquadrics in complex
space, [60]

Q+ : r = |z1|2 + · · ·+ |zn|2 + |w|2 = 1, Q− : r = |z1|2 + · · ·+ |zn|2 − |w|2 = −1(4.17)

Q0 : r = |z1|2 + · · ·+ |zn|2 −=(w) = 0,(4.18)

where (z1, z2, . . . zn, w) ∈ Cn×C with corresponding contact forms η̃
def
= η+, η− and Θ̃=η0 equal to−i∂r which de-

fine strictly pseudoconvex pseudohermitian structures. Of course, these are the ”standard” (up to a multiplicative factor
depending on the reference) pseudohermitian structures on the sphere S2n+1, hyperboloid, and Heisenberg group Hn,
the latter identified with the boundary of the Siegel domain via the map (z, t) 7→ (z, t + i|z|2). A transformation
mapping Q− onto Q+ minus a curve is given by w = 1/w′ and zj = z′j/w

′. On the other hand, the transformation

C(Z,W ) =
( iZ

1−W
, i

1 +W

1−W

)
, with inverse C−1(z, w) =

( 2z

i+ w
,
w − i
w + i

)
,

maps the sphere S2n+1 \ (0, 0, ..., 0, 1) onto Hn. The map C is the Cayley transform (with a pole at (0, 0, ..., 0, 1)).
These transformations clearly preserve the CR structure since they are restrictions of holomorphic maps, but do not
preserve the contact forms and are in fact pseudoconformal pseudohermitian maps

Θ̃ =
1

2
dw − iz̄ · dz =

1

|1−W |2
η̃, η̃ = −i

(
WdW + Z̄ · dZ

)
.

4.4.1. CR conformal flatness. A fundamental fact characterizing CR conformal flatness is the Cartan-Chern-Moser
theorem [44, 60, 222]. A proof based on the classical approach used by H. Weyl in Riemannian geometry (see e.g.
[79]) can be found in [130], see also [133].

Theorem 4.3. [[44, 60, 222]] Let (M, θ, g) be a 2n+1-dimensional non-degenerate pseudo-hermitian manifold. If
n > 1 then (M,η, g) is locally pseudoconformaly equivalent to a hyperquadric in Cn+1 if and only if the Chern-
Moser tensor vanishes, S = 0, [60, 222]. In the case n = 1, (M,η, g) is locally pseudoconformaly equivalent to a
hyperquadric in C2 if and only the tensor F car given below vanishes, F car = 0, [44].

Here, the Chern-Moser tensor S is a pseudoconformaly invariant tensor, i.e., if φ is a smooth positive function and
η̃ = φη, then Sη̄ = φSη . The Chern-Moser tensor S [60] is determined completely by the (1,1)-part of the curvature
and the Ricci 2-form,

(4.19) S(X,Y, Z, V ) =
1

2

[
R(X,Y, Z, V ) +R(JX, JY, Z, V )

]
− S

4(n+ 1)(n+ 2)

[
g(X,Z)g(Y, V )−g(Y, Z)g(X,V )+Ω(X,Z)Ω(Y, V )−Ω(Y, Z)Ω(X,V )+2Ω(X,Y )Ωs(Z, V )

]
− 1

2(n+ 2)

[
g(X,Z)ρ(Y, JV )− g(Y,Z)ρ(X, JV ) + g(Y, V )ρ(X, JZ)− g(X,V )ρ(Y, JZ)

]
− 1

2(n+ 2)

[
Ω(X,Z)ρ(Y, V )− Ω(Y,Z)ρ(X,V ) + Ω(Y, V )ρ(X,Z)− Ω(X,V )ρ(Y,Z)

]
− 1

n+ 2

[
Ω(X,Y )ρ(Z, V ) + Ω(Z, V )ρ(X,Y )

]
.

For n = 1 the tensor S vanishes identically and the Cartan condition can be expressed by the vanishing of the the
Cartan tensor [−1] type tensor F car defined on H by ([133, 130]

(4.20) F car(X,Y ) = ∇2S(X, JY ) +∇2S(Y, JX) + 16(∇2
XeaA)(Y, ea) + 16(∇2

Y eaA)(X, ea) + 36SA(X,Y )

+ 48(∇2
eaJeaA)(X, JY ) + 3g(X,Y )∇2S(ea, Jea).

4.5. Quaternionic Contact Structures. Following Biquard [25, 26], a 4n+3 dimensional manifold M4n+3 is quater-
nionic contact (qc) if we have:

i) a co-dimension three distribution H , which locally is the intersction of the kernels of three 1-forms on M , H =⋂3
s=1Ker ηs, ηs ∈ Γ(M : T ∗M);
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ii) a 2-sphere bundle Q of ”almost complex structures” locally generated by Is : H → H, I2
s = −1, satisfying

I1I2 = −I2I1 = I3;
iii) a ”metric” tensor g on H , such that, g(IsX, IsY ) = g(X,Y ), and 2g(IsX,Y ) = dηs(X,Y ), for all X,Y ∈ H .
We let ωs(X,Y ) = g(IsX,Y ) be the associated 2-forms. The ”canonical” Biquard connection is the unique linear
connection defined by the following theorem [25].

Theorem 4.4 ( [25]). If (M,η) is a qc manifold and n > 1, then there exists a unique complementary to H subbundle
V , TM = H ⊕ V and a linear connection∇ with the properties that V , H , g and the 2-sphere bundle Q are parallel
and the torsion T of ∇ satisfies: a) for X,Y ∈ H, T (X,Y ) = −[X,Y ]|V ∈ V ; b) for ξ ∈ V, X ∈ H ,
Tξ(X) ≡ T (ξ,X) ∈ H and Tξ ∈ (sp(n) + sp(1))⊥.

Biquard also showed that the ”vertical” space V is generated by the Reeb vector fields {ξ1, ξ2, ξ3} determined by
ηs(ξk) = δsk, (ξsydηs)|H = 0, (ξsydηk)|H = −(ξkydηs)|H . If the dimension of M is seven, n = 1, the Reeb
vector fields might not exist. D. Duchemin [78] showed that if we assume their existence, then there is a connection
as before. Henceforth, by a qc structure in dimension 7 we mean a qc structure satisfying the Reeb conditions.

Note that the extended Riemannian metric h given by (4.1) as well as the Biquard connection do not depend on the
action of SO(3) on V , but both change if η is multiplied by a conformal factor.

4.5.1. Invariant decompositions. As usual any endomorphism Ψ of H can be decomposed with respect to the hy-
percomplex complex structure Is, s = 1, 2, 3 uniquely into its two Sp(n)Sp(1)-invariant parts. In short we will
denote these components correspondingly by Ψ[−1] and Ψ[3]. Furthermore, we shall use the same notation for the
corresponding two tensor, Ψ(X,Y ) = g(ΨX,Y ). Explicitly, Ψ = Ψ = Ψ[3] + Ψ[−1], where

(4.21)
Ψ[3](X,Y ) =

1

4
[Ψ(X,Y ) + Ψ(I1X, I1Y ) + Ψ(I2X, I2Y ) + Ψ(I3X, I3Y )] ,

Ψ[−1](X,Y ) =
1

4
[3Ψ(X,Y )−Ψ(I1X, I1Y )−Ψ(I2X, I2Y )−Ψ(I3X, I3Y )] .

The above notation is justified by the fact that the [3] and [−1] components are the projections on the eigenspaces of

the operator Υ = I1 ⊗ I1 + I2 ⊗ I2 + I3 ⊗ I3, (ΥΨ)(X,Y )
def
= Ψ(I1X, I1Y ) + Ψ(I2X, I2Y ) + Ψ(I3X, I3Y )

corresponding, respectively, to the eigenvalues 3 and −1. Note that the metric g belong to the [3]-component, while
and the 2-forms ωs, s = 1, 2, 3 belong to the [-1]-component since. Furthermore, the two components are orthogonal
to each other with respect to g. For n = 1 the [3]-component is 1-dimensional, Ψ[3] = trΨ

4 g.

4.5.2. Curvature of a Quaternionic Contact Structure. The curvature tensors are defined in a standard fashion using
(4.2) and (4.3). In addition we define the qc Ricci 2-forms

(4.22) ρs(A,B) =
1

4n
R(A,B, ea, Isea), s = 1, 2, 3.

Biquard [25] showed that the map Tξj = T 0
ξj

+ IjU , where T 0
ξj

is symmetric while IjU is a skew-symmetric
map and U ∈ Ψ[3], IsU = UIs, s = 1, 2, 3. Further properties were found in [120]. A remarkable fact, [120,
Theorem 3.12], is that (unlike the CR case!) the torsion endomorphism determines the (horizontal) qc-Ricci tensor

and the (horizontal) qc-Ricci forms of the Biquard connection. For this we also need the torsion type tensor T 0 def
=

T 0
ξ1
I1 + T 0

ξ2
I2 + T 0

ξ3
I3 ∈ Ψ[−1] introduced in [120].

Theorem 4.5 ([120]). On a QC manifold (M,η) we have

(4.23)
Ric(X,Y ) = (2n+ 2)T 0(X,Y ) + (4n+ 10)U(X,Y ) +

S

4n
g(X,Y )

ρs(X, IsY ) = −1

2

[
T 0(X,Y ) + T 0(IsX, IsY )

]
− 2U(X,Y )− 8n(n+ 2)Sg(X,Y ).

We say that M is a qc-Einstein manifold if the horizontal Ricci tensor is proportional to the horizontal metric g,

(4.24) Ric(X,Y ) =
S

4n
g(X,Y )

which taking into account (4.23) is equivalent to T 0 = U = 0. Furthermore, by [120, Theorem 4.9] and [123, Theorem
1.1] any qc-Einstein structure has constant qc-scalar curvature. It should be mentioned that qc-Einstein structures have
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proved useful in the construction of metrics with special holonomy [6] and heterotic string theory, see Section 9 for
some details on the latter. Such applications are possible due to the following properties/ characterization of the qc-
Einstein structures, see [130, Theorem 1.3] and [132, Theorem 4.4.4] for S 6= 0 and [123, Theorem 5.1] for S = 0

cases.

Theorem 4.6. Let M be a qc manifold. The following conditions are equivalent:

a) M is a qc-Einstein manifold;
b) locally, the given qc-structure is defined by 1-form (η1, η2, η3) such that for some constant S we have

(4.25) dηi = 2ωi +
S

8n(n+ 2)
ηj ∧ ηk;

c) locally, the given qc-structure is defined by 1-form (η1, η2, η3) such that the corresponding connection 1-forms
vanish on H , in fact, ∇Ii = −αj ⊗ Ik + αk ⊗ Ij , ∇ξi = −αj ⊗ ξk + αk ⊗ ξj with αs = − S

8n(n+2)ηs.

In particular, in the positive scalar curvature case the qc-Einstein manifold are exactly the locally 3-Sasakian man-
ifolds, i.e, for every p ∈ M there exist an open neighborhood U of p and a matrix Ψ ∈ C∞(U : SO(3)), s.t., Ψ · η
is 3-Sasakian. A (4n + 3)-dimensional (pseudo) Riemannian manifold (M, g) is 3-Sasakian if the cone metric is a
(pseudo) hyper-Kähler metric [30, 31]. We note explicitly that in some questions it is useful to define 3-Sasakian
manifolds in the wider sense of positive (the usual terminology) or negative 3-Sasakian structures, cf. [130, Section
2] and [132, Section 4.4.1] where the ”negative” 3-Sasakian term was adopted in the case when the Riemannian cone
is hyper-Kähler of signature (4n, 4). As well known, a positive 3-Sasakian manifold is Einstein with a positive Rie-
mannian scalar curvature [146] and, if complete, it is compact with finite fundamental group due to Myers theorem.
The negative 3-Sasakian structures are Einstein with respect to the corresponding pseudo-Riemannian metric of sig-
nature (4n, 3) [146, 217]. In this case, by a simple change of signature, we obtain a positive definite nS metric on M ,
[217, 136, 149].

4.5.3. The quaternionic Heisenberg Group G (H). The basic example of a qc manifold is provided by the quater-
nionic Heisenberg group G (H) on which we introduce coordinates by regarding G (H) = Hn × ImH, (q, ω) ∈
G (H) so that the multiplication takes the form (3.15).

The ”standard” qc contact form in quaternion variables is Θ̃ = (Θ̃1, Θ̃2, Θ̃3) = 1
2 (dω− q · dq̄+ dq · q̄) or, using

real coordinates,

Θ̃1 =
1

2
dx− xαdtα + tαdxα − zαdyα + yαdzα, Θ̃2 =

1

2
dy − yαdtα + zαdxα + tαdyα − xαdzα,

Θ̃2 =
1

2
dz − zαdtα − yαdxα + xαdyα + tαdzα.(4.26)

The left-invariant horizontal vector fields are

(4.27)
Tα =

∂

∂tα
+ 2xα

∂

∂x
+ 2yα

∂

∂y
+ 2zα

∂

∂z
, Xα =

∂

∂xα
− 2tα

∂

∂x
− 2zα

∂

∂y
+ 2yα

∂

∂z
,

Yα =
∂

∂yα
+ 2zα

∂

∂x
− 2tα

∂

∂y
− 2xα

∂

∂z
, Zα =

∂

∂zα
− 2yα

∂

∂x
+ 2xα

∂

∂y
− 2tα

∂

∂z
,

with corresponding sub-Laplacian

(4.28) 4Θ̃u =

n∑
α=1

(
T 2
αu+X2

αu+ Y 2
αu+ Z2

αu
)
.

The (left-invariant vertical) Reeb fields ξ1, ξ2, ξ3 are ξ1 = 2 ∂
∂x , ξ2 = 2 ∂

∂y , ξ3 = 2 ∂
∂z .On G (H), the left-invariant

flat connection is the Biquard connection, hence G (H) is a flat qc structure. It should be noted that the latter property
characterizes (locally) the qc structure Θ̃ by [120, Proposition 4.11], but in fact vanishing of the curvature on the
horizpntal space is enogh [129, Propositon 3.2]. Thus, by [129, Propositon 3.2], a quaternionic contact manifold
is locally isomorphic to the quaternionic Heisenberg group exactly when the curvature of the Biquard connection
restricted to H vanishes, R|H = 0.
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4.5.4. Standard qc-structure on 3-Sasakain sphere and the qc Cayley transform. The second example is the Standard
qc-structure on the 3-Sasakain sphere. The ”standard” qc 3-form on the sphere S4n+3 = {|q|2 + |p|2 = 1} ⊂ Hn×H,
is

(4.29) η̃ = dq · q̄ + dp · p̄ − q · dq̄ − p · dp̄.

We identify G (H) with the boundary Σ of a Siegel domain in Hn ×H, Σ = {(q′, p′) ∈ Hn ×H : Re p′ = |q′|2},
by using the map (q′, ω′) 7→ (q′, |q′|2 − ω′). The Cayley transform, C : S \ {pt.} → Σ, is

(q′, p′) = C
(

(q, p)
)

= ((1 + p)−1 q, (1 + p)−1 (1− p)).

By [120, Section 8.3] we have on G (H)

(4.30) Θ
def
= λ · (C−1)∗ η̃ · λ̄ =

8

|1 + p′ |2
Θ̃.

where λ = |1 + p | (1 + p)−1 is a unit quaternion. Alternatively, on the sphere this can be written as

(4.31) η
def
= C∗ Θ̃ =

1

2 |1 + p |2
λ η̃ λ̄,

where λ is a unit quaternion. In any case, the above formulas show the Cayley transforms is a conformal quaternionic
contact map. In addition, we can use it to determine the qc scalar curvature of the sphere (S4n+3, η̃) and find a solution
of the Yamabe equation on G (H). For (q′, p′) ∈ Σ ⊂ Hn ×H, p′ = |q′|2 + ω′, consider the function

(4.32)
h =

1

16
|1 + p′|2 =

1

16

[
(1 + |q′|2)2 + |ω′|2

]
,

Φ = (2h)
−(Q−2)/4

= 8(Q−2)/4
[
(1 + |q′|2)2 + |ω′|2

]−(Q−2)/4
,

so that we have

Θ =
1

2h
Θ̃ = Φ4/(Q−2)Θ̃.

A small calculation shows that the sub-laplacian of h with respect to Θ̃ is given by4Θ̃h = Q−6
4 + Q+2

4 |q
′|2 and thus

Φ is a solution of the qc Yamabe equation on the Heisenberg group,

(4.33) 4Θ̃Φ = −K Φ2∗−1, K = (Q− 2)(Q− 6)/8.

Denoting with L and LΘ̃ the conformal sub-laplacians of Θ and Θ̃, respectively, we have (see also (4.10))

Φ−1L(Φ−1u) = Φ−2∗LΘ̃u.

Taking u = Φ we come to L(1) = Φ1−2∗4Θ̃Φ, since the qc structure Θ̃ is flat, which shows

(4.34) Sη̃ = SΘ = 4
Q+ 2

Q− 2
K = 8n(n+ 2)

using that the two structures are isomorphic via the diffemorphism C, or rather its extension, since we can consider C
as a quaternionic contact conformal transformation between the whole sphere S4n+3 and the compactification Σ̂ ∪∞
of the quaternionic Heisenberg group by adding the point at infinity, cf. [121, Section 5.2].

4.5.5. QC conformal flatness [129]. A QC manifold (M,η) is called locally qc conformally flat if there is a local
diffeomorphims F : G (H)→M , such that F ∗η = φΨΘ̃ for some positive function φ.

The qc-conformal flatness of a manifold is characterized by the vanishing of the qc-conformal curvature tensor
W qc found in [129],

W qc(X,Y, Z, V ) =
1

4

[
R(X,Y, Z, V ) +

3∑
s=1

R(IsX, IsY,Z, V )
]
− 1

2

3∑
s=1

ωs(Z, V )
[
T 0(X, IsY )− T 0(IsX,Y )

]
+

S

32n(n+ 2)

[
(g?g)(X,Y, Z, V )+

3∑
s=1

(ωs?ωs)(X,Y, Z, V )
]
+(g?U)(X,Y, Z, V )+

3∑
s=1

(ωs?IsU)(X,Y, Z, V ),



TWO PROBLEMS ON CR AND QUATERNIONIC CONTACT MANIFOLDS 27

where (A?B) denotes the Kulkarni-Nomizu product of two tensor, i.e.,

(A?B)(X,Y, Z, V ) = A(X,Z)B(Y, V )−A(Y,Z)(B(X,V ) +A(Y, V )B(X,Z)−A(X,V )(B(Y, Z).

Theorem 4.7 ([129]). a)W qc is qc-conformal invariant, i.e., if η̄ = κΨη thenW qc
η̄ = φW qc

η , where 0 < κ ∈ C∞(M),
and Ψ ∈ C∞(M : SO(3)).

b) A qc-structure is locally qc-conformal to the standard flat qc-structure on the quaternionic Heisenberg group
G (H) if and only if W qc = 0.

Taking into account the qc Cayley transform we also have the quaternionic sphere S4n+3 if and only if the qc
conformal curvature vanishes, W qc = 0.

We end this section with the remark that unlike the CR case the realization of qc manifolds as hypersurfaces in a
hyper-Kähler manifold is very restrictive. For example, it was shown in [124] that ifM is a connected qc-hypersurface
in the flat quaternion space R4n+4 ∼= Hn+1 then, up to a quaternionic affine transformation of Hn+1, M is contained
in one of the following three hyperquadrics:

(i) |q1|2 + · · ·+ |qn|2 + |p|2 = 1, (ii) |q1|2 + · · ·+ |qn|2−|p|2 = −1, (iii) |q1|2 + · · ·+ |qn|2 +Re(p) = 0.

Here (q1, q2, . . . qn, p) denote the standard quaternionic coordinates of Hn+1. In particular, if M is a compact qc-
hypersurface of R4n+4 ∼= Hn+1 then, up to a quaternionic affine transformation of Hn+1,M is the standard 3-Sasakian
sphere. For other results and more details we refer to [124].

5. THE CR YAMABE PROBLEM AND THE CR OBATA THEOREM

The CR Yamabe problem seeks pseudoconformal pseudohermitian transformation of a compact CR pseudohermi-
tian manifold which lead to constant scalar curvature of the canonical Tanaka-Webster connection, see Section 4.2.2.
After the works of D. Jerison & J. Lee [137, 138, 139, 140] and N. Gamara & R. Yacoub [96], [97] the solution of the
CR Yamabe problem on a compact manifold is complete.

Let (M2n+1, η) be a strictly pseudoconvex CR manifold andf Υ(M, [η]) be the CR-Yamabe constant (cf. (4.7)).
The CR-Yamabe constant Υ(M, [η]) depends only on the CR structure of M, not of the choice of η.

The solution of the CR-Yamabe problem is outlined in the next fundamental results.

Theorem 5.1 ([138, 140, 96, 97]). Let (M2n+1, η) be a strictly pseudoconvex CR manifold. The CR-Yamabe constant
satisfies the ineguality Υ(M, [η]) ≤ Υ(S2n+1, η̄), where S2n+1 ⊂ Cn+1 is the sphere with its standard CR structure
η̄.

a) If Υ([M,η]) < Υ(S2n+1, [η̄]), then the Yamabe equation has a solution. [138]
b) If n ≥ 2 then the Yamabe constant satisfies

Υ(M, [ηε]) =

{
Υ(S2n+1, [η̄])

(
1− cn|S(q)|2ε4

)
+ O(ε5), n ≥ 2;

Υ(S5, η̄])
(
1 + c2|S(q)|2ε4 ln ε

)
+ O(ε4), n = 2.

Thus, if M is not locally CR equivalent to (S2n+1, η̄), then Υ(M, [η]) < Υ(S2n+1, [η̄]). [140]
c) If n = 1 or M is locally CR equivalent to S2n+1, then the Yamabe equation has a solution. [96, 97]

5.1. Solution of the CR Yamabe problem on the sphere and Heisenberg group. The CR version of the Obata
theorem was proved by D. Jerison and J. Lee [139].

Theorem 5.2 ([139]). If η is the contact form of a pseudo-Hermitian structure proportional to the standard contact
form η̄ on the unit sphere in Cn+1 and the pseudohermitian scalar curvature Sη =const, then up to a multiplicative
constant η = Φ∗ η̄ with Φ a CR automorphism of the sphere.

A key step of the proof consists of showing that a CR structure with a constant pseudohermitian scalar curvature
is pseudoconformal to the standard pseudo-Einstein torsion-free structure on the CR sphere iff it is a pseudo-Einstein
with vanishing Webster torsion. It is well known that a strictly pseudoconvex torsion-free CR manifold is Sasakian. In
addition, if the CR space is pseudo Einstein then it is not hard to observe that it is a Sasaki-Einstein space with respect to
the associated Riemannian metric h. Indeed, the Ricci tensorsRicg andRic of the Levi-Civita and the Tanaka-Webster
connection, respectively, of a torsion-free CR space are connected by [77] Ricg(X,Y ) = Ric(X,Y ) − 2g(X,Y ),
Ricg(ξ, ξ) = 2n. Because of the second identity, a Sasaki-Einstein space has Riemannian scalar curvature Sg =
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2n(2n+ 1). Hence, a torsion-free pseudo Einstein CR manifold is a Sasaki-Einstein space if the pseudohermitian
scalar curvature is equal to S = 4n(n+ 1) and the Jerison-Lee theorem can be stated as follows.

Theorem 5.3 ([139]). If a compact Sasaki-Einstein manifold (M, η̄) is psedoconformal to a CR manifold (M,η =

2hη̄) with constant positive pseudohermmitian scalar curvature S = 4n(n+1) then (M,η) is again a Sasaki-Einstein
space.

The proof follows trivially from the divergence formula discovered in [139] which we state in real coordinates
in Theorem 5.4. First, we need some definitions. Let h > 0 be a smooth function on a pseudohermitian manifold
(M,η, g) and η̄ = 1

2hη be a pseudoconformal to η contact form. We will denote the connection, curvature and
torsion tensors of η̄ by over-lining the same object corresponding to η. The new Reeb vector field ξ̄ is ξ̄ = 2h ξ +

2h J∇h,where ∇h is the horizontal gradient, g(∇h,X) = dh(X). The Webster torsion and the pseudohermitian
Ricci tensors of η and η̄ are related by [166],

4hĀ(X, JY ) = 4hA(X, JY ) +∇2h(X,Y )−∇2h(JX, JY )(5.1)

(5.2) ρ(X, JY ) = ρ(X, JY )− (4h)−1(n+ 2)[∇2h(X,Y ) +∇2h(Y,X) +∇2h(JX, JY ) +∇2h(JY, JX)]

+ (2h2)−1(n+ 2)[dh(X)dh(Y ) + dh(JX)dh(JY )]− (2h)−1
(
4h− h−1(n+ 2)|∇h|2

)
g(X,Y ),

where 4h = ∇∗dh =
∑2n
a=1∇2h(ea, ea) is the sublaplacian. The pseudohermitian scalar curvatures changes ac-

cording to [166],

(5.3) S = 2hS − 2(n+ 1)(n+ 2)h−1|∇h|2 + 4(n+ 1)4h.

Let B be the traceless part of ρ, B(X, JY )
def
= ρ(X, JY ) + S

2ng(X,Y ) since by (4.14), we have ρ(ea, Jea) =

−Ric(ea, ea) = −S. The above formulas imply

(5.4) B̄(X, JY ) = B(X, JY )− n+ 2

4h
[∇2h(X,Y ) +∇2h(Y,X) +∇2h(JX, JY ) +∇2h(JY, JX)]

+
n+ 2

2h2
[dh(X)dh(Y ) + dh(JX)dh(JY )] +

n+ 2

2n

(
4h
h
− 1

h2
|∇h|2

)
g(X,Y ).

Suppose θ̄ is Sasaki-Einstein structure, i.e., Ā = B̄ = 0 and both pseudo-Hermitain structures are of constant
pseudohermitian scalar curvatures S̄ = S = 4n(n+ 1). With these assumptions (5.3) becomes

(5.5) 4h = n− 2nh+
(n+ 2)

2h
|∇h|2.

At this point we recall the Ricci identities for the Tanaka-Webster connection [166] (see e.g. [133, 130] for these and
other expressions in real coordinates),

∇2h(X,Y )−∇2h(Y,X) = −2ω(X,Y )dh(ξ), ∇2h(X, ξ)−∇2h(ξ,X) = A(X,∇h),

∇3h(X,Y, Z)−∇3h(Y,X,Z) = −R(X,Y, Z,∇h)− 2ω(X,Y )∇2h(ξ, Z).
(5.6)

The contracted Bianchi identities for Tanaka-Webster connection [166] are

dS(X) = 2

2n∑
a=1

(∇eaRic)(eaX) = −2

2n∑
a=1

(∇eaρ)(ea, JX) + 4(n− 1)

2n∑
a=1

(∇eaA)(ea, JX);

Ric(ξ,X) =

2n∑
a=1

(∇eaA)(ea, Z); dS(ξ) = 2

2n∑
a,b=1

(∇2
eaeb

A)(ea, eb).

(5.7)

When Ā = 0, (5.1) takes the form

(5.8) 4hA(X, JY ) = −
[
∇2h(X,Y )−∇2h(JX, JY )

]
.

Differentiating (5.8) using the equation ∇J = 0, taking the trace in the obtained equality and applying the Ricci
identities (5.6), (4.14) and the CR Yamabe equation (5.3), we find the next formula for the divergence of A,
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(5.9) ∇∗A(JX) = −2ρ(JX,∇h)− n+ 2

h
[∇2(∇h,X)− 2dh(JX)dh(ξ)]

+ 2ndh(X) +
n+ 2

2h2
|∇h|2dh(X)− (2n+ 4)∇2(JX, ξ),

where the divergence of a 1-form α is ∇∗α =
∑2n
a=1(∇eaα)ea. A substitution of (5.5) into (5.4) and a use of the

Ricci identities together with B̄ = 0 give

(5.10) B(X, JY ) =
n+ 2

2h

[
∇2h(Y,X) +∇2h(JY, JX)− 2ω(X,Y )dh(ξ)

]
− n+ 2

2h2
[dh(X)dh(Y ) + dh(JX)dh(JY )]− n+ 2

2

(
1

h
− 2 +

1

2h2
|∇h|2

)
g(X,Y ).

From ρ(X, JY ) = B(X, JY )− 2(n+ 1)g(X,Y ) and (5.10) it follows

(5.11) ρ(X, J∇h) =
n+ 2

2h

[
∇2h(∇h,X) +∇2h(J∇h, JX)− 2dh(ξ)dh(JX)− 3

2h
|∇h|2dh(X)− dh(X)

]
− ndh(X).

Substituting equation (5.11) into equation (5.9) shows

(5.12) ∇∗A(JX) =
n+ 2

4

[∇2h(J∇h, JX)

h2
− |∇h|

2

h3
dh(X)− 1

h2
dh(X)− 2

h
∇2h(JX, ξ)

]
.

With the help of (5.8), (5.10) and (5.12) we define the following 1-forms

d(X) = −4h−1A(X, J∇h) =
∇2h(∇h,X)−∇2h(J∇h, JX)

h2
;

e(X) =
2

n+ 2
h−1B(X, J∇h) =

∇2h(∇h,X) +∇2h(J∇h, JX)

h2
− 2dh(ξ)dh(JX)

h2

−
( 1

h2
− 2

h
+

3|∇h|2

2h3

)
dh(X);

u(X) =
4

n+ 2
∇∗A(JX) =

∇2h(J∇h, JX)

h2
− 2

h
∇2h(JX, ξ)−

( |∇h|2
h3

+
1

h2

)
dh(X).

(5.13)

We obtain easily from (5.13) the next identity

(5.14) u(X) =
e(X)− d(X)

2
− 2∇2h(JX, ξ)

h
− 1

h2

(1

2
+ h+

|∇h|2

4h

)
dh(X) +

dh(ξ)dh(JX)

h2
.

Define the following tensors

D(X,Y ) = −4A(X,Y ), Dh(X,Y, Z) = h−1 [D(., Z)dh(.)][1] ,

E(X,Y ) =
2

n+ 2
B(X,Y ), Eh(X,Y, Z) = h−1 [E(X, .)dh(.)][−1] .

(5.15)

In other words, we have

Dh(X,Y, Z) =
1

2h
[dh(X)D(Y,Z) + dh(JX)D(JY, Z)] ,

Eh(X,Y, Z) =
1

2h
[dh(Z)E(X,Y )− dh(JZ)E(X, JY )] .

At this point we can state one of the main results of [139].

Theorem 5.4 ([139]). Let (M, η̄) be a Sasaki-Einstein manifold pseudoconformally equivalent to a CR manifold
(M,η, η̄ = 1

2hη) of constant pseudohermitian scalar curvature so that S̄ = S = 4n(n+ 1). For

(5.16) f =
1

2
+ h+

|∇h|2

4h
,
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we have

(5.17) ∇∗
(
f [d+ e]− dh(ξ)Jd+ dh(ξ)Je− 6dh(ξ)Ju

)
=

1

2

(
1

2
+ h

)(
|D|2 + |E|2

)
+
h

8
|Eh+Dh|2 +Q(d, e, u).

where Q(d, e, u) is non-negative quadratic form of the vector fields (d, e, u).

Proof. We recall, that for a horizontal 1-form α the 1-form Jα is defined by Jα(X) = −α(JX). The divergences of
the involved vector fields are calculated using (5.13) and the Bianchi identies (5.7). Since S = 4n(n+ 1) the Bianchi
identities (5.7) take the form

(5.18) ∇∗B(JX) = 2(n− 1)∇∗A(JX) =
(n+ 2)(n− 1)

2
u(X), ∇∗Ju =

4

n+ 2

2n∑
a,b=1

(∇2
eaeb

A)(ea, eb) = 0.

A direct computation gives

(5.19) ∇∗d =
2n∑
a=1

(∇eaD)(ea) = −h−1D(∇h)− (n+ 2)h−1u(J∇h) +
1

2
|D|2.

Using the properties of A, we calculate

(5.20) ∇∗(Jd) = h−1d(J∇h) + (n+ 2)h−1u(J∇h),

taking into account
∑2n
a,b=1A(ea, Jeb)∇2h(Jea, eb) = 0 due to (5.8). Similarly, we calculate

(5.21) ∇∗e = (n− 1)h−1u(∇h) +
1

2
|E|2

after using the equality 2
n+2h

−1
∑2n
a,b=1B(ea, Jeb)∇2h(ea, eb) = h−1e(∇h)+ 1

2 |E|
2 follows from (5.10) and (5.15).

Finally, we have

(5.22) ∇∗(Je) = (n− 1)h−1u(J∇h)

since B(JX, JX) = 0 and
∑2n
a,b=1B(ea, Jeb)∇2h(Jea, eb) = 0 due to (5.10). We obtain from (5.16) after applying

the Ricci identities and (5.13) the identity

(5.23) df(X) =
h

2

(
u(X) + d(X)

)
+∇2h(JX, ξ) + h−1fdh(X)− h−1dh(ξ)dh(JX).

At this point we are ready to calculate the divergence formula using (5.19),(5.20),(5.21),(5.22), (5.23) and (5.14) which
give

(5.24) ∇∗
(
f [d+ e]− dh(ξ)Jd+ dh(ξ)Je− 6dh(ξ)Ju

)
=

1

2

(
1

2
+ h+

|∇h|2

4h

)[
|D|2 + |E|2

]
+
h

2

[
|d|2 + |e|2 + 6|u|2 + 4g(d, u)− 4g(u, e)

]
=

1

2

(
1

2
+ h

)(
|D|2 + |E|2

)
+
h

4
|Dh + Eh|2 +

h

2

(
|d|2 + |e|2 + 6|u|2 + 4g(d, u)− 4g(u, e)− 2g(d, e)

)
=

1

2

(
1

2
+ h

)(
|D|2 + |E|2

)
+
h

4
|Dh + Eh|2 +

h

2
Q(d, e, u)

with Q =

 1 −1/2 2

−1/2 1 −2

2 −2 6

 using the next identity in the last equality

(5.25)
|∇h|2

4h

(
|D|2 + |E|2

)
=
h

2
|Dh + Eh|2 − hg(d, e).
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Notice that Q has eigenvalues 15±
√

209
4 and 1

2 , hence it is a positive definite matrix. Finally, the validity of (5.25) can
be seen as follows,

(5.26) |Dh + Eh|2 =
1

4h2
|dh(ea)D(eb, ec) + dh(Jea)D(Jeb, ec) + dh(ec)E(ea, eb)− dh(Jec)E(ea, Jeb)|2

=
1

2h2
|∇h|2

(
|D|2 + |E|2

)
+

2

h2
(D(∇h, ea)E(∇h, ea)) =

1

2h2
|∇h|2

(
|D|2 + |E|2

)
+ 2g(d, e).

�

5.2. The uniqueness theorem in a Sasaki-Einstein class. Motivated by Theorem 2.6 it is natural to investigate the
uniqueness of the pseudohermitian structures of constant scalar curvature in the Sasaki-Einstein case, especially in
view of Theorem 5.3. The fact that the divergence formula of [139] can be stated as in Theorem 5.3 was observed
earlier in [120] which influenced the results [120, 121] in which there is a clear separation of the two steps of Jerison
and Lee’s argument, the first involving the conformal equivalence of an ”Einstein structure” to a structure of ”constant
scalar curvature” and the second involving the characterization of the conformal equivalence of two (conformally flat)
Einstein structures. A corresponding QC version of the Obata uniqueness theorem was formulated by the second
author. Clearly, in the CR case Theorem 5.3 addresses the first step, while a part of the second step is contained
in [139] where the (suitable) conformal factor is characterized as a pluriharmonic function. For the completion of
the second step one can reduce to the result mentioned in Remark 2.2 with an argument employed in [131, Theorem
1.3] (see also the end of Section 7.3) rather than relying on the calculation on the Heisenberg group when in the
pseudoconformal class of the Sasaki-Einstein sphere as Jerison & Lee did. For details of this last reduction see [226].
Alternatively, a conceptual proof using again in the first step the Jerison & Lee’s divergence formula and as a second
step a generalization of (2.13) is possible based on the proof found in the quaternionic contact case in the forthcoming
paper [125]. Next, we sketch briefly the obvious adaption of the argument from the quaternionic contact case [125].
First, we use the well known fact that a vector field Q on a CR pseudo-Hermitian manifold is an infinitesimal CR
transformation iff there is a (smooth real-valued) function σ such that Q = − 1

2J∇σ − σ ξ and σ satisfies the second
order equation LQJ = 0, see [57]. In fact, decomposing Q in its horizontal and vertical parts Q = QH −σξ it follows
that QH (”contact Hamiltonian field”) is determined by η(QH) = 0 and iQH

dη ≡ 0 (mod η) while the preservation
of the complex structure gives the second order system [∇2σ][−1](X,Y ) = −2σA(JX, Y ). Next, as a consequence
of the CR Yamabe equation one obtains a formula as in Lemma 2.13 for an infinitesimal CR automorphism Q on
(M,η), namely

(5.27) ∆(∇∗QH) = − n

2(n+ 1)
dS(Q) − S

2(n+ 1)
∇∗QH ,

where QH is the horizontal part of Q. In our case A = 0 and S = 4n(n + 1), hence for σ = dh(ξ) it follows
from Ricci’s identity (7.6) and (5.8) that the vector field Q defined by Q = − 1

2J∇dh(ξ)− dh(ξ)ξ is an infinitesimal
CR vector field unless it vanishes. Now, for f defined in (5.16), from (5.23) it follows Q = − 1

2∇f − dh(ξ)ξ. This
implies that φ = 4f either vanishes identically or is an eigenfuction of the sublaplacian realizing the smallest possible
eigenvalue on a (pseudo-Einstein) Sasakian manifold. Finally, if h 6= const then the CR Lichnerowicz-Obata theorem
[46, 47], see Section 7.2, shows that (M,η) is homothetic to the CR unit sphere, which completes the proof. We note
that the above arguments have as a corollary that in Jerison & Lee’s identity [139, (3.1)], letting φ = 4bRe(f) we
have4bφ = −2nφ.

Thus, a pseudoconformal class of a Sasaki-Einstein pseudohermitian form different from the standard Sasaki-
Einstein form on the round sphere contains a unique (up to homothety) pseudohermitian form of constant CR scalar
curvature, namely, the Sasaki-Einstein form itself.

6. THE QC-YAMABE PROBLEM AND THE OBATA TYPE UNIQUENESS THEOREM

In this section we consider the quaternionic contact version of the Yamabe problem described in Section4.2.2. We
begin by quoting the next result of Wang [225] which follows from the known techniques in the Riemannian and CR
settings.

Theorem 6.1 ([225]). Let (M,η) be a compact quaternionic contact manifold of real dimension 4n+ 3.
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a) The qc Yamabe constant satisfies the inequality Υ(M, [η]) ≤ Υ(S4n+3, ([η̃]).
b) If Υ(M, [η]) < Υ(S4n+3, [η̃]), then the Yamabe problem has a solution.

In view of the Riemannian and CR cases, it is expected that on a compact qc manifods Υ(M, [η]) < Υ(S4n+3, [η̃])

unless the qc manifold (M, [η]) is locally qc conformal to (S4n+3, [η̃]). Some steps towards the proof of this result
include the qc-normal coordinates constructed in [158] and the qc conformal tensor, |W qc|2 [129].

Another known general result is the (local) classification of all (local) qc-conformal transformations of the flat
structure on the G (H) which are also qc-Einstein. This classification is used as a replacement of the theory of
the pluriharmonic functions that appear in the CR case. Some attempts in extending the latter in the quaternionic
(contact) case can be found in [120]. However, so far, these extensions have not proven useful in the solution of the
Yamabe problem. The following Theorem precises the result of [120, Theorem 1.1] where only the vanishing qc-scalar
curvature case was considered.

Theorem 6.2. Let Θ = 1
2h Θ̃ be a conformal deformation of the standard qc-structure Θ̃ on the quaternionic Heisen-

berg group G (H). If Θ is also qc-Einstein, then up to a left translation the function h is given by

(6.1) h(q, ω) = c0

[(
σ + |q + q0|2

)2
+ |ω + ωo + 2 Im qo q̄|2

]
,

for some fixed (qo, ωo) ∈ G (H) and constants c0 > 0 and σ ∈ R. Furthermore,

(6.2) SΘ = 128n(n+ 2)c0σ

The proof follows from a careful reading of the proof of [120, Theorem 1.1] and making of the necessary changes.
As in [120, Theorem 1.1], h satisfies a system of partial differential equations whose solution is a family of polynomial
of degree four.

The final known general result concerns the seven dimensional case and is still open in the higher dimensions.

Theorem 6.3 ([121]). If a quaternionic contact structure (M7, η) is conformal to a qc-Einstein structure (M7, η̄),
η̄ = 1

2h η so that S = S̄ = 16n(n+ 2), then (M7, η) is also qc-Einstein.

The above results lead to a complete solution of the qc Yamabe problem on the standard qc seven dimensional
sphere and quaternionic Heisenberg groups. In particular, as conjectured in [99], all solutions of the qc Yamabe
equations are given by those that realize the Yamabe constant of the sphere or the best constant in the Folland-Stein
inequality.

Theorem 6.4 ([121]). a) Let η̃ = 1
2hη be a conformal deformation of the standard qc-structure η̃ on the quaternionic

unit sphere S7. If η has constant qc-scalar curvature, then up to a multiplicative constant η is obtained from η̃ by
a conformal quaternionic contact automorphism. In particular, Υ(S7) = 48 (4π)1/5 and this minimum value is
achieved only by η̃ and its images under conformal quaternionic contact automorphisms.

b) On the the seven dimensional quaternionic Heisenberg group the only solutions of the qc-Yamabe equation, up to
translations (3.2) and dilations (3.3), are those given in (3.8).

The proof of Theorem 6.4 relies on Theorem 6.2 and Theorem 6.3 and will be sketched near the end of the Section.

6.1. The Yamabe problem on a 7-D qc-Einstein manifold. Proof of Theorem 6.3. In this section we give some
details on the proof of Theorem 6.3. The analysis involves a number of intrinsic to the structure vector fields/ 1-forms
which are defined in any dimension, so here n ≥ 1. We shall consistently keep the notation introduced in [121], which
can be consulted for details.

6.1.1. Intrinsic vector fields and their divergences. We begin by defining the horizontal 1-forms As, also letting
A = A1 +A2 +A3,

(6.3) Ai(X) = ωi([ξj , ξk], X).

The contracted Bianchi identity on a (4n+ 3)-dimensional qc manifold with constant qc-scalar curvature reads [120],
Theorem 4.8],

(6.4) ∇∗T 0 = (n+ 2)A, ∇∗U =
1− n

2
A.
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Let h be a positive smooth function on a qc manifold (M, g, η) and η̄ = 1
2h η be a conformal deformation of the qc

structure η. As usual, the objects related to η̄ will be denoted by an over-line. Thus,

dη̄ = − 1

2h2
dh ∧ η +

1

2h
dη, ḡ =

1

2h
g.

The new Reeb vector fields {ξ̄1, ξ̄2, ξ̄3} are ξs = 2hξs + Is∇h, s = 1, 2, 3. The components T 0, U of the Biquard
connection and the qc scalar curvatures change as follows [121]

(6.5) T̄ 0(X,Y ) = T 0(X,Y ) +
1

4h

(
3∇2h(X,Y )−

3∑
s=1

∇2h(IsX, IsY )
)
− 1

2h

3∑
s=1

dh(ξs)ωs(X,Y ).

(6.6) Ū(X,Y ) = U(X,Y ) +
1

8h

(
∇2h(X,Y ) +

3∑
s=1

∇2h(IsX, IsY )
)

− 1

4h2

(
dh(X)dh(Y ) +

3∑
s=1

dhIsX)dh(IsY )
)
− 1

8h

(
4h− 2

h
|∇h||2

)
g(X,Y ),

(6.7) S̄ = 2hS + 8(n+ 2)4h− 8(n+ 2)2h−1|∇h|2.

Suppose η̄ is a positive 3-Sasakian structure, i.e. T̄ 0 = Ū = 0, S̄ = 16n(n+ 2). Then (6.7) takes the form

(6.8) 2n = 4nh+4h− (n+ 2)h−1|∇h|2,

which is the qc Yamabe equation. We also have the formulas

(6.9) A1(X) = −1

2
h−2dh(X) − 1

2
h−3|∇h|2dh(X)− 1

2
h−1

(
∇dh(I2X, ξ2) + ∇dh(I3X, ξ3)

)
+

1

2
h−2

(
dh(ξ2) dh(I2X) + dh(ξ3) dh(I3X)

)
+

1

4
h−2

(
∇dh(I2X, I2∇h) + ∇dh(I3X, I3∇h)

)
.

The expressions for A2 and A3 can be obtained from the above formula by a cyclic permutation of (1, 2, 3). Thus, we
obtain

(6.10) A(X) = −3

2
h−2dh(X) − 3

2
h−3|∇h|2dh(X)− h−1

3∑
s=1

∇dh(IsX, ξs)

+ h−2
3∑
s=1

dh(ξs) dh(IsX) +
1

2
h−2

3∑
s=1

∇dh(IsX, Is∇h).

We need the divergences of various vector/1-forms defined above in addition to a few more. We recall that an or-
thonormal frame {e1, e2 = I1e1, e3 = I2e1, e4 = I3e1, . . . , e4n = I3e4n−3, ξ1, ξ2, ξ3} is called qc-normal frame at
a point of a qc manifold if the connection 1-forms of the Biquard connection vanish at that point. As shown in [120],
see also [130, Lemma 6.2.1], a qc-normal frame exists at each point of a qc manifold. If σ is a horizontal 1-form, then
with respect to a qc-normal frame, the divergence of Isσ, ( Isσ(X) = −σ(IsX)) is given by

∇∗(Isσ) = −
4n∑
a=1

(∇eaσ)(Isea).

With some calculations using (6.10), (6.9) and the properties of the torsion and curvature of the Biquard connection,
we obtain

(6.11)

∇∗
( 3∑
s=1

dh(ξs)IsAs

)
=

3∑
s=1

4n∑
a=1

∇dh (Isea, ξs)As(ea),

∇∗
( 3∑
s=1

dh(ξs)IsA
)

=

3∑
s=1

4n∑
a=1

∇dh (Isea, ξs)A(ea).
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We define the following one-forms for s = 1, 2, 3,

(6.12) Ds(X) = − 1

2h

[
T 0(X,∇h) + T 0(IsX, Is∇h)

]
, D = − 1

h
T 0(X,∇h), Fs(X) = − 1

h
T 0(X, Is∇h).

Using the fact that the tensor T 0 belongs to the [-1]-component we obtain from (6.12)

(6.13) D = D1 + D2 + D3, Fi(X) = −Di(IiX) + Dj(IiX) + Dk(IiX),

where (ijk) is a cyclic permutation of (1,2,3). As a consequence of (6.4), (6.9), (6.10), the qc Yamabe equation (6.8)
and (6.5) taken with Ā = 0, we obtain after some calculations, see [121] for details, the following theorem.

Lemma 6.5 ([121]). Suppose (M,η) is a quaternionic contact manifold with constant qc-scalar curvature S =

16n(n+ 2). Suppose η̄ = 1
2hη has vanishing [−1]-torsion component T

0
= 0. Then we have

D(X) =
1

4
h−2

(
3 ∇dh(X,∇h) −

3∑
s=1

∇dh(IsX, Is∇h)
)

+ h−2
3∑
s=1

dh(ξs) dh(IsX).

The divergence of D is given by ∇∗D = |T 0|2 − h−1
∑4n
a=1 dh(ea)D(ea) − h−1(n + 2)

∑4n
a=1 dh(ea)A(ea),

while the divergence of
∑3
s=1 dh(ξs)Fs is

∇∗
( 3∑
s=1

dh(ξs)Fs

)
=

3∑
s=1

4n∑
a=1

[
∇dh (Isea, ξs)Fs(Isea)

]
+ h−1

3∑
s=1

4n∑
a=1

[
dh(ξs)dh(Isea)D(ea) + (n+ 2) dh(ξs)dh(Isea)A(ea)

]
.

6.1.2. Solution of the qc-Yamabe equation in 7-D. At this point we restrict our considerations to the 7-dimensional
case turn to the proof of a key divergence formula motivated by the Riemannian and CR cases of the considered
problem. As in the CR case [139], the Bianchi identities [120, Theorem 4.8] are not enough for the proof, unlike what
happens in the Riemannian case as we saw in the proof of Theorem 2.6.

In fact, the proof of Theorem 6.3 follows by an integration of the following divergence formula (6.14), which
implies T 0 = 0. In dimension seven the tensor U vanishes identically, U = 0 , and (4.23) yields the claim. Thus, the
crux of the proof of Theorem 6.3 is the next formula, in which for f = 1

2 + h + 1
4h
−1|∇h|2, the following identity

holds true

(6.14) ∇∗
(
fD +

3∑
s=1

dh(ξs)Fs + 4

3∑
s=1

dh(ξs)IsAs −
10

3

3∑
s=1

dh(ξs) IsA
)

= f ||T 0||2 + hV LV t.

Here, L is the following positive semi-definite matrix

L =



2 0 0
10

3
−2

3
−2

3

0 2 0 −2

3

10

3
−2

3

0 0 2 −2

3
−2

3

10

3
10

3
−2

3
−2

3

22

3
−2

3
−2

3

−2

3

10

3
−2

3
−2

3

22

3
−2

3

−2

3
−2

3

10

3
−2

3
−2

3

22

3


and V = (D1, D2, D3, A1, A2, A3) with As, Ds defined, correspondingly, in (6.3) and (6.12).
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We sketch the proof of (6.14). Recall that in dimension seven, n = 1, the [3]-part of the Biquard torsion vanishes
identically, U = 0. Then (6.6) together with the Yamabe equation (6.8) imply

(6.15) ∇2h(X,∇h) +

3∑
s=1

∇2h(IsX, Is∇h)− (2− 4h+ 3h−1|∇h|2)dh(X) = 0.

Combining (6.9), (6.11), (6.15) and formulas in Lemma 6.5 it is easy to check the formula of the theorem. It is not
hard to see that the eigenvalues of L are given by

{0, 0, 2 (2 +
√

2), 2 (2−
√

2), 10, 10},

which shows that L is a non-negative matrix.

6.1.3. The 7-D qc Yamabe problem on the sphere and qc Heisenberg group. At this point we are ready to complete
the proof of Theorem 6.4. Recall, that the Cayley transform (4.31) is a conformal quaternionic contact diffeomor-
phism, hence up to a constant multiplicative factor and a quaternionic contact automorphism the forms C∗η̃ and Θ̃ are
conformal to each other. It follows that the same is true for C∗η and Θ̃. In addition, Θ̃ is qc-Einstein by definition,
while η and hence also C∗η are qc-Einstein as we already observed. According to Theorem 6.2, up to a multiplicative
constant factor, the forms C∗η̃ and C∗η are related by a translation or dilation on the Heisenberg group. Hence, we
conclude that up to a multiplicative constant, η is obtained from η̃ by a conformal quaternionic contact automorphism
which proves the first claim of Theorem 6.4. From the conformal properties of the Cayley transform and the existence
Theorem [221] it follows that the minimum Υ(S4n+3, [η̃]) is achieved by a smooth 3-contact form, which due to the
Yamabe equation is of constant qc-scalar curvature. This completes the proof of Theorem 6.4 a). The proof of part
b) is reduced to part a) by ”lifting” the analysis to the sphere via the Cayley transform. A point, which requires some
analysis is that we actually obtain qc-structures on the whole sphere. This follows from the properties of the Kelvin
transform which sends a solution of the Yamabe equation to a solution of the Yamabe equation, see [121, Section 5.2]
or [130, Section 6.6] for the details.

A similar argument will be used in the proof of Theorem 8.5.

6.2. The uniqueness theorem in a 3-Sasakin conformal class. We mention that similarly similarly to the Riemann-
ian and CR cases it is expected that the class of unit volume qc-Einstein qc-conformal class contains a unique metric
of constant scalar curvature, with the exception of the 3-Sasakian sphere, see Section 5.2 for a comparison with the
CR case and some background in the sub-Riemannian case. What was problematic was the first step as outlined in
Section 5.2, since here Theorem 6.3 supplies the first step in dimension seven while the higher dimensional cases was
open. A proof extending the seven dimensional case was found in [125] where the reader can also find a proof of the
uniqueness result.

7. THE CR LICHNEORWICZ AND OBATA THEOREMS

In accordance with Convention 1.1, in this section we use the non-negative definite sub-Laplacian, 4u =

−trg(∇2u) for a function u on a strictly pseudoconvex pseudohermitian manifold M with a Tanaka-Webster con-
nection ∇. Also, the divergence of a vector field is taken with a ”-”, hence we have 4u = ∇∗(∇u) =

−
∑2n
a=1∇2u(ea, ea) for an orthonormal basis of the horizontal space.

7.1. The CR Lichneorwicz first eigenvalue estimate. From the sub-ellipticity of the sub-Laplacian on a strictly
pseudoconvex CR manifold it follows that its spectrum is discrete on a compact manifold. It is therefore natural to
ask if there is a sub-Riemannian version of Theorem 2.1. In fact, a CR analogue of the Lichnerowicz theorem was
found by Greenleaf [109] for dimensions 2n + 1 > 5, while the corresponding results for n = 2 and n = 1 were
achieved later in [169] and [61], respectively. As already observed in Theorem 4.1, the standard Sasakian unit sphere
has first eigenvalue equal to 2n with eigenspace spanned by the restrictions of all linear functions to the sphere, hence
the following result is sharp.

Theorem 7.1 ([109, 169, 61]). Let (M,η) be a compact strictly pseudoconvex pseudohermitian manifold of dimension
2n+ 1 such that for some k0 = const > 0 we have the Lichnerowicz-type bound

(7.1) Ric(X,X) + 4A(X, JX) ≥ k0g(X,X), X ∈ H.
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If n > 1, then any eigenvalue λ of the sub-Laplacian satisfies λ ≥ n
n+1k0. If n = 1 the estimate λ ≥ 1

2k0 holds
assuming in addition that the CR-Paneitz operator is non-negative , i.e., for any smooth function f we have

∫
M
f ·

Cf V olη ≥ 0, where Cf is the CR-Paneitz operator.

We recall that the fourth-order CR-Paneitz operator written in real coordinates is defined by the formula

Cf =

2n∑
a,b=1

∇4f(ea, ea, eb, eb) +

2n∑
a,b=1

∇4f(ea, Jea, eb, Jeb)− 4n∇∗A(J∇f)− 4n g(∇2f, JA).

In view of the prominent role of the CR-Paneitz operator in the geometric analysis on a three dimensional CR manifold
we pause for a moment to give an idea of several occurrences. We start with a few definitions, Given a function f we
define the one form,

Pf (X) =

2n∑
b=1

∇3f(X, eb, eb) +

2n∑
b=1

∇3f(JX, eb, Jeb) + 4nA(X, J∇f)

so we have Cf = −∇∗P . The CR Paneitz operator is called non-negative if∫
M

f · Cf V olη = −
∫
M

Pf (∇f)V olη ≥ 0, f ∈ C∞0 (M).

In the three dimensional case the positivity condition is a CR invariant since it is independent of the choice of the
contact form which follows from the conformal invariance of C proven in [116]. In the case of vanishing pseudoher-
mitian torsion, we have, up to a multiplicative constant, C = 2b2̄b, where 2b is the Kohn Laplacian, hence the CR
Paneitz operator is also non-negative. This property is in fact true for any n > 1 which can be seen through the relation
between the CR Paneitz operator and the [1]-component of the horizontal Hessian (∇2f)(X,Y ) found in [165, 108].
For this, consider the tensor B(X,Y ) defined by

B(X,Y ) ≡ B[f ](X,Y ) = (∇2f)[1](X,Y ) =
1

2

[
(∇2f)(X,Y ) + (∇2f)(JX, JY )

]
and also the completely traceless part of B,

B0(X,Y ) ≡ B0[f ](X,Y ) = B(X,Y ) +
4f
2n

g(X,Y )− 1

2n
g(∇2f, ω)ω(X,Y ).

Then we have the formula [165, 108],

(7.2)

2n∑
a=1

(∇eaB0)(ea, X) =
n− 1

2n
Pf (X),∫

M

|B0|2 V olη = −n− 1

2n

∫
M

Pf (∇f)V olη =
n− 1

2n

∫
M

f · (Cf)V olη.

In particular, if n > 1 the CR-Paneitz operator is non-negative. As an application of this result, we recall [165], see
also [21] and [20], according to which if n ≥ 2, a function f ∈ C3(M) is CR-pluriharmonic, i.e, locally it is the real
part of a CR holomorphic function, if and only if B0[f ] = 0. By (7.2) only one fourth-order equation Cf = 0 suffices
for B0[f ] = 0 to hold. When n = 1 the situation is more delicate. In the three dimensional case, CR-pluriharmonic
functions are characterized by the kernel of the third order operator P [f ] = 0 [165]. However, the single equation
Cf = 0 is enough again assuming the vanishing of the pseudohermitian torsion [108], see also [106]. On the other
hand, [45] showed that if the pseudohermitian torsion vanishes the CR-Paneitz operator is essentially positive, i.e.,
there is a constant Λ > 0 such that ∫

M

f · (Cf)V olη ≥ Λ

∫
M

f2 V olη.

for all real smooth functions f ∈ (Ker C)⊥, i.e.,
∫
M
f · φV olη = 0 if Cφ = 0. In addition, the non-negativity of the

CR-Paneitz operator is relevant in the embedding problem for a three dimensional strictly pseudoconvex CR manifold.
In the Sasakian case, it is known that M is embeddable, [168], and the CR-Paneitz operator is nonnegative, see [61],
[45]. Furthermore, [51] showed that if the pseudohermitian scalar curvature of M is positive and C is non-negative,
then M is embeddable in some Cn.

After these preliminaries we are ready to sketch the proof of Theorem 7.1.
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7.1.1. Proof of the CR Lichnerowicz type estimate. We shall use real coordinates as in [133, 130] and rely on the proof
described in details in [131, Section 8.3] valid for n ≥ 1. Not surprisingly, a key to the solution is the CR Bochner
identity due to [109],

(7.3) − 1

2
4|∇f |2 = |∇df |2 − g(∇(4f),∇f) +Ric(∇f,∇f) + 2A(J∇f,∇f) + 4∇df(ξ, J∇f).

The last term can be related to the traces of∇2f , [109],∫
M

∇2f(ξ, J∇f)V olη = −
∫
M

1

2n
g(∇2f, ω)2 +A(J∇f,∇f)V olη

and also using the CR-Paneitz operator∫
M

∇2f(ξ, J∇f)V olη =

∫
M

− 1

2n
(4f)

2
+A(J∇f,∇f)− 1

2n
Pf (∇f)V olη.

Integrating the CR Bochner idenity (for arbitrary function f ) and using the last two formulas for the term∫
M
∇2f(ξ, J∇f)V olη we find

0 =

∫
M

Ric(∇f,∇f) + 4A(J∇f,∇f)− n+ 1

n
(4f)2 V olη

+

∫
M

∣∣(∇2f)
∣∣2 − 1

2n
(4f)2 − 1

2n
g(∇2f, ω)2 V olη +

∫
M

[
− 3

2n
P (∇f)

]
V olη.

Noticing that
{

1√
2n
g, 1√

2n
ω
}

is an orthonormal set in the [1]-space with non-zero traces, we have∣∣(∇2f)[0]

∣∣2 def
=
∣∣(∇2f)

∣∣2 − 1

2n
(4f)2 − 1

2n
g(∇2f, ω)2.

Let us assume at this point that4f = λf and the ”Ricci” bound (7.1) to obtain the inequality

0 ≥
∫
M

(
k0 −

n+ 1

n
λ

)
|∇f |2 V olη +

∫
M

∣∣(∇2f)[0]

∣∣2 V olη − 3

2n

∫
M

Pf (∇f)V olη,

which implies λ ≥ n
n+1k0 with equality holding iff

(7.4) ∇2f =
1

2n
(4f) · g +

1

2n
g(∇2f, ω) · ω

and
∫
M
Pf (∇f)V olη = 0 taking into account the extra assumption for n = 1. The proof of Theorem 7.1 is complete.

7.2. The CR Obata type theorem.

Theorem 7.2 ([131] ). Let (M, θ) be a strictly pseudoconvex pseudohermitian CR manifold of dimension 2n + 1

with a divergence-free pseudohermitian torsion, ∇∗A = 0. Assume, further, that M is complete with respect to the
associated Riemannian metric (4.1). If n ≥ 2 and there is a smooth function f 6≡ 0 whose Hessian with respect to the
Tanaka-Webster connection satisfies

(7.5) ∇2f(X,Y ) = −fg(X,Y )− df(ξ)ω(X,Y ), X, Y ∈ H = Ker θ,

then up to a scaling of θ by a positive constant (M, θ) is the standard (Sasakian) CR structure on the unit sphere in
Cn+1. In dimension three, n = 1, the above result holds provided the pseudohermitian torsion vanishes, A = 0.

This is the best known result for a complete non-compact M unlike the Riemannian and QC cases where the
corresponding results are valid without any conditions on the torsion, see the paragraph after (2.3) and Theorem 8.2.
It should be noted that besides the Sasakian condition, when n = 1, one can invoke assumptions such as the vanishing
of the divergence of the torsion, the vanishing of the CR-Paneitz operator or the equality case in (7.1). We insist on the
strongest assumption, which avoids a lot of the technicalities which appear when a combination of these assumptions
are made while still achieving a (probably) non-optimal result. Results of this nature can be found by combining
identities proven in [131]. In the compact case, with the help of a clever integration argument [170, 171] were able
to complete the arguments of [131, 132] and remove the assumption of divergence free torsion ∇∗A = 0 for n ≥ 2,
while the case n = 1 was completed in [132]. Taking into account (7.4), a consequence of these results is the Obata
type theorem characterizing the case of equality in Theorem 7.1. We note that Theorem 7.2 actually shows that in
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the compact Sasakian case (7.5) characterizes the unit Sasakian sphere. This fact in addition to other results of [131]
reappeared in [171].

Theorem 7.3 ([170, 171, 132]). Suppose (M,J, η), dimM = 2n + 1, is a compact strictly pseudoconvex pseudo-
hemitian manifold which satisfies the Lichnerowicz-type bound (7.1). If n ≥ 2, then λ = n

n+1k0 is an eigenvalue iff
up-to a scaling (M,J, η) is the standard pseudo-Hermitian CR structure on the unit sphere in Cn+1. If n = 1 the
same conclusion holds assuming in addition that the CR-Paneitz operator is non-negative, C ≥ 0.

Some earlier papers which contributed to the proof of the above Theorem include S.-C. Chang & H.-L. Chiu who
proved the above Theorem in the Sasakian case for n ≥ 2 in [46] and for n = 1 in [47]. The non-Sasakian case, was
considered by Chang, S.-C., & C.-T. Wu in [50] assuming Aαβ, β̄ = 0 for n ≥ 2 and Aαβ, γγ̄ = 0 and A11, 1̄ = 0 for
n = 1. P1f = 0.

Let us give an idea of the proof of Theorem 7.2 following [132]. The first step is to show the vanishing of the
Webster torsion A. We shall make clear where the cases n = 1 and n > 1 diverge. Using the Ricci identity

(7.6) ∇3f(X,Y, ξ) = ∇3f(ξ,X, Y ) +∇2f(AX,Y ) +∇2f(X,AY ) + (∇XA)(Y,∇f)

+ (∇YA)(X,∇f)− (∇∇f )A(X,Y ).

in which we substitute the term ∇3f(ξ,X, Y ) by its expression obtained after differentiating (7.5) we come to the
next equation [131, (3.3)],

(7.7) ∇3f(X,Y, ξ) = −df(ξ)g(X,Y )− (ξ2f)ω(X,Y )− 2fA(X,Y ) + (∇XA)(Y,∇f) + (∇YA)(X,∇f)

− (∇∇fA)(X,Y ),

With the help of the Ricci identities, (7.5), (4.13) and (4.14) we obtain a formula for R(X,Y, Z,∇f), [131, (4.1)]

(7.8) R(Z,X, Y,∇f) =
[
df(Z)g(X,Y )− df(X)g(Z, Y )

]
+∇df(ξ, Z)ω(X,Y )−∇df(ξ,X)ω(Z, Y )

− 2∇df(ξ, Y )ω(Z,X) +A(Z,∇f)ω(X,Y )−A(X,∇f)ω(Z, Y ),

which after taking traces gives identities for Ric(X,∇f) and Ric(JX, J∇f), [131, (4.2)],

(7.9)
Ric(Z,∇f) = (2n− 1)df(Z)−A(JZ,∇f)− 3∇df(ξ, JZ)

Ric(JZ, J∇f) = df(Z)− (2n− 1)A(JZ,∇f)− (2n+ 1)∇df(ξ, JZ).

Note that when n = 1, Ric(X,Y ) = Ric(JX, JY ), hence the identities for Ric(X,∇f) and Ric(JX, J∇f) coin-
cide, which is the reason for the assumption n > 1 when A 6= 0. For n > 1, taking the [−1] part of R(., ., X, Y ) it
follows

(7.10) ∇2f(Y, ξ) = df(JY ) + 2A(Y,∇f).

Using the formula for the curvature (7.8) we come to |∇f |2A(Y, Z) = df(Y )A(∇f, Z)− df(JY )A(∇f, JZ) found
in the proof of [131, Lemma 4.1]. Hence, the Webster torsion is determined by A(J∇f,∇f) as follows

(7.11) |∇f |4A(X,Y ) = −A(J∇f,∇f) [df(X)df(JY ) + df(Y )df(JX)] ,

which implies in particular, A(∇f,∇f) = 0. On the other hand, from (7.10) we have [131, (4.9)],

(7.12) ∇3f(X,Y, ξ) = −df(ξ)g(X,Y ) + fω(X,Y ) − 2fA(X,Y ) − 2df(ξ)A(JX, Y ) + 2∇A(X,Y,∇f).

For n > 1, equations (7.12) and (7.7) imply the identity, see the formula in the proof of [131, Lemma 4.3],

(7.13) 2df(ξ)A(JX, Y )− (∇∇fA)(X,Y ) = (ξ2f)ω(X,Y ) + fω(X,Y ) + (∇XA)(Y,∇f)− (∇YA)(X,∇f).

Notice that the left-hand side is symmetric why the right-hand is skew-symmetric, hence they both vanish,

(7.14) (∇∇fA)(X,Y ) = 2df(ξ)A(JX, Y ) and (∇XA)(Y,∇f) = (∇YA)(X,∇f),

taking into account ∇2f(ξ, ξ) = −f + 1
n (∇∗A)(J∇f) = −f , when ∇∗A = 0, which follows by taking a trace in

the (vanishing) right-hand side of (7.13), see [131, Lemma 4.3].

Remark 7.4. Notice that the first identity implies g(∇f,∇|A|2) = 0.
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The first equation of (7.14) gives (∇∇fA)(J∇f,∇f) = −2df(ξ)A(∇f,∇f) = 0 as we already showed above,
see (7.11). Finally, differentiating the identity A(∇f,∇f) = 0 and using (7.5) we obtain (∇XA)(∇f,∇f) =

2fA(∇f,X) − 2df(ξ)A(J∇f,X) which shows (∇∇fA)(∇f,∇f) = −2df(ξ)A(J∇f,∇f). Therefore,
A(J∇f,∇f) = 0 which implies |∇f |4A = 0. In order to conclude that A = 0 we need to know that f cannot
be a local constant. For this and other facts we turn to the next step of the proof, where we show that f satisfies an
elliptic equation for which we can use a unique continuation argument. We remark that the corresponding sub-elliptic
result seems to be unavailable.

Next, we observe that if f satisfies (7.5), then f satisfies an elliptic equation [131, Corollary 4.5 & Lemma 5.1],

4hf = 4f −∇2f(ξ, ξ) = (2n+ 1)f − 1

n
(∇∗A)(J∇f), if n > 1,(7.15)

4hf =

(
2 +

S − 2

6

)
f − 1

12
g(∇f,∇S) +

1

3
(∇∗A)(J∇f), if n = 1,(7.16)

where 4h is the Riemannian Laplacian associated to the Riemannian metric h = g + η2 on M . In particular, f
cannot be a local constant. The equations follows from the formula relating the Levi-Civita and the Tanaka-Webster
connections, see [77, Lemma 1.3] and [131, (4.15)], which shows

(7.17) −4hf = −4f + (ξ2f).

When n > 1 equation (7.15) follows taking into account (the line after) equation (7.14). The case n = 1 requires
some further calculations for which we refer to [131, Lemma 5.1].

The final step of the prove of Theorem 7.2 is a reduction to the corresponding Riemannian Obata theorem on a
complete Riemannian manifold. In fact, we will show that the Riemannian Hessian computed with respect to the
Levi-Civita connection D of the metric h satisfies (2.3) and then apply the Obata theorem to conclude that (M,h) is
isometric to the unit sphere. We should mention the influence of [46, 47] where the compact Sasakian case is reduced
to Theorem 2.1.

For n > 1 where we proved that A = 0 we showed the validity of the next two identities

(7.18) ∇2f(ξ, Y ) = ∇2f(Y, ξ) = df(JY ), ξ2f = −f.

Next, we show that (7.18) also holds in dimension three when the pseudohermitian torsion vanishes. In the three
dimensional case we have Ric(X,Y ) = S

2 g(X,Y ). After a substitution of this equality in (7.9), taking into account
A = 0, we obtain

(7.19) ∇2f(ξ, Z) = ∇2f(Z, ξ) =
(S − 2)

6
df(JZ).

Differentiating (7.19) and using (7.5) we find

(7.20) ∇3f(Y,Z, ξ) =
1

6

[
dS(Y )df(JZ) + (S − 2)fω(Y,Z)

]
− 1

6
(S − 2)df(ξ)g(Y, Z).

On the other hand, setting A = 0 in (7.7), we have

(7.21) ∇3f(Y,Z, ξ) = −df(ξ)g(Y,Z)− (ξ2f)ω(Y,Z).

In particular, the function ξf also satisfies (7.5). From (7.16) using again unique continuation ξf 6= 0 almost every-
where since otherwise ∇f = 0 taking into account (7.19), hence f ≡ 0, which is not possible by assumption. Now,
(7.20) and (7.21) give

(7.22)
S − 8

6
df(ξ)g(Y,Z)−

(
ξ2f +

S − 2

6

)
ω(Y,Z)− 1

6
dS(Y )df(JZ) = 0,

which implies S−8
3 df(ξ)|∇f |2 = 0. Thus, the pseudohermitian scalar curvature is constant, S = 8, invoking again

the local non-constancy. Equation (7.22) reduces then to
(
ξ2f + S−2

6

)
ω(Y,Z) = 0 since dS = 0 which yields

ξ2f = −f. The latter together with (7.19) and S = 8 imply the validity of (7.18) in dimension three.
Finally, we use the relation between D and∇, [77, Lemma 1.3] which in the case A = 0 simplifies to

(7.23) DBC = ∇BC + θ(B)JC + θ(C)JB − ω(B,C)ξ, B,C ∈ T(M),
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where J is extended with Jξ = 0. Using (7.23) together with (7.5) and (7.18) we calculate easily that (2.3) holds. The
proof of Theorem 7.2 is complete.

7.3. Proof of the Obata CR eigenvalue theorem in the compact case. Turning to Theorem 7.3 we mention that
when n = 1 we need to find an alternative way to the ’missing” equation (7.10), see the remark after (7.9). In fact,
in [132, Lemma 5.1]] it was shown that in this case (assuming the Lichnerowicz’ type condition), if 4f = 2f then
we have A(∇f,∇f) = 0 and (7.10) holds true. This is proved with an integration (using the compactness!) of the
”vertical Bochner” formula [131, Remark 3.5]

(7.24) −4(ξf)2 = 2|∇(ξf)|2 − 2df(ξ) · ξ(4f) + 4df(ξ) · g(A,∇2f)− 4df(ξ)(∇∗A)(∇f).

At this point, identities (7.9)-(7.14) are available for n ≥ 1, which imply in particular the identity in Remark 7.4 holds
true. We come to the idea of [171, Lemma 4] where integration by parts involving suitable powers of f are used in
order to conclude A = 0. By Remark 7.4 we have for any k > 0

(7.25) g(∇f,∇|A|k) = 0,

while the Lichnerowicz’ condition implies point-wise the inequality A(∇f, J∇f) ≤ 0, hence

(7.26) |∇f |2|A| = −
√

2A(∇f, J∇f).

Next we shall use an integration by parts argument similar to [171] for the case n = 1, i.e., 4f = 2f . Using (7.25),
we have

I
def
=

∫
M

|A|3f2(k+1) V olη = −1

2

∫
M

|A|3f2k+14f V olη =
2k + 1

2

∫
M

|A|3f2k|∇f |2 V olη ≡
2k + 1

2
D.

From (7.26) it follows

√
2(2k + 1)D

def
= −

∫
M

|A|2f2k+1(∇∗A)(J∇f)V olη ≤ ||∇∗A||
∫
M

|A|2f2k+1|∇f |V olη

≤ ||∇
∗A||
a

∫
M

fk+1 fk|∇f | |A|3 V olη,

assuming |A| ≥ a > 0 so |A|2 ≤ 1
a |A|

3. Now, Hölder’s inequality gives

√
2(2k + 1)D ≤ ||∇

∗A||
a

(∫
M

|A|3f2(k+1) V olη

)1/2 (∫
M

|A|3f2k|∇f |2 V olη
)1/2

=
||∇∗A||

a

(2k + 1

2
D
)1/2

D1/2 =
||∇∗A||

a

(2k + 1

2

)1/2

D, .

By taking k sufficiently large k we conclude A = 0. The assumption |A| ≥ a > 0 can be removed by employing
a suitable cutt-off function, see [171]. Once we know that M is Sasakian one applies [46, 47] where a reduction to
Theorem 2.1 is made.

8. THE QUATERNIONIC CONTACT LICHNEROWICZ AND OBATA THEOREMS

This section concentrates on the qc versions of the Lichnerowicz and Obata eigenvalue theorems. As in the Rie-
mannian and CR cases we are dealing with a sub-elliptic operator, hence the discreteness of its spectrum on a compact
qc manifold. The Lichnerowicz’ type result was found in [127] in dimensions grater than seven and in [126] in the
seven dimensional case. Remarkably, compare with the CR case, the Obata type theorem characterizing the 3-Sasakian
sphere through the horizontal Hessian equation holds under no extra assumptions on the Biquard’ torsion when the
dimension of the qc manifold is at least eleven as proven in [128]. The general qc Obata result in dimension seven
remains open.

We shall use freely the curvature and torsion tensors associated to a given qc structure as defined in Section 4.5.
As in the previous sections where eigenvalues were concerned we shall use the non-negative sub-Laplacian, 4u =

−trg(∇2u).
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8.1. The QC Lichnerowicz theorem.

Theorem 8.1 ([127, 126]). Let (M,η) be a compact QC manifold of dimension 4n + 3. Suppose, for αn =
2(2n+3)

2n+1 , βn = 4(2n−1)(n+2)
(2n+1)(n−1) and for any X ∈ H

L(X,X)
def
= 2Sg(X,X) + αnT

0(X,X) + βnU(X,X) ≥ 4g(X,X).

If n = 1, assume in addition the positivity of the P -function of any eigenfunction. Then, any eigenvalue λ of the
sub-Laplacian4 satisfies the inequality λ ≥ 4n.

The 3-Sasakian sphere achieves equality in the Theorem. The eigenspace of the first non-zero eigenvalue of the
sub-Laplacian on the unit 3-Sasakian sphere in Euclidean space is given by the restrictions to the sphere of all linear
functions by Theorem 4.1.

8.1.1. The QC P-function. We turn to the definition of the QC P-function defined in [126]. For a fixed smooth function
f we define a one form P ≡ Pf ≡ P [f ] on M , which we call the P−form of f , by the following equation

Pf (X) =

4n∑
b=1

∇3f(X, eb, eb) +
3∑
t=1

4n∑
b=1

∇3f(ItX, eb, Iteb)− 4nSdf(X) + 4nT 0(X,∇f)− 8n(n− 2)

n− 1
U(X,∇f).

The P−function of f is the function Pf (∇f). The C−operator is the fourth-th order differential operator on M ,
which is independent of f ,

f 7→ Cf = −∇∗Pf =

4n∑
a=1

(∇eaPf ) (ea).

We say that the P−function of f is non-negative if∫
M

f · Cf V olη = −
∫
M

Pf (∇f)V olη ≥ 0.

If the above holds for any f ∈ C∞o (M) we say that the C−operator is non-negative, C ≥ 0. Several important
properties of the C-operator were found in [126]. The first notable fact is that the C−operator is non-negative, C ≥
0, for n > 1. Furthermore Cf = 0 iff (∇2f)[3][0](X,Y ) = 0, where [3][0] denotes the trace-free part of the
[3]-part of the Hessian. In this case the P−form of f vanishes as well. The key for the last result is the identity∑4n
a=1(∇ea(∇2f)[3][0])(ea, X) = n−1

4n Pf (X), hence

n− 1

4n

∫
M

f · Cf V olη = −n− 1

4n

∫
M

Pf (∇f)V olη =

∫
M

|(∇2f)[3][0]|2 V olη,

after using the Ricci identities, the divergence formula and the orthogonality of the components of the horizontal
Hessian.

In dimension seven, the condition of non-negativity of theC−operator is also non-void. For example, [126] showed
that on a 7-dimensional compact qc-Einstein manifold with Scal ≥ 0 the P−function of an eigenfunction of the sub-
Laplacian is non-negative.

The proof relies on several results. First, the qc-scalar curvature of a qc-Einstein is constant [120, 123]. In the higher
dimensions this follows from the Bianchi identities. However, the result is very non-trivial in dimension seven where
the qc-conformal curvature tensorW qc, see Theorem 4.7, is invoked in the proof. Secondly, on a qc-Einstein manifold
we have ∇3f(ξs, X, Y ) = ∇3f(X,Y, ξs), the vertical space is integrable and we have ∇2f(ξk, ξj)−∇2f(ξj , ξk) =

−Sdf(ξi). Finally, a calculation shows
∫
M
|Pf |2 V olη = −(λ+ 4S)

∫
M
Pf (∇f)V olη , which implies the claim.

At this point we can give the main steps in the proof of the Lichnerowicz’ type theorem following the P−function
approach of [128] which unified the seven and higher dimensional cases of [127, 126] as we did in the CR case in the
proof of Theorem 7.1. By the QC Bochner identity established in [127], letting Rf =

∑3
s=1∇2f(ξs, Is∇f), we have

− 1

2
4|∇f |2 = |∇2f |2 − g (∇(4f),∇f) + 2(n+ 2)S|∇f |2 + 2(n+ 2)T 0(∇f,∇f) + 2(2n+ 2)U(∇f,∇f)

+ 4Rf .
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The ”difficult” term Rf can be computed in two ways. First with the help of the P -function we have∫
M

RfV olη =

∫
M

− 1

4n
Pn(∇f)− 1

4n
(4f)2 − S|∇f |2V olη +

∫
M

n+ 1

n− 1
U(∇f,∇f)V olη.

On the other hand, using Ricci’s identities g(∇2f, ωs)
def
=
∑4n
a=1∇2f(ea, Isea) = −4ndf(ξs),we have∫

M

RfV olη = −
∫
M

1

4n

3∑
s=1

g(∇2f, ωs)
2 + T 0(∇f,∇f)− 3U(∇f,∇f)V olη.

A substitution of a linear combination of the last two identities in the QC Bochner identity shows

0 =

∫
M

|∇2f |2 − 1

4n

[
(4f)2 +

3∑
s=1

[g(∇2f, ωs)]
2
]
− 3

4n
Pn(∇f)V olη

+
2n+ 1

2

∫
M

L(∇f,∇f)− λ

n
|∇f |2 V olη.

With the Lichnerowicz type assumption, L(∇f,∇f) ≥ 4|∇f |2, it follows

0 ≥
∫
M

|(∇2f)0|2 −
3

4n
Pn(∇f)V olη +

2n+ 1

2n

∫
M

(
4n− λ

)
|∇f |2V olη.

For n = 1, when U = 0 trivially, remove formally the torsion tensor U terms - the formulas are still correct, which
completes the proof of Theorem 8.1.

8.2. The QC Obata type theorem.

Theorem 8.2 ([128]). Let (M,η) be a quaternionic contact manifold of dimension 4n+ 3 > 7 which is complete with
respect to the associated Riemannian metric h = g + (η1)2 + (η2)2 + (η3)2. There exists a smooth f 6≡const, such
that,

∇df(X,Y ) = −fg(X,Y )−
3∑
s=1

df(ξs)ωs(X,Y ).

if and only if the qc manifold (M,η, g,Q) is qc homothetic to the unit 3-Sasakian sphere.

It should be noted that in dimension seven the problem is still open. The above theorem suffices to charcaterize the
cases of equality in Theorem 8.1 for n > 1.

Theorem 8.3 ([128]). Let (M,η) be a compact QC manifold of dimension 4n+3 which satisfies a Lichnerowicz’ type
bound L(X,X) ≥ 4g(X,X). Then, there is a function f with4f = 4nf if and only if

• when n > 1, M is qc-homothetic to the 3-Sasakian sphere;
• when n = 1, and M is qc-Einstein, i.e., T 0 = 0, then M is qc-homothetic to the 3-Sasakian sphere.

Next, we give an outline of the key steps in the proof of Theorem 8.2.
Part 1. The first step is to show that T 0 = 0 and U = 0, i.e., M is qc-Einstein. This is achieved by the following

argument. First we determine the remaining parts of the Hessian of f with respect to the Biquard connection in terms of
the torsion tensors. A simple argument shows that T 0(Is∇f,∇f) = U(Is∇f,∇f) = 0. Using the [−1]-component
of the curvature tensor it follows T 0(Is∇f, It∇f) = 0, s, t ∈ {1, 2, 3}, s 6= t. Then we determine the torsion tensors
T 0 and U in terms of ∇f and the tensor U(∇f,∇f). For example,

|∇f |4T 0(X,Y ) = − 2n

n− 1
U(∇f,∇f)

[
3df(X)df(Y )−

3∑
s=1

df(IsX)df(IsY )
]
.

Next, we prove formulas of the same type for∇T 0 and ∇U . In particular we have

(∇∇fU)(X,Y ) =
2(n− 1)

n+ 2
fU(X,Y ).

Remark 8.4. We pause for a moment to remark that the last equation shows in particular L∇f |U |2 = 4(n−1)
n+2 f |U |2

as in the Riemannian case for Ric0. Hence, in the compact case we can use an integration as in Proposition 2.4 to see
the vanishing of U , hence of T 0 by what we have proved.
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By what we already proved, the crux of the matter is the proof that U(∇f,∇f) = 0 (or T 0(∇f,∇f) = 0). This
fact is achieved with the help of the Ricci identities, the contracted Bianchi second identity and many properties of
the torsion of a qc-manifolds: 0 = ∇3f(ξi, Ii∇f,∇f) − ∇3f(Ii∇f,∇f, ξi) = 2

n+2fU(∇f,∇f). We finish that
|∇f | 6= 0 a.e. using unique continuation by showing that on a qc manifold with n > 1, the ”horizontal Hessian
equation” implies that f satisfies an elliptic partial differential equation,

(8.1) 4hf = (4n+ 3)f +
n+ 1

n(2n+ 1)
(∇eaT 0)(ea,∇f) +

3

(2n+ 1)(n− 1)
(∇eaU)(ea,∇f).

Part 2: By Part 1 it suffices to consider the case of a qc-Einstein structure, in which case we proceed as fol-
lows. First, we show that (M,h) (h- Riemannian metric!) is isometric to the unit round sphere by showing that
(∇h)2f(X,Y ) = −fh(X,Y ) and using Obata’s result, see Remark 2.2 and the paragraph preceding it. Next,
we show qc-conformal flatness. For this we use the form of the curvature of the round sphere, Rh(A,B,C,D) =

h(B,C)h(A,D) − h(B,D)h(A,C) and the relation between the Riemannian and Biquard curvatures and then the
formula for W qc(X,Y, Z, V ) which simplifies considerably in the qc-Einstein case. Finally, we employ a standard
monodromy argument showing that (M, g, η,Q) is qc-conformal to S4n+3, i.e., we have η = κΨF ∗η̃ for some dif-
feomorphism F : M → S4n+3, 0 < κ ∈ C∞(M), and Ψ ∈ C∞(M : SO(3)) We conclude the proof of the
qc-conformality with the 3-Sasakian sphere by invoking the qc-Liouville theorem 8.5.

Finally, a comparison of the metrics on H show the desired homothety.
Since the above proof used the qc-Liouville theorem and because of its independent interest we devote a short

section to it.

8.3. The QC Liouville theorem.

Theorem 8.5. Every qc-conformal transformation between open subsets of the 3-Sasakian unit sphere is the restriction
of a global qc-conformal transformation.

This result is proved in the more general setting of parabolic geopmetries in [38]. Here we give a relatively self-
contained proof of a version of Liouville’s theorem in the case of the quaternionic Heisenberg group and the 3-Sasakian
sphere equipped with their standard qc structures. The proof is related to the QC Yamabe problem on the 3-Sasakian
sphere since a key step is provided by the proof of [120, Theorem 1.1] in which all qc-Einstein structures qc-conformal
to the standard qc-structure on the quaternionic Heisenberg group (or sphere) were determined. Thus, our proof of
Theorem 8.5 establishes the local Liouville type property in the setting of a sufficiently smooth qc-conformal maps
relying only on the qc geometry. A very general version of the Liouville theorem was also proven by Cowling, M., &
Ottazzi, A., see [71].

In the Euclidean case Liouville [176], [177] showed that every sufficiently smooth conformal map (C4 in fact)
between two connected open sets of the Euclidean space R3 is necessarily a restriction of a Möbius transformation.
The latter is the group generated by translations, dilations and inversions of the extended Euclidean space obtained by
adding an ideal point at infinity. Liouville’s result generalizes easily to any dimension n > 3. Subsequently, Hartman
[112] gave a proof requiring only C1 smoothness of the conformal map, see also [186], [28], [135], [134] and [91] for
other proofs. A CR version of Liouville’s result can be found in [215] and [5]. Thus, a smooth CR diffeomorphism
between two connected open subsets of the 2n+1 dimensional sphere is the restriction of an element from the isometry
group SU(n+1, 1) of the unit ball equipped with the complex hyperbolic metric. The proof of Alexander [5] relies on
the extension property of a smooth CR map to a biholomorphism. Tanaka, see also [197], [44] and [60], in his study
of pseudo-conformal equivalence between analytic real hypersurfaces of complex space showed a more general result
[215, Theorem 6] showing that any pseudo-conformal homeomorphism between connected open sets of the quadric

−
r∑
i=1

|zi|2 +

n∑
i=r+1

|zi|2 = 1, (z1, . . . , zn) ∈ Cn,

is the restriction of a projective transformation of Pn(C).
Another theory began with the introduction of quasiconformal maps [103] and [199], which imposed metric con-

ditions on the maps, and with the works of Mostow [185] and Pansu [195]. In particular, in [195] it was shown that
every global 1-quasiconformal map on the sphere at infinity of each of the hyperbolic metrics is an isometry of the
corresponding hyperbolic space. The local version of the Liouville’s property for 1-quasiconformal map of class C4
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on the Heisenberg group was settled in [154] by a reduction to the CR result. The optimal regularity question for
quasiconformal maps was settled later by Capogna [39] in much greater generality including the cases of all Iwasawa
type groups, see also [216] and [40].

A closely related property is the so called rigidity property of quasiconformal or multicontact maps, also referred
to as Liouville’s property, but where the question is the finite dimensionality of the group of (locally defined) quasi-
conformal or multicontact maps, see [229], [198], [67], [191], [192],[184], [76], [162].

Besides the Cayley transform, we shall need the generalization of the Euclidean inversion transformation to the qc
setting. We recall that in [151] Korányi introduced such an inversion and an analogue of the Kelvin transform on the
Heisenberg group, which were later generalized in [68] and [65] to all groups of Heisenberg type. The inversion and
Kelvin transform enjoy useful properties in the case of the four groups of Iwasawa type of which G (H) is a particular
case. For our goals it is necessary to show that the inversion on G (H) is a qc-conformal map. In order to prove this
fact we shall represent the inversion as the composition of two Cayley transforms, see [121, 130] where the seven
dimensional case was used. Let P1 = (−1, 0) and P2 = (1, 0) be correspondingly the ’south’ and ’north’ poles of
the unit sphere S4n+3 = {|q|2 + |p|2 = 1} ⊂ Hn × H. Let C1 and C2 be the corresponding Cayley transforms
defined, respectively, on S4n+3 \ {P1} and S4n+3 \ {P2}. Note that C1 was defined in (4.31), while C2 is given by
(q′, p′) = C2

(
(q, p)

)
, q′ = −(1 − p)−1 q, p′ = (1 − p)−1 (1 + p), (q, p) ∈ S4n+3 \ {P2}The inversion

on the quaternionic Heisenberg group (with center the origin) with respect to the unit gauge sphere is the map

(8.2) σ = C2 ◦ C−1
1 : G (H) \ {(0, 0)} → G (H) \ {(0, 0)}.

In particular, σ = C2 ◦ C−1
1 is an involution on the group. A small calculation shows that σ is given by the formula

(in the Siegel model) q∗ = −p′−1 q′, p∗ = p′−1,or, equivalently, in the direct product model G (H)

q∗ = −(|q′|2 − ω′)−1 q′, ω∗ = − ω′

|q′|4 + |ω′|2
.

It follows

(8.3)

σ∗ Θ =
1

|p′|2
µ̄Θµ, µ =

p′

|p′|
, (in the Siegel model)

σ∗ Θ =
1

|q′|4 + |ω′|2
µ̄Θµ, µ =

|q′|2 + ω′

(|q′|4 + |ω′|2)
1/2

, (in the product model),

which, shows the following fundamental fact.

Lemma 8.6. The inversion transformation (8.2) is a qc-conformal transformation on the quaternionic Heisenberg
group.

As usual, using the dilations and translations on the group, it is a simple matter to define an inversion with respect
to any gauge ball.

Turning to the proof of Theorem 8.5 let Σ 6= S4n+3, noting that in the case Σ = S4n+3 there is nothing to prove.
We shall transfer the analysis to the quaternionic Heisenberg group using the Cayley transform, thereby reducing to
the case of a qc-conformal transformation F̃ : Σ̃ → G (H) between two domains of the quaternionic Heisenberg
group such that Θ = F̃ ∗Θ̃ = 1

2φ Θ̃ for some positive smooth function φ defined on the open set Σ̃. By its definition Θ

is a qc-Einstein structure of vanishinq qc-scalar curvature, hence Theorem 6.2 shows σ = 0 and F is a composition of
a translation, cf. (3.15), followed by an inversion and a homothety, cf. Lemma 8.6.

The above analysis implies that F is the restriction of an element of PSp(n + 1, 1). This completes the proof of
Theorem 8.5. Similarly to the Riemannian and CR cases, see [157], [209, Theorem VI.1.6] and [37], Theorem 8.5
and a standard monodromy type argument show the validity of the next

Theorem 8.7. If (M,η) is a simply connected qc-conformally flat manifold of dimension 4n + 3, then there is a
qc-conformal immersion Φ : M → S4n+3, where S4n+3 is the 3-Sasakian unit sphere in the (n + 1)-dimensional
quaternion space.
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9. HETEROTIC STRING THEORY RELATIONS

The seven dimensional quaternionic Heisenberg group G (H) has applications in the construction of non-trivial
solutions to the so called Strominger system in supersymmetric heterotic string theory.

The bosonic fields of the ten-dimensional supergravity which arises as low energy effective theory of the heterotic
string are the spacetime metric g, the NS three-form field strength (flux) H , the dilaton φ and the gauge connection A
with curvature 2-form FA. The bosonic geometry is of the form R1,9−d×Md, where the bosonic fields are non-trivial
only on Md, d ≤ 8. One considers the two connections ∇± = ∇g ± 1

2H, where ∇g is the Levi-Civita connection of
the Riemannian metric g. Both connections preserve the metric, ∇±g = 0 and have totally skew-symmetric torsion
±H , respectively. We denote by Rg, R± the corresponding curvature.

The Green-Schwarz anomaly cancellation condition up to the first order of the string constant α′ reads

(9.1) dH =
α′

4
8π2(p1(∇−)− p1(E)) =

α′

4

(
Tr(R− ∧R−)− Tr(FA ∧ FA)

)
,

where p1(∇−) and p1(E) are the first Pontrjagin forms with respect to a connection∇− with curvatureR and a vector
bundle E with connection A.

A heterotic geometry preserves supersymmetry iff in ten dimensions there exists at least one Majorana-Weyl spinor
ε such that the following Killing-spinor equations hold [212, 22]

(9.2) ∇+ε = 0, (dφ− 1

2
H) · ε = 0, FA · ε = 0,

where · means Clifford action of forms on spinors.
The system of Killing spinor equations (9.2) together with the anomaly cancellation condition (9.1) is known as the

Strominger system [212]. The last equation in (9.2) is the instanton condition which means that the curvature FA is
contained in a Lie algebra of a Lie group which is a stabilizer of a non-trivial spinor. In dimension 7 the largest such
a group is the exceptional group G2 which is the authomorphism group of the unit imaginary octonions. Denoting by
Θ the non-degenerate three-form definning the G2 structure, the G2-instanton condition has the form

(9.3)
7∑

k,l=1

(FA)ij(ek, el)Θ(ek, el, em) = 0.

Geometrically, the existence of a non-trivial real spinor parallel with respect to the metric connection ∇+ with totally
skew-symmetric torsion T = H leads to restriction of the holonomy group Hol(∇+) of the torsion connection ∇+.
In dimension seven Hol(∇+) has to be contained in the exceptional group G2 [93, 101, 102, 94].

The general existence result [101, 93, 94] states that there exists a non-trivial solution to both dilatino and gravitino
Killing spinor equations (the first two equations in (9.2)) in dimension d=7 if and only if there exists a globally
conformal co-calibrated G2-structure (Θ, g) of pure type and the Lee form θ7 = − 1

3 ∗ (∗dΘ∧Θ) = 1
3 ∗ (∗d∗Θ∧∗Θ)

has to be exact, i.e. a G2-structure (Θ, g) satisfying the equations

(9.4) d ∗Θ = θ7 ∧ ∗Θ, dΘ ∧Θ = 0, θ7 = −2dφ.

Therefore, the torsion 3-form (the flux H) is given by

(9.5) H = T = − ∗ dΘ− 2 ∗ (dφ ∧Θ).

A geometric model which fits the above structures was proposed in [85] as a certain T3-bundle over a Calabi-Yau
surface. For this, let Γi, 1 ≤ i ≤ 3, be three closed anti-self-dual 2-forms on a Calabi-Yau surfaceM4, which represent
integral cohomology classes. Denote by ω1 and by ω2 +

√
−1ω3 the (closed) Kähler form and the holomorphic volume

form on M4, respectively. Then, there is a compact 7-dimensional manifold M1,1,1 which is the total space of a T3-
bundle over M4 and has a G2-structure Θ = ω1 ∧ η1 + ω2 ∧ η2 − ω3 ∧ η3 + η1 ∧ η2 ∧ η3,solving the first two Killing
spinor equations in (9.2) with constant dilaton in dimension 7, where ηi, 1 ≤ i ≤ 3, is a 1-form on M1,1,1 such that
dηi = Γi, 1 ≤ i ≤ 3.

For any smooth function f on M4, the G2-structure on M1,1,1 given by

Θf = e2f
[
ω1 ∧ η1 + ω2 ∧ η2 − ω3 ∧ η3

]
+ η1 ∧ η2 ∧ η3

solves the first two Killing spinor equations in (9.2) with non-constant dilaton φ = −2f .
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To achieve a smooth solution to the Strominger system we still have to determine an auxiliary vector bundle with
an G2-instanton in order to satisfy the anomaly cancellation condition (9.1).

9.1. The quaternionic Heisenberg group. The Lie algebra g(H) of the seven dimensional group G (H) has structure
equations

(9.6) dγ1 = dγ2 = dγ3 = dγ4 = 0, dγ5 = γ12 − γ34, dγ6 = γ13 + γ24, dγ7 = γ14 − γ23.

where γ1, . . . , γ7 is a basis of left invariant 1-forms on G (H). In particular, the quaternionic Heisenebrg group G (H)

in dimension seven is anR3-bundle over the flat Calabi-Yau spaceR4 and therefore fits the geometric model described
above.

In order to obtain results in dimensions less than seven through contractions of G (H) it will be convenient to
consider the orbit of G(H) under the natural action of GL(3,R) on the span {γ5, γ6, γ7}. Accordingly let KA be a
seven-dimensional real Lie group with Lie bracket [x, x′]A = A[A−1x,A−1x′] for A ∈ GL(3,R) defined by a basis
of left-invariant 1-forms {e1, . . . , e7} such that ei = γi for 1 ≤ i ≤ 4 and (e5 e6 e7) = A (γ5 γ6 γ7)T . Hence, the
structure equations of the Lie algebra KA of the group KA are

(9.7) de1 = de2 = de3 = de4 = 0, de4+i =
3∑
j=1

aij σj , i = 1, 2, 3,

where σ1 = e12 − e34, σ2 = e13 + e24, σ3 = e14 − e23 are the three anti-self-dual 2-forms on R4 and A = {aij} is a
3 by 3 matrix. We will denote the norm of A by |A|, |A|2 =

∑3
i,j=1 a

2
ij .

Since KA is isomorphic to g(H), if KA is connected and simply connected it is isomorphic to G(H). Furthermore,
any lattice ΓA gives rise to a (compact) nilmanifold MA = KA/ΓA, which is a T3-bundle over a T4 with connection
1-forms of anti-self-dual curvature on the four torus.

The three closed hyperKähler 2-forms on R4 are given by ω1 = e12 + e34, ω2 = e13 − e24, ω3 = e14 + e23.

Following [85], for a smooth function f on R4, we consider the G2 structure on KA defined by the 3-form

(9.8) Θ̄ = e2f
[
ω1 ∧ e7 + ω2 ∧ e5 − ω3 ∧ e6

]
+ e567,

The corresponding metric ḡ on KA has an orthonormal basis of 1-forms given by

(9.9) ē1 = ef e1, ē2 = ef e2, ē3 = ef e3, ē4 = ef e4, ē5 = e5, ē6 = e6, ē7 = e7

with self-dual 2-forms ω̄i = e2fωi and anti-self-dual 2-forms σ̄i = e2fσi, i=1,2,3.
It is easy to check using (9.7) and the property σi ∧ ωj = 0 for 1 ≤ i, j ≤ 3 that the (9.4) is satisfied, i.e., the G2

structure Θ̄ solves the gravitino and dilatino equations with non-constant dilaton φ = −2f [87]. Furthermore, with
fij = ∂2f

∂xj∂xi
, 1 ≤ i, j ≤ 4, we obtain the next formula for the torsion T̄ of Θ̄, see [87] for details,

(9.10) dT̄ = −e−4f
[
4e2f + 2|A|2

]
ē1234 = −

[
4e2f + 2|A|2

]
e1234,

where4e2f = (e2f )11 + (e2f )22 + (e2f )33 + (e2f )44 is the Laplacian on R4.

9.2. The first Pontrjagin form of the (−)-connection. The connection 1-forms of a connection ∇ are determined
by ∇Xej =

∑7
s=1 ω

s
j (X)es. From Koszul’s formula, we have that the Levi-Civita connection 1-forms (ωḡ)ı̄

j̄
of the

metric ḡ are given by

(9.11)
(ωḡ)ı̄

j̄
(ēk) = − 1

2

(
ḡ(ēi, [ēj , ēk])− ḡ(ēk, [ēi, ēj ]) + ḡ(ēj , [ēk, ēi])

)
= 1

2

(
dēi(ēj , ēk)− dēk(ēi, ēj) + dēj(ēk, ēi)

)
taking into account ḡ(ēi, [ēj , ēk]) = −dēi(ēj , ēk). With the help of (9.11) we compute the expressions for the con-
nection 1-forms (ω−)ı̄

j̄
of the connection ∇−,

(9.12) (ω−)ı̄j̄ = (ωḡ)ı̄j̄ −
1

2
(T̄ )ı̄j̄ , where (T̄ )ı̄j̄(ēk) = T̄ (ēi, ēj , ēk).
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A long straightforward calculation based on (9.11), (9.12) yields that the first Pontrjagin form of ∇− is a scalar
multiple of e1234 given by [87]

(9.13) π2p1(∇−) =

[
F2[f ] +44f −

3

8
|A|24e−2f

]
e1234,

where F2[f ] is the 2-Hessian of f , i.e., the sum of all principle 2×2-minors of the Hessian, and44f = div(|∇f |2∇f)

is the 4-Laplacian of f . This formula shows, in particular, that even though the curvature 2-forms of∇− are quadratic
in the gradient of the dilaton, the Pontrjagin form of ∇− is also quadratic in these terms. Furthermore, if f depends
on two of the variables then F2[f ] = det(Hessf) while if f is a function of one variable F2[f ] vanishes.

What remains is to solve the anomaly cancellation condition. We use the G2-instanton DΛ defined in [87], which
depends on a 3 by 3 matrix Λ = (λij) ∈ gl3(R).

It is shown in [87] that the connection DΛ is a G2-instanton with respect to the G2 structure defined by (9.8) which
preserves the metric if and only if rank(Λ) ≤ 1. In this case, the first Pontrjagin form p1(DΛ) of the G2-instanton DΛ

is given by

(9.14) 8π2p1(DΛ) = −4λ2 e1234,

where λ = |ΛA| is the norm of the product matrix ΛA.
After this preparation, we are left with solving the anomaly cancellation condition dT̄ = α′

4 8π2
(
p1(∇−) −

p1(DΛ)
)

, which in general is a highly overdetermined system for the dilaton function f . Remarkably, in our case
taking into account (9.10), (9.13) and (9.14) the anomaly becomes the single non-linear equation

(9.15) 4e2f + 2|A|2 +
α′

4

[
8F2[f ] + 844f − 3|A|24e−2f + 4λ2

]
= 0.

We remind that this is an equation on R4 for the dilaton function f .

Remark 9.1. An important question interesting for both string theory and nonlinear analysis is whether the non-linear
PDE (9.15) admits a periodic solution.

In [87] was found a one dimensional (non-smooth) solution, which we describe briefly. If we assume that the
function f depends on one variable, f = f(x1), and for a negative α′ we choose 2|A|2 + α′λ2 = 0, i.e., we let
α′ = −α2 so that 2|A|2 = α2λ2. This simplifies (9.15) to the ordinary differential equation

(9.16)
(
e2f
)′

+
3

4
α2|A|2

(
e−2f

)′ − 2α2f ′3 = C0 = const.

A solution of the last equation for C0 = 0 was found in [86, Section 4.2]. The substitution u = α−2e2f allows us to
write (9.16) in the form(

e2f
)′

+
3

4
α2|A|2

(
e−2f

)′ − 2α2f ′3 =
α2u′

4u3

(
4u3 − 3

|A|2

α2
u− u′2

)
.

For C0 = 0 we solve the following ordinary differential equation for the function u = u(x1) > 0

(9.17) u′2 = 4u3 − 3
|A|2

α2
u = 4u (u− d) (u+ d) , d =

√
3|A|2/α.

Replacing the real derivative with the complex derivative leads to the Weierstrass’ equation
(
dP
dz

)2
=

4P (P− d) (P + d)for the doubly periodic Weierstrass P function with a pole at the origin. Letting τ± be the ba-
sic half-periods such that τ+ is real and τ− is purely imaginary we have that P is real valued on the lines Re z = mτ+
or Im z = imτ−, m ∈ Z. Thus, u(x1) = P(x1) defines a non-negative 2τ+-periodic function with singularities at the
points 2nτ+, n ∈ Z, which solves the real equation (9.17). By construction, f = 1

2 ln(α2u) is a periodic function with
singularities on the real line which is a solution to equation (9.15). Therefore the G2 structure defined by Θ̄ descends
to the 7-dimensional nilmanifold M7 = Γ\KA with singularity, determined by the singularity of u, where KA is the
2-step nilpotent Lie group with Lie algebra KA, defined by (9.7), and Γ is a lattice with the same period as f , i.e., 2τ+
in all variables.

In fact,M7 is the total space of a T3 bundle over the asymptotically hyperbolic manifoldM4 which is a conformally
compact 4-torus with conformal boundary at infinity a flat 3-torus. Thus, we obtain the complete solution to the
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Strominger system in dimension seven with non-constant dilaton, non-trivial instanton and flux and with a negative α′

parameter found in [87].

9.3. Solutions through contractions. A contraction of the quaternionic heisenberg algebra can be obtained consid-
ering the matrix

Aε
def
=

0 b 0

a 0 −b
0 0 ε

 .

Letting ε→ 0 intoAε we get in the limit, using (9.7), the structure equations of a six dimensional two step nilpotent Lie
algebra known as h5. On the corresponding simply connected two-step nilponent Lie groupH5 non-trivial solutions to
the Strominger system in dimension 6 were prsented in[86]. It is a remarkable fact [87] that the geometric structures,
the partial differential equations and their solutions found in dimension seven starting with the quaternionic Heisenbeg
group as above converge trough contraction to the heterotic solutions on 6-dimensional non-Kähler space onH5 found
in [86]. Moreover, using suiatable contractraction it is possible to obtain non-trivial solutions to the Strominger system
in dimension 5 as well (see [87] for details).
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[152] Korányi, A., Geometric properties of Heisenberg-type groups. Adv. in Math. 56 (1985), no. 1, 28-38. 11
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