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1. Introduction

This paper is a continuation of the project initiated in [22], where we studied the following
non-linear Dirichlet problem




Lu = − u

Q+2
Q−2

u ∈
o
D 1,2(Ω), u ≥ 0.

(1.1)

Here, G is a stratified, nilpotent Lie group, in short a Carnot group, of arbitrary step, and
Ω ⊂ G is a domain which can be bounded or unbounded. The second order differential operator
L represents a given sub-Laplacian on G. If g =

r⊕
j=1

Vj is a stratification of the Lie algebra g of

G, with [V1, Vj ] ⊂ Vj+1 for 1 ≤ j < r, [V1, Vr] = {0}, we assume that a scalar product < ·, · >
is given on g for which the V ′

j s are mutually orthogonal. The stratification allows to define a
natural family of non-isotropic dilations ∆λ : g → g as follows

∆λ(X1 + ... + Xr) = λX1 + ... + λrXr.

The exponential map exp : g → G is an analytic diffeomorphism. It induces a group of
dilations on G via the formula

δλ(g) = exp ◦∆λ ◦ exp−1(g), g ∈ G.

We denote by dH = dH(g) a fixed Haar measure on G. One has dH(δλ(g)) = λQdH(g),

where Q =
r∑

j=1
j dim Vj is the homogeneous dimension of G attached to the non-isotropic

dilations {δλ}λ>0. This number plays the role of a dimension in the analysis of Carnot groups.
Let X = {X1, . . . ,Xm} be a basis of V1 and continue to denote by X the corresponding system
of sections on G. The sub-Laplacian associated with X is the second-order partial differential
operator on G given by

L = −
m∑

j=1

X∗
j Xj =

m∑

j=1

X2
j

(we recall that in a Carnot group one has X∗
j = −Xj , see [19]). By the assumption on the Lie

algebra one immediately sees that the system X satisfies the well-known finite rank condition,
therefore thanks to Hörmander’s theorem [27] the operator L is hypoelliptic. However, it fails
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to be elliptic, and the loss of regularity is measured by the step r of the stratification of g. For
a function u on G we let |Xu| = (

∑m
j=1(Xju)2)1/2. For 1 ≤ p < Q we set

o
D 1,p(Ω) = C∞

o (Ω)
||·||D1,p(Ω) ,

where D1,p(Ω) indicates the space of functions u ∈ Lp∗(Ω) having distributional horizontal
gradient Xu = (X1u, ..., Xmu) ∈ Lp(Ω). The space D1,p(Ω) is endowed with the obvious norm

||u||D1,p(Ω) = ||u||Lp∗ (Ω) + ||Xu||Lp(Ω).

Here, p∗ = pQ
Q−p is the Sobolev exponent relative to p. The relevance of such number is em-

phasized by the following basic result due to Folland and Stein [19], [20].

Theorem (Folland and Stein). Let Ω ⊂ G be an open set. For any 1 < p < Q there ex-
ists Sp = Sp(G) > 0 such that for u ∈ C∞

o (Ω)

(∫

Ω
|u|p∗ dH(g)

)1/p∗

≤ Sp

(∫

Ω
|Xu|p dH(g)

)1/p

.(1.2)

Returning to (1.1) we see that the exponent Q+2
Q−2 = 2∗ − 1 is critical for the case p = 2

of the embedding (1.2). In [22] we studied the regularity of a weak solution of (1.1) near the
characteristic set Σ = ΣΩ,X = {g ∈ ∂Ω | Xj(g) ∈ Tg(∂Ω), j = 1, ..., m} of a bounded domain
Ω. We proved that under certain geometric hypothesis on the ground domain near Σ, such
as starlikeness and convexity (both notions are to be suitably interpreted), a weak solution
possesses bounded horizontal gradient Xu up to the characteristic set of Ω. When G is a group
of step two, we also established the boundedness of the derivative of u along the generator Z
of the non-isotropic group dilations {δλ}λ>0. These results were then applied to prove that,
under the given geometric assumptions on Ω, there exist no solutions to (1.1), other than the
trivial one. Once the main results for bounded domains were obtained, we used the conformal
invariance of the problem (1.1), and the CR Kelvin transform to obtain non-existence results
for an important class of unbounded domains in groups of Heisenberg, or Iwasawa type. Such
domains were called characteristic convex cones and half-spaces in [22].

When u is a solution of (1.1) for Ω = G, then we say that u is an entire solution. It is
important to observe that a suitable adaptation of the method of concentration of compactness
due to P. L. Lions [38], [39] allows to prove that in any Carnot group (1.1) always admits at
least one positive entire solution, see [44]. In this regard an elementary, yet crucial observation,
is that if u is an entire solution to (1.1), then such are also the two functions

τhu
def
= u ◦ τh, h ∈ G,(1.3)

where τh : G → G is the operator of left-translation τh(g) = hg, and

uλ
def
= λ(Q−2)/2 u ◦ δλ, λ > 0.(1.4)

In this paper we are only concerned with positive entire solutions of (1.1). In this context
the partial differential equation in (1.1) arises in the study of the CR Yamabe problem: Given
a compact, strictly pseudo-convex CR manifold, find a choice of contact form for which the
Webster-Tanaka pseudo-hermitian scalar curvature is constant. Such problem was solved in
most cases by Jerison and Lee in a series of important papers, see [28]-[31]. A crucial step
in their analysis was the explicit computation of the extremal functions in (1.2) in the special
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situation when p = 2 and G is the Heisenberg group Hn. Jerison and Lee made the deep
discovery that, up to group translations and dilations, a suitable multiple of the function

u(z, t) = ((1 + |z|2)2 + t2)−(Q−2)/4,(1.5)

is the only positive entire solution of (1.1) inHn. Here, we have denoted with (z, t), z ∈ Cn, t ∈ R,
the variable point in Hn.

Our final goal is to establish a similar uniqueness result for the positive entire solutions of
(1.1), when G is a group of Heisenberg type. Such problem is considerably harder than its
already difficult Heisenberg group predecessor. Groups of Heisenberg type were introduced by
Kaplan [32] in connection with hypoellipticity questions. They constitute a direct and important
generalization of the Heisenberg group, as they include, in particular, Iwasawa groups, i.e., the
nilpotent component N in the Iwasawa decomposition KAN of simple groups of rank one.
Since their introduction there has been a considerable amount of work in the study of groups
of Heisenberg type and of their geometry, we refer the reader to the papers [32], [33], [14], [34],
[35], [13], [37], [15], [16], [17], [12], [9], [22] and to the references therein.

Some years ago we discovered that for such groups problem (1.1) possesses a remarkable
one-parameter family of explicit entire solutions.

Theorem 1.1. Let G be a group of Heisenberg type. For every ε > 0 the function

Kε(g) =
(

m(Q− 2)ε2

(ε2 + |x(g)|2)2 + 16|y(g)|2
)Q−2

4

, g ∈ G,(1.6)

is a positive, entire solution of the Yamabe equation (1.1).

Theorem 1.1 appeared in [22]. The symbols x(g), y(g) in (1.6) respectively denote the projec-
tion of the exponential coordinates of the point g ∈ G onto the first and second layer of the Lie
algebra g (see (2.1), (2.2) in the next section for the relevant definitions), whereas m indicates
the dimension of the first layer. The existence of such one parameter family of solutions is due
to the dilation invariance of the equation, see (1.4). After discovering the special solutions Kε

in Theorem 1.1 we formulated the following.

Conjecture: In a group of Heisenberg type the functions Kε in (1.6) are the only non-trivial
entire solutions to (1.1). All other non-trivial solutions are obtained from (1.6) by (1.3).

If true, the conjecture would provide a generalization of the results of Jerison and Lee to the set-
ting of groups of Heisenberg type. It would also allow to compute, in this setting, the extremals
and the best constant in the Folland-Stein embedding (1.2), thus obtaining an analogue to the
famous results of Aubin [1], [2] and Talenti [43]. In this paper we provide a partial answer to
this conjecture.

Definition 1.2. Let G be a Carnot group of step two with Lie algebra g = V1 ⊕ V2. We say
that a function U : G → R has partial symmetry (with respect to a point go ∈ G) if there exists
a function u : [0,∞)× V2 → R such that for every g = exp(x(g) + y(g)) ∈ G one has

τgo U(g) = u(|x(g)|, y(g)).(1.7)

A function U is said to have cylindrical symmetry (with respect to go ∈ G) if there exists
φ : [0,∞)× [0,∞) → R for which
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τgo U(g) = φ(|x(g)|, |y(g)|),(1.8)

for every g ∈ G.

Our main result is the following.

Theorem 1.3. Let G be a group of Iwasawa type. If U 6≡ 0 is an entire solution to (1.1) having
partial symmetry, then up to group translations we must have u = Kε, for some ε > 0, where
Kε is the function in Theorem 1.1 and u is as in (1.7).

As we mentioned above, every Iwasawa group is a group of Heisenberg type. We refer the
reader to [13] and [12] for an extensive study of the geometric and analytic properties of such
groups. Theorem 1.3 is a direct consequence of the following two results.

Theorem 1.4. Let G be an Iwasawa group. Suppose U 6≡ 0 is an entire solution of (1.1). If U
has partial symmetry, then U has cylindrical symmetry.

Unlike the Euclidean case, in the Folland-Stein embedding there exists no spherical sym-
metrization, and therefore the search of minimizers cannot be reduced to an ordinary differential
equation, as in the famous results of Aubin [1], [2] and Talenti [43]. Therefore, after Theorem
1.4 is in force one still needs to confront the non-trivial problem of the uniqueness of positive
solutions of a certain non-linear pde in the Poincaré half-plane. This question is resolved by the
following theorem.

Theorem 1.5. Let U 6≡ 0 be an entire solution to (1.1) in a group of Iwasawa type G and
suppose that U has cylindrical symmetry. There exists ε > 0 such that up to a left-translation
(1.3) one has

U(g) =
(

m(Q− 2)ε2

(ε2 + |x(g)|2)2 + 16|y(g)|2
)Q−2

4

.

As a consequence of Theorem 1.3 we obtain the following result. In the sequel we denote by
o
Xps(G) the subset of

o
D 1,2(G) of the functions having partial symmetry.

Theorem 1.6. Let G be a group of Iwasawa type. Consider the restriction to
o
Xps(G) of the

embedding of
o
D 1,2(G) into L2Q/(Q−2)(G). For every u ∈

o
Xps(G) one has

(∫

G
|u|2∗dH(g)

)1/2∗

≤ S2

(∫

G
|Xu|2 dH(g)

)1/2

,

with

S2 =
1√

m(m + 2(k − 1))
4k/(m+2k) π−(m+k)/2(m+2k)

(
Γ(m + k)

Γ((m + k)/2)

)1/(m+2k)

.(1.9)

An extremal is given by the function

f(g) = γ(m, k)
[
(1 + |x(g)|2)2 + 16|y(g)|2)]−(Q−2)/4

,
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where

γ(m, k) =
[
4k π−(m+k)/2(m+2k) Γ(m + k)

Γ((m + k)/2)

](m+2(k−1))/2(m+2k)

.

Any other non-negative extremal is obtained from f by (1.3) and (1.4).

Concerning Theorem 1.6 we mention that we have recently received a preprint from W.
Beckner [4] in which the author proves the following result, among others. He considers in R2

the Baouendi-Grushin operator

Lo =
∂2

∂x2
+ 4x2 ∂2

∂y2
.

It is clear that Lo = X2
1 + X2

2 , where X1 = ∂/∂x, X2 = 2x ∂/∂y. Since [X1, X2] = 2 ∂/∂y,
Lo fulfills Hörmander finite rank condition. Moreover, as it is witnessed by Proposition 3.1 and
the ensuing Propositions 3.2, 3.3, there is a deep connection between the the sub-Laplacian on a
group of Heisenberg type G and the corresponding Baouendi-Grushin operator on its Lie algebra
g, via the natural action of the k-dimensional torus Tk on G. The sharp Sobolev embedding
proved in [4] is.

Theorem (Beckner). For f ∈ C1(R) one has

||f ||L6(R2) ≤ π−1/3

(∫

R2

[(
∂f

∂x

)2

+ 4x2

(
∂f

∂y

)2
]

dxdy

)1/2

.(1.10)

This inequality is sharp, and an extremal is given by [(1 + x2)2 + y2]−1/4.

The ideas employed in [4] are quite different from those in this paper. Inequality (1.10)
is obtained as a corollary of a beautiful sharp Sobolev inequality in the hyperbolic plane
SL(2,R)/SO(2). We note that the transformation (x, y) → (x, 4y) easily allows to recognize
that, if we denote by S∗2 the sharp constant in (1.10), then S∗2 = 4−1/3S2, where S2 is the
sharp constant obtained from Theorem 1.6 in the case m = k = 1 (we note that in such case
Q = m + 2k = 3). Since (1.9) gives S2 = 41/3π−1/3, our Theorem 1.6 is in perfect accordance
with Beckner’s result.

We now describe the plan of the paper. In section two we introduce the relevant definitions
and collect various results which are needed subsequently. In section three we prove Theorem 1.4.
To establish the latter we suitably adapt the method of moving hyper-planes due to Alexandrov
[3] and Serrin [41]. Such method was later perfected in the two celebrated papers [23], [24] by
Gidas, Ni and Nirenberg to obtain symmetry for semi-linear equations with critical growth in
Rn or in a ball. In our proof we incorporate some important simplification of the proof in [24]
due to Chen and Li [10]. We mention that a crucial role is played by Theorem 1.1 and also by
the inversion and the related Kelvin transform introduced by Korányi for the Heisenberg group
[36], and subsequently generalized to groups of Heisenberg type in [13], [12]. In section four
we prove Theorem 1.5. The proof of this result has been strongly influenced by the approach
of Jerison and Lee for the Heisenberg group, see Theorem 7.8 in [29]. After a change in the
dependent variable, which relates the Yamabe equation to a new non-linear pde in a quadrant
of the Poincaré half-plane, one is led to prove that the only positive solutions of the latter are
quadratic polynomials of a certain type. In the case of the Heisenberg group (in which, thanks
to the fact that the center is one dimensional, one has the whole half-plane at one’s disposal)
Jerison and Lee solve this problem by a beautiful, yet misterious, identity which involves the basic
Cauchy-Riemann operators ∂z, ∂z. When we tried to extend Theorem 7.8 in [29] to the setting
of groups of Heisenberg type, after several unsuccessful attempts we discovered that our initial
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approach to the problem, based on the employement of a suitable P -function, was in essence the
same as Jerison and Lee’s. Once this aspect was recognized we were able to successfully combine
their ideas with ours and complete the proof of Theorem 1.5. We have chosen to present the
details avoiding the use of complex variables. We have also tried to emphasize the connection
between the more general version of Jerison and Lee’s identity in Theorem 4.1 and the method
of the so-called P -functions introduced by Weinberger in [45] (and subsequently developed by
several authors). Given a solution u of a certain pde, such method is based on the construction
of a suitable non-linear function of u and grad u, a P -function, which is itself solution (or sub-
solution) to a related pde, and therefore satisfies a maximum principle. Although more restricted
in its applicability than the method of moving hyper-planes, the method of P -functions provides
a remarkable alternative approach to symmetry. In this respect we mention the papers [8] and
[21] which contain closely related ideas.

In closing we mention that some interesting existence and non-existence results for positive
entire solutions of the equation Lu = −K(x)up in Carnot groups were announced by G. Lu
and J. Wei in [40]. These authors also study the asymptotic behavior at infinity of the relevant
solutions. We also mention that we have recently received a preprint by I. Birindelli and J.
Prajapat in which the authors, using the method of moving hyper-planes, prove in the context of
the Heisenberg groupHn an interesting non-existence theorem for positive entire solutions having
partial symmetry of the equation Lu = −up, with sub-critical exponent p < (Q + 2)/(Q − 2).
After the present paper was accepted this result has appeared in [7].

2. Preliminaries

In this section we introduce the relevant definitions and recall some known results which will
be used in sections three and four. Consider a Carnot group of step r, G, with Lie algebra
g = ⊕r

j=1Vj . We assume that g is equipped with a scalar product with respect to which the
Vj ’s are mutually orthogonal. We use the exponential mapping exp : g → G to define analytic
maps ξi : G → Vi, i = 1, ..., r, through the equation g = exp(ξ1(g) + ξ2(g) + ... + ξr(g)). Here,
ξ(g) = ξ1(g) + ... + ξr(g) is such that g = exp(ξ(g)). With m = dim(V1), the coordinates of the
projection ξ1 in the basis X1, . . . ,Xm will be denoted by x1 = x1(g), . . . , xm = xm(g), i.e.,

xj(g) = < ξ(g), Xj > j = 1, ..., m,(2.1)

and we set x = x(g) = (x1(g), . . . , xm(g)) ∈ Rm. We also need to exploit the properties of the
exponential coordinates in the second layer of the stratification of g. We thus fix an orthonormal
basis Y1, . . . , Yk of V2 and, similarly to (2.1), we define the exponential coordinates in the second
layer V2 of a point g ∈ G by letting

yi(g) = < ξ(g), Yi >, i = 1 . . . k,(2.2)

and y = (y1, . . . , yk) ∈ Rk. We next recall the Baker-Campbell-Hausdorff formula, see, e.g., [27]

exp ξ exp η = exp (ξ + η + 1/2[ξ, η] + ...), ξ, η ∈ g,(2.3)

where the dots indicate a linear combination of terms of order three and higher which is finite
due to the nilpotency of G. When the group is of step two such terms do not appear. By
definition the order of an element in Vj is j. We will need the following two lemmas from [22].
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Lemma 2.1. Let G be a Carnot group, then

Lxj = 0, j = 1, . . . , m.

The function ψ(g)
def
= |x(g)|2 enjoys the following properties:

Lψ = 2m,(2.4)

|Xψ|2 = 4ψ.(2.5)

Lemma 2.2. Let G be a Carnot group, then

Lyi = 0, i = 1, . . . , k.

Furthermore, one has

Xl(|y|2) =
k∑

i=1

< [ξ1, Xl], Yi > yi, l = 1, ...,m,(2.6)

X2
l (|y|2) =

1
2

k∑

i=1

< [ξ1, Xl], Yi >2, l = 1, ..., m.(2.7)

From the L-harmonicity of yi we infer, in particular, that the function g → |y(g)|2 is L-
subharmonic and we obtain from (2.7)

L(|y|2) =
1
2

m∑

l=1

k∑

i=1

< [ξ1, Xl], Yi >2 ≥ 0.(2.8)

We next consider for a Carnot group of step two with Lie algebra g = V1 ⊕ V2 the map
J : V2 → End(V1) defined by

< J(ξ2)ξ′1, ξ
′′
1 > = < ξ2, [ξ′1, ξ

′′
1 ] >, for ξ2 ∈ V2 and ξ′1, ξ

′′
1 ∈ V1.(2.9)

From the definition (2.9) it is clear that

< J(ξ2)ξ1, ξ1 > = 0 for every ξ1 ∈ V1, ξ2 ∈ V2.(2.10)

It was A. Kaplan who first recognized, in his work on groups of Heisenberg type [32], the
important connection between the algebraic properties of the map J and the analytical properties
of the relevant sub-Laplacian. The next definition was introduced in [32].

Definition 2.3. A Carnot group of step two, G, is called of Heisenberg type if for every vector
ξ2 ∈ V2, with |ξ2| = 1, the map J(ξ2) : V1 → V1 defined by (2.9) is orthogonal. This implies

|J(ξ2)ξ1| = |ξ2| |ξ1|, ξ1 ∈ V1, ξ2 ∈ V2.(2.11)

It is easy to see that

< J(ξ2)ξ1, J(ξ′2)ξ1 > = < ξ2, ξ′2 > |ξ1|2, for any ξ1 ∈ V1 and ξ2, ξ
′
2 ∈ V2.(2.12)

The following properties of groups of Heisenberg type can be found in [32], [9]. For the reader’s
convenience we have collected them in one theorem.
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Theorem 2.4. Let G be a group of Heisenberg type, then

L(|y|2)(g) =
k

2
|x(g)|2

|X(|y|2)|2(g) = |x(g)|2 |y(g)|2
< X(|x|2)(g), X(|y|2)(g) > = 0.

In the rest of the paper we will use the gauge

N(g) =
(|x(g)|4 + 16|y(g)|2)1/4

.(2.13)

This choice is justified by the following fact, discovered by Kaplan [32], which generalizes an
analogous formula due to Folland [18] for the Heisenberg group Hn. In a group of Heisenberg
type the fundamental solution Γ of the sub-Laplacian L is given by the formula

Γ(g, h) = C(G) N(h−1g)−(Q−2), g, h ∈ G, g 6= h,(2.14)

where C(G) > 0 is a suitable constant. We recall that in a group of Heisenberg type the gauge
(2.13) gives rise to an actual distance ρ(g, h) = N(g−1h), see [14]. For every g ∈ G and r > 0
we denote by B(g, r) = {h ∈ G | ρ(g, h) < r} the relative ball centered at g with radius r.

In [32] Korányi introduced an inversion on the Heisenberg group and used it to define an
analogue of the Kelvin transform in such setting. Subsequently, the inversion, as well as the
Kelvin transform, were generalized in [13] and [12] to all groups of Heisenberg type. The
properties of the CR Kelvin transform are particularly far reaching in the context of Iwasawa
groups. In [22] we proved that for such groups the Kelvin transform is an isometry between the

spaces
o
D 1,2(Ω) and

o
D 1,2(Ω*), where Ω* denotes the image of Ω under the CR inversion, see

Theorem 2.8 below. Henceforth, for a Carnot group G we let G∗ = G \ {e}.

Definition 2.5. Let G be a group of Heisenberg type with Lie algebra g = V1 ⊕ V2. For g =
exp(ξ) ∈ G, with ξ = ξ1 + ξ2, the inversion σ : G∗ → G∗ is defined by

σ(g) =
(
− (|x(g)|2 I + 4J(ξ2)

)−1
ξ1,− ξ2

|x(g)|4 + 16|y(g)|2
)
,

where the map J is as in (2.9), and I denotes the identity map on V1. One easily verifies that

σ2(g) = g, g ∈ G∗.

Writing σ(g) = exp (η), with η = η1 + η2, for the image of g we obtain from Definition 2.5
and (2.11) that

|η1| =
|ξ1|

N(g)2
, and |η2| =

|ξ2|
N(g)4

.(2.15)

An immediate consequence of (2.15) is that

N(σ(g)) = N(g)−1, g ∈ G∗.(2.16)
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Definition 2.6. Let G be a group of Heisenberg type, and consider a function u on G. The
CR Kelvin transform of u is defined by the equation

u*(g) = N(g)−(Q−2) u(σ(g)), g ∈ G∗.

When G is a group of Iwasawa type, then it was proved in [12] that the inversion and the
Kelvin transform possess some remarkable properties. The next theorem collects those which
are most important in the sequel.

Theorem 2.7 (see [12]). Let G be a group of Iwasawa type. The Jacobian of the inversion is
given by

d(H ◦ σ)(g) = N(g)−2Q dH(g), g ∈ G∗.

The Kelvin transform u∗ of a function u satisfies the equation

Lu*(g) = N(g)−(Q+2)(Lu)(σ(g)), g ∈ G∗.

The next four results were established in [22].

Theorem 2.8. In a group of Iwasawa type the Kelvin transform is an isometry of
o
D 1,2(Ω) onto

o
D 1,2(Ω*), where Ω* denotes the image of Ω through the inversion σ.

Another basic property of the CR Kelvin transform is expressed by the following simple, yet
crucial, lemma.

Lemma 2.9. Given a group of Iwasawa type, let u be a solution of

{
Lu = − up, p ≥ 1,

u ∈
o
D 1,2(Ω).

(2.17)

The Kelvin transform of u, u*, satisfies the equation

Lu∗(g) = − N(g)p(Q−2)−(Q+2) u∗(g)p g ∈ Ω∗.(2.18)

In particular, when p = Q+2
Q−2 we conclude that if u satisfies problem (1.1), then u* is a solution

to the same problem in Ω*.

We will also need the following theorem on the removability of the singularity. We say that a
domain Ω∗ is a neighborhood of infinity if its complement is contained in a gauge ball centered
at the identity.

Theorem 2.10. Let G be a group of Iwasawa type. Suppose that u* is a solution of (1.1) in
Ω*, with Ω* a neighborhood of infinity. Let u be the Kelvin transform of u* defined in Ω, then
the group identity e is a removable singularity, i.e., u can be extended as a smooth function in
a neighborhood of e where the equation is satisfied.

Finally, we have a regularity result for the problem (1.1).

Theorem 2.11. Let G be a Carnot group and consider an open set Ω ⊂ G. Suppose that u be
a weak solution to the problem (1.1), then u ∈ L∞(Ω).
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We emphasize that in the above statement the open set Ω need not be bounded, and that in
fact one can take Ω = G.

We next recall a basic result of Bony [5], the strong maximum principle. For the sake of
simplicity, we specialize its statement to the context of Carnot groups. The reader should keep
in mind, however, that Theorem 2.12 holds more in general for Hörmander type operators.

Theorem 2.12. Let Ω be a connected open set in a Carnot group G. Assume that c ≤ 0 in Ω
and that c ∈ C(Ω). If u ∈ C2(Ω) satisfies

Lu + Y u + c u ≤ 0 in Ω,

then u cannot achieve a non-positive infimum at an interior point, unless u ≡ const in Ω. Here,
Y denotes a smooth section of G.

The following result constitutes a generalization of the Hopf boundary point lemma, see
section 3.2 in [25]. A version for the Heisenberg group first appeared in [6].

Theorem 2.13. In a group of Heisenberg type G let Ω ⊂ G be a connected open set possessing
an interior gauge ball B(g1, R) tangent at go ∈ ∂Ω (by this we mean that B(g1, R) ⊂ Ω and that
moreover go ∈ ∂Ω ∩ ∂B(g1, R)). Let u ∈ C2(Ω) be a non-negative solution of

Lu + c u ≤ 0,(2.19)

which is continuous at go, and such that

u(go) = 0,(2.20)

u(g) > 0, g ∈ B(g1, R) ∩ Ω.(2.21)

Assume in addition that c ∈ L∞(Ω). Let η be any exterior direction at go such that ∂u
∂η (go)

exists, then one has

∂u

∂η
(go) < 0.(2.22)

Proof. As in [22] we consider ψ(g) = |x(g)|2 and introduce the function ζ = e−αψu. A compu-
tation based on Lemma 2.1 gives

Lu = L(eαψ) ζ + eαψ Lζ + 2 α eαψ < Xψ, Xζ > .

Using (2.19) we obtain from the latter equation

(4α2ψ + 2mα + c) ζ + Lζ + 2α < Xψ,Xζ >

= e−αψ (Lu + cu) ≤ 0.

This inequality and (2.21) imply in B(go, R) ∩ Ω

Lζ + 2α < Xψ, Xζ > ≤ − [2mα + c] ζ.

At this point we choose α > 0 such that

α ≥ ||c||L∞(Ω)

2m
,
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to conclude

Lζ + 2α < Xψ, Xζ > ≤ 0 in B(go, R) ∩ Ω.(2.23)

We next use the hypothesis that Ω possesses an interior gauge ball B(g1, R) tangent at go ∈
∂Ω. By left-translation we assume without restriction that g1 = e, where e is the identity in G.
Recalling (2.13), which we now rewrite N(g) = (ψ(g)2 +16|y(g)|2)1/4, we introduce the auxiliary
function

h(g) = e−MN2(g) − e−MR2

on the ring A = A(R, r) = B(e,R) \ B(e, r), where 0 < r < R has been fixed. The constant
M > 0 will be chosen shortly. An elementary computation, using the fact that L(N2−Q)(g) = 0
for every g 6= e, see (2.14), gives

L(N2)(g) =
Q

2N2(g)
|X(N2)(g)|2, for g 6= e.(2.24)

Formula (2.24) allows to find

Lh + 2α < Xψ,Xh >(2.25)

= M e−MN2

[
(M − Q

2N2
) |X(N2)|2 − 2α < Xψ, X(N2) >

]
.

Using Theorem 2.4 we find

< Xψ,X(N2) > =
1
2

N−2 [2ψ|Xψ|2 + < Xψ, X(|y|2) >] = 4N−2 ψ2 = 4N2 |XN |4,
(2.26)

since in a group of Heisenberg type one has |XN |2 = N−2ψ, see [9]. The identity (2.26) allows
to conclude that choosing M > 0 sufficiently large in (2.25) one obtains

Lh + 2α < Xψ,Xh > ≥ 0 in A.(2.27)

The continuity of u in Ω and the compactness of ∂B(e, r) implies the existence of ε > 0 such
that the function ζ − εh ≥ 0 on ∂B(e, r). This inequality continues to hold on ∂B(e,R) since
h = 0 on that set. By (2.23), (2.27) and Theorem 2.12 we conclude ζ − εh ≥ 0 in A. Since u, ζ
and h vanish in go we conclude

∂u

∂η
(go) = eαψ(go) ∂ζ

∂η
(go) ≤ ε eαψ(go) ∂h

∂η
(go),

where η is any direction such that < η,N > (go) > 0, with N being the exterior unit normal to
∂B(e,R). At this point the conclusion follows by observing that the function N(g) is homoge-
neous of degree one and therefore denoting by Z the infinitesimal generator of group dilations
we have ZN(g) = N(g) for every g 6= e. This identity implies in particular that the Riemannian
gradient of N(g), ∇N , never vanishes in G \ {e}. Since ∂B(e,R) is a level set of N and ∇N is
directed outward, we infer

∂h

∂η
(go) = −2MRe−MR2 ∂N

∂η
(go) < 0.

This completes the proof of the theorem.
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Corollary 2.14. Let u ∈ C2(Ω) be a non-negative solution of (2.19) in Ω ⊂ G, where G is a
group of Heisenberg type, then u cannot become equal to zero at an interior point without being
identically zero in Ω.

Proof. The proof follows the lines of its elliptic counterpart, see Theorem 3.5 in [25]. Assume
by contradiction that u vanishes at a point inside Ω without being identically zero. Define
Ω+ def

= {g ∈ Ω | u(g) > 0}, which is non-empty according to the assumption, and satisfies
Ω+ ⊂ Ω, ∂Ω+ ∩ Ω 6= ∅. Let go ∈ Ω+ be closer to ∂Ω+ than to ∂Ω, with respect to the gauge
distance. Consider the largest gauge ball B ⊂ Ω+ having go as its center. Then u(g) = 0 for
some point g ∈ ∂B, while u > 0 in B. By left-translation we can assume that g = e, the group
identity. Since g is a point of an interior minimum on Ω, the Riemannian gradient at g must
vanish. This is a contradiction with Theorem 2.13, by considering for example the derivative
along the generator Z of the group dilations.

We end this section with a simple geometric result which is used in the application of the
method of moving hyper-planes, see Lemma 2.2 in [26].

Proposition 2.15. If a connected compact surface in Rk has the property that for every direc-
tion ξ ∈ Rk there exists a hyper-plane Πξ perpendicular to ξ, such that S is symmetric with
respect to Πξ, then S is a Euclidean sphere.

3. Partial symmetry implies cylindrical symmetry

In this section we use the method of moving hyper-planes to prove Theorem 1.4. We will use
the letters α, α′ to index coordinates in the first layer, and β, β′ for indexing the coordinates in
the center, so that we have 1 ≤ α, α′ ≤ m and 1 ≤ β, β′ ≤ k. Unless explicitely said otherwise,
we shall use the same letter for a function f defined on G and for the corresponding function
f ◦ exp defined on g ≈ Rm × Rk. In the next proposition we express the sub-Laplacian in the
exponential coordinates, see also [15].

Proposition 3.1. For every β = 1, ..., k, let Tβ denote the vector field

Tβ =
m∑

α,α′=1

xα′ < [Xα′ , Xα], Yβ >
∂

∂xα
.

Using the exponential coordinates we have the following formula for the sub-Laplacian of a
function u : G → R

Lu(g) = 4xu(g) +
k∑

β=1

Tβ
∂u

∂yβ
(g) +

1
4
|x(g)|2 4yu(g).(3.1)

In (3.1) we have respectively denoted with 4x and 4y the standard Laplacian in Rm and Rk.
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Proof. To avoid confusion, in the course of the proof we will keep the distinct notation v(x, y)
for the function u ◦ exp on the Lie algebra. Here, we note explicitly that g = exp(ξ(g)) =
exp(ξ1(g) + ξ2(g)) = exp (

∑m
α=1 xα(g)Xα +

∑k
β=1 yβ(g)Yβ). By the Baker-Campbell-Hausdorff

formula we have for every α = 1, ..., m

Xαu(g) =
d

dt
u(exp(ξ + tXα +

t

2
[ξ,Xα])) |t=0 =

d

dt
v(ξ + tXα +

t

2
[ξ,Xα]) |t=0(3.2)

=
∑

α′
< Xα +

1
2
[ξ, Xα], Xα′ >

∂v

∂xα′
+

∑

β

< Xα +
1
2
[ξ, Xα], Yβ >

∂v

∂yβ

=
∂v

∂xα
+

1
2

∑

β

< [ξ, Xα], Yβ >
∂v

∂yβ
,

where we have used the orthonormality of the involved vectors and the stratification of g. We
also note that

< [ξ,Xα], Yβ > = < [ξ1, Xα], Yβ > .

We thus obtain from (3.2)

Xαu =
∂v

∂xα
+

1
2

∑

β

< [ξ1, Xα], Yβ >
∂v

∂yβ
.(3.3)

Notice that [Xα, Xα] = 0 gives

∂

∂xα
< [ξ1, Xα], Yβ > =

∑

α′

∂

∂xα
xα′ < [Xα′ , Xα], Yβ > = 0.(3.4)

Obviously, we have also

∂

∂yβ′
< [ξ1, Xα], Yβ > = 0.(3.5)

Applying (3.3) twice and using (3.4) and (3.5) we find

X2
αu(g) =

( ∂

∂xα
+

1
2

∑

β′
< [ξ1, Xα], Yβ′ >

∂

∂yβ′

) ( ∂v

∂xα
+

1
2

∑

β

< [ξ1, Xα], Yβ >
∂v

∂yβ

)

=
∂2v

∂xα
2 +

∑

β

< [ξ1, Xα], Yβ >
∂2v

∂xα∂yβ
+

1
4

∑

β, β′
< [ξ1, Xα], Yβ >< [ξ1, Xα], Yβ′ >

∂2v

∂yβ∂yβ′
.

Summing in α we obtain

Lu = 4xv +
∑

β

Tβ
∂v

∂yβ
+

1
4

∑

α,β,β′
< [ξ1, Xα], Yβ >< [ξ1, Xα], Yβ′ >

∂2v

∂yβ∂yβ′
.

Now we use (2.12) and orthonormality to further reduce the last term in the right hand-side
of the latter expression
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∑

α,β,β′
< [ξ1, Xα], Yβ > < [ξ1, Xα], Yβ′ >

∂2v

∂yβ∂yβ′

=
∑

ββ′

(∑
α

< J(Yβ)ξ1, Xα > < J(Yβ′)ξ1, Xα >
) ∂2v

∂yβ∂yβ′

=
∑

β,β′
< J(Yβ)ξ1, J(Yβ′)ξ1 >

∂2v

∂yβ∂yβ′
=

∑

β,β′
< Yβ, Yβ′ > |x|2 ∂2v

∂yβ∂yβ′
= |x|24yv.

This completes the proof.

The next two results are direct consequences of Proposition 3.1.

Proposition 3.2. Suppose that U has the form U(g) = u(|x(g)|, y(g)). For every β = 1, ..., k
one has Tβu ≡ 0 and therefore (3.1) gives

LU(g) = 4xu(g) +
|x(g)|2

4
4yu(g).(3.6)

In particular, the vector fields Tβ, β = 1, ..., k, are tangential to domains with cylindrical
symmetry.

Proof. One has

Tβu =
(∑

α,α′
xα′ < [Xα′ , Xα], Yβ >

∂

∂xα

)
u

=
∑

α,α′

xα′xα

r
< J(Yβ)Xα′ , Xα >

∂u

∂r

=
1
r

< J(Yβ)ξ1, ξ1 >
∂u

∂r
= 0,

where the last equality is justified by (2.10). The proof is completed.

Proposition 3.3. Suppose that U has the form U(g) = u(|x(g)|, y(g)). One has the following
formula for the horizontal gradient of U

|XU(g)|2 = |∇xu(g)|2 +
|x(g)|2

4
|∇yu(g)|2.(3.7)

Proof. Taking the squares and summing in α equation (3.3) we obtain

|Xu|2 = |∇xu|2 +
1
4

∑
α

(∑

β

< [ξ1, Xα], Yβ >
∂u

∂yβ

)2 +
∑

β

Tβu
∂u

∂yβ
.

Since u has partial symmetry Tβu = 0 and the last term in the above equality is zero. The
second term is computed by using the orthogonality of the map J and the orthonormality of the
vector fields Xα and Yβ,
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∑
α

(∑

β

< [ξ1, Xα], Yβ >
∂u

∂yβ

)2 =
∑
α

< [ξ1, Xα],
∑

β

∂u

∂yβ
Yβ >2

=
∑
α

< J(
∑

β

∂u

∂yβ
Yβ)ξ1, Xα >2 = |J(

∑

β

∂u

∂yβ
Yβ)ξ1|2

= |x(g)|2|
∑

β

∂u

∂yβ
Yβ|2 = |x(g)|2|∇yu|2.

The proof is complete.

Remark 3.4. Proposition 3.2 underlines the important connection between the sub-Laplacian
on a group of Heisenberg type and the Baouendi-Grushin operator

4x +
|x(g)|2

4
4y

acting on functions which possess partial symmetry.

After the above preliminaries our next goal is to prove Theorem 1.4. Before starting the
proof however we introduce the relevant notation and develop some preparatory results. In
the remainder of this section we will always identify a point g = exp(ξ1 + ξ2) ∈ G with its
exponential coordinates (x, y) = (x(g), (y(g)) ∈ Rm × Rk, where x = x(g) = (x1(g), ..., xm(g))
and y = y(g) = (y1(g), ..., yk(g)) are defined by (2.1) and (2.2). For any λ ∈ R we consider the
characteristic half-spaces in G introduced in [22]

Σλ = {g = (x, y) ∈ G | y1 < λ}, λ < 0,(3.8)

and

Σλ = {g = (x, y) ∈ G | y1 > λ}, λ > 0.(3.9)

We denote by Tλ the characteristic hyper-planes ∂Σλ = {g = (x, y) ∈ G | y1 = λ}. For
any g ∈ Σλ we let gλ be the symmetric point with respect to the hyperplane Tλ, i.e., gλ =
(x(g), 2λ− y1(g), y2(g), . . . , yk(g)). Finally, we let gλ = (0, 2λ, 0, . . . , 0) ∈ Σλ be the reflexion
of (0, 0) ∈ Rm × Rk with respect to Tλ.

Next, we assume that u 6≡ 0 be an entire solution to the problem (1.1). From Theorem 2.11
we know that u ∈ L∞(G) and applying the local regularity theory of Folland and Stein [20] as it
was done in [22] we conclude u ∈ C∞(G). From the strong maximum principle, Theorem 2.12,
we have also u > 0 on G. Consider in G∗ the Kelvin transform of u, v(g) = N(g)2−Qu(σ(g)),
as in Definition 2.6. We notice explicitly that

lim
N(g)→∞

N(g)Q−2 v(g) = u(e) > 0.(3.10)

Setting vλ(g) = v(gλ), we define

w̄λ(g) =
vλ(g) − v(g)

Kε(g)
def
=

wλ(g)
Kε(g)

, g ∈ Σ̄λ,(3.11)

where Kε(g) is the function in Theorem 1.1. We observe that w̄λ ≡ 0 on Tλ. It is clear that vλ

is singular in g = gλ ∈ Σλ and that v is singular in g = e. However, thanks to Theorem 2.8,
Lemma 2.9 and Theorem 2.10 we can remove the singularities so that vλ and v become entire
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solutions to (1.1). This guarantees that w̄λ is now globally defined on G. At this point we note
explicitly the following simple, yet important, fact. For every fixed λ one has

lim
N(g)→∞

w̄λ(g) = 0.(3.12)

To prove (3.12) we first observe that

N(gλ)2−Q − N(g)2−Q = N(g)2−Q Ωλ(g),(3.13)

where |Ωλ(g)| → 0 as N(g) →∞. From (3.13) one easily infers that

lim
N(g)→∞

N(g)Q−2 vλ(g) = u(e) > 0.(3.14)

We now write

vλ(g)− v(g) = N(gλ)2−Q [u(σ(gλ))− u(σ(g))] + [N(gλ)2−Q − N(g)2−Q] u(σ(g)).(3.15)

Using (3.13) in (3.15) we obtain (3.12).
To apply the method of moving hyper-planes we establish next a result analogous to Lemma

2.1 in [10].

Lemma 3.5. (i) If inf
Σλ

w̄λ < 0, then the infimum is achieved.

(ii) There exists Ro > 0 independent of λ such that, if go ∈ Σλ is a point at which a strictly
negative inf

Σλ

w̄λ is attained, then N(go) < Ro. Furthermore, for all |λ| ≥ R2
0 we have

w̄λ ≥ 0 on Σλ.

Proof. The proof of (i) is easy. Suppose that for a certain λ one has

inf
Σλ

w̄λ = mλ < 0.

Consider the set Aλ = {g ∈ Σ̄λ | w̄λ(g) ≤ mλ/2}. The equation (3.12) and wλ ≡ 0 on Tλ

imply that Aλ is a compact set. By the continuity of w̄λ on G we conclude the validity of (i).
To prove (ii) we begin by observing that thanks to Proposition 3.2 we have

Lvλ(g) = Lv(gλ).(3.16)

Using (3.16) and the mean value theorem we find in Σλ

Lwλ(g) = Lv(gλ) − Lv(g) = v2*−1(g) − v2*−1(gλ) = − cλ(g) wλ(g),(3.17)

where

cλ(g) = (2*− 1) ψ2*−2
λ (g),(3.18)

with ψλ(g) a real number between v(gλ) and v(g). The equation satisfied by w̄λ can be obtained
from (3.17) and from wλ = Kεw̄λ,

Lw̄λ +
2

Kε
< XKε, Xw̄λ > +

(
cλ +

LKε

Kε

)
w̄λ = 0.(3.19)

From (3.10) we infer the existence of Co > 0 such that
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v(g) ≤ Co

(1 + N(g))Q−2
, g ∈ G.(3.20)

We now show that there exist ε = ε(Co) > 0 and Ro = Ro(Co) > 0 such that

cλ(g) +
LKε

Kε
(g) < 0,(3.21)

for N(g) ≥ Ro whenever w̄λ(g) < 0. For λ such that

Ωλ
def
= {g ∈ Σλ | w̄λ(g) < 0} 6= ∅

consider (3.19) on Ωλ. If g ∈ Ωλ, we have v(gλ) < v(g) and thus (3.20) gives

v(gλ) < v(g) ≤ Co

N(g)Q−2
.(3.22)

Since ψλ is between v(g) and v(gλ) we conclude from (3.18) and (3.22) that

cλ(g) ≤ (2∗ − 1)C2∗−2
o

N(g)(Q−2)(2*−2)
=

C1

N(g)4
.(3.23)

Thanks to Theorem 1.1 we have

LKε(g)
Kε(g)

= − Kε(g)2*−2 = − m(Q− 2)ε2

(ε2 + |x(g)|2)2 + 16|y(g)|2 .(3.24)

From (3.23) and (3.24) we see that

cλ(g) +
LKε(g)
Kε(g)

≤ C1

N(g)4
− m(Q− 2)ε2

(ε2 + |x(g)|2)2 + 16|y(g)|2

=
C1N(g)4 + C1(ε4 + 2ε2|x(g)|2) − m(Q− 2)ε2N(g)4

N(g)4
(
(ε2 + |x(g)|2)2 + 16|y(g)|2)

≤ (C1 −m(Q− 2)ε2)N(g)4 + 2C1ε
2N(g)2 + C1ε

4

N(g)4
(
(ε2 + |x(g)|2)2 + 16|y(g)|2) .

If we choose ε2 = 2C1
m(Q−2) in the latter inequality, the coefficient of N(g)4 is negative, and it

is then clear that we can fulfill (3.21) for N(g) ≥ Ro for some Ro = Ro(C1) > 0. From Theorem
2.12 we conclude that w̄λ cannot achieve a negative infimum for N(g) ≥ Ro in Ωλ. This proves
the first part of (ii). At this point we observe that

N(g) ≥
√
|λ|, for every g ∈ Σλ.

It is therefore clear from the above argument that if we take |λ| ≥ R2
o, then w̄λ cannot achieve

a negative infimum in Σλ. This completes the proof of Lemma 3.5.

We are now ready to present the proof of Theorem 1.4.

Proof of Theorem 1.4. Let u(x, y)
def
= τg0U(x(g), y(g)) = u(|x(g)|, y(g)) and v be the

Kelvin transform of u. Since L is a translation invariant operator, u is an entire solution to
(1.1). For ease of notation we are using the same letter to denote functions on G, which have
partial symmetry with respect to the identity element of G, and the corresponding symmetric
part defined on [0,∞) × Rk, see Definition 1.2. As already mentioned in the paragraph after
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(3.11), v is also an entire solution on G. Furthemore, from (2.15) it is easy to see that the Kelvin
transform of a function that has partial symmetry with respect to the identity element of G is
a function with partial symmetry with respect to the identity element as well. The first step of
the proof is to show that v has cylindrical symmetry.

Let λo = sup {λ ≤ 0 | w̄λ ≥ 0 in Σλ}. Clearly λo ≤ 0. Assume first that λo < 0. We want to
show that w̄λo ≡ 0. Suppose the contrary holds. Since

Lwλo + cλo wλo = 0 in Σλo ,(3.25)

with cλo bounded and wλo ≥ 0, Theorem 2.13 implies that either wλo > 0, or wλo ≡ 0.
Since we are assuming wλo 6≡ 0, we conclude wλo > 0. This implies w̄λo > 0 in Σλo . The
maximality of λo allows to find a sequence λk ↘ λo and points gk ∈ Σλk

such that

w̄λk
(gk) < 0.(3.26)

Without restriction we can suppose w̄λk
(gk) = inf

Σλk

w̄λk
, since by (i) of Lemma 3.5 the

infimum is achieved when it is strictly negative. We thus have

∇w̄λk
(gk) = 0.(3.27)

In the proof of Lemma 3.5 we saw that the sequence {gk} is uniformly bounded, in fact
N(gk) ≤ Ro. Possibly passing to a subsequence, we can thus assume that gk → go ∈ Σ̄λo . By
continuity from (3.26) and (3.27) we have w̄λo(go) ≤ 0 and ∇w̄λo(go) = 0. Since w̄λo > 0 in
Σλo , it must be go ∈ Tλo . Finally, w̄λo > 0 and ∇w̄λo(go) = 0 contradict Theorem 2.13 by
considering the derivative along any direction non-tangential to the boundary. This shows that
when λo < 0 we have wλo ≡ 0, i.e., v is symmetric with respect to the hyperplane Tλo .

If λo = 0 we can repeat the above reasoning starting from λ = +∞ and then either stop
at some λ1 > 0, or at λ1 = 0. In the former case we can finish as above. In the latter we
combine the conclusions of the two cases to see that v(g) > v(gλ) and v(g) < v(gλ), i.e.,
v(g) = v(gλ) for any g and gλ symmetric with respect to the hyperplane y1 = 0. In either
case, we conclude that v is symmetric with respect to Tλ for some λ.

We note also that the restriction of v to lines perpendicular to Tλ is a monotonically decreasing
function of the Euclidean distance to Tλ. In order to see this, suppose λo < 0 so that Tλ = Tλo .
Consider an arbitrary line l perpendicular to Tλo and let P1, P2 ∈ Σλo ∩ l, with P2 between P1

and the intersection of Tλo and l. By considering the plane Tλ with respect to which P1 and P2

are symmetric, using also the definition of λo, we see that v(P1) < v(P2). Arguing similarly in
the case of λo ≥ 0 we see that v has the described monotonicity, when restricted to any line
perpendicular to Tλo .

From Proposition 3.2, L is an operator invariant with respect to rotations in the center, when
restricted to partially symmetric functions. Since v has partial symmetry, v is invariant under
such rotations. The previous arguments show that for every direction in the center, Rk, there
exists a hyperplane T = Tλo ∩ Rk perpendicular to it, such that for every r > 0, v(r, ·) is
symmetric with respect to T . We note explicitely that T is independent of r. In addition, v
has the above monotonicity on lines perpendicular to T . Since v is a continuous function and
v(g) → 0 when N(g) → ∞, every level set is compact. Therefore, using also the monotonicity
of v, for every r ≥ 0 and every regular value a, the level set v(r, ·) = a is a connected closed
hypersurface of Rk, when it is non-empty. Furthemore, from the symmetry of v, every level set
of the function v(r, )̇ defined on Rk, is symmetric with respect to the hyperplane T . In view
of Proposition 2.15 we infer that every level set is a sphere. Spheres corresponding to different
regular values a are concentric, for otherwise we can argue as follows. Let O1 6= O2 be the
centers of two such non-concentric spheres. Let us consider the plane of symmetry, which is
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perpendicular to the direction of O1O2. Using again the monotonicity of v, we have on one
hand that it should pass through O1, while on the other it should pass through O2, which is
impossible. Finally, for any b > 0 consider the level set Λb

def
= {v > b}. Clearly Λb = ∪

a>b
Λa

and from Sard’s theorem there exists a sequence {ak} of regular values such that ak ↘ b. Since
the level sets corresponding to regular values are Euclidean balls in Rk, their union is a ball
as well. This shows that v(r, ·) is a radial function of its argument, after choosing suitably the
origin of Rk. Since the planes of symmetry are independent of r, the above choice of the origin
of Rk is independent of r as well. In other words v is a cylindrical function.

The final step is to reverse the roles of u and v, using the properties of the Kelvin transform.
In the beginning of the proof we noted that v is an entire solution that has partial symmetry
with respect to the identity element. Since the Kelvin transform is an involution, from the first
step of the proof we see that u has cylindrical symmetry, i.e., there exists an ho ∈ G (in fact ho

belongs to the center of G) such that τhou = φ(|x(g)|, |y(g)|). Therefore,

τhogoU = τhoτgoU = φ(|x(g)|, |y(g)|)
and the proof of Theorem 1.4 is complete.

4. Uniqueness of cylindrically symmetric solutions

In this section we establish the uniqueness, modulo group translations and dilations, of the
positive solutions with cylindrical symmetry to the equation

Lu = − u(Q+2)/(Q−2).(4.1)

Our main objective is to prove Theorem 1.5. As we explained in the introduction, the proof
of Theorem 1.5 is based on a beautiful idea of Jerison and Lee. The latter uses a variation
on the theme of the so-called method of P -functions, introduced by H. Weinberger in [45], see
also the book [42]. We divide the proof into several steps. The main trust of the proof will be
the establishment of Theorem 4.1, which generalizes Theorem 7.8 in [29]. We begin with some
preliminary reductions. The first observation is that if we let v = λu, then by choosing

λ =
(

Q− 2
4

)−(Q−2)/2

,(4.2)

we are reduced to consider the equation

Lv = − (
Q− 2

4
)2 v(Q+2)/(Q−2).(4.3)

Next, we introduce the function Φ = v−4/(Q−2) = h(v). Since

LΦ = h′′(v)|Xv|2 + h′(v)Lv,

we easily find that Φ must satisfy the equation
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LΦ = (
Q− 2

4
+ 1)

|XΦ|2
Φ

+
Q− 2

4
.(4.4)

At this point we assume that u, and therefore Φ, have cylindrical symmetry with respect to
the identity, i.e., there exists a function φ : [0,∞) × [0,∞) → R+ such that we can write with
g = exp(ξ1 + ξ2) ∈ G

Φ(g) = φ(|ξ1|, |ξ2|).(4.5)

By Proposition 3.2 we see that the equation (4.4) now becomes

∆ξ1 φ +
|ξ1|2

4
∆ξ2 φ = (

Q− 2
4

+ 1)
1
φ

(|∇ξ1φ|2 +
|ξ1|2

4
|∇ξ2φ|2) +

Q− 2
4

.(4.6)

Passing to the spherical coordinates r = |ξ1|, s = |ξ2|, we obtain from (4.6)

φrr +
m− 1

r
φr +

r2

4
(φss +

k − 1
s

φs)(4.7)

= (
Q− 2

4
+ 1)

1
φ

(φ2
r +

r2

4
φ2

s) +
Q− 2

4
.

We now let

y =
r2

4
, x = s,(4.8)

obtaining from (4.7)

φxx + φyy +
m

2y
φy +

k − 1
s

φs(4.9)

= (
Q− 2

4
+ 1)

φ2
x + φ2

y

φ
+

Q− 2
4

1
y
.

Defining the integers

a = k − 1 ≥ 0, b =
m

2
≥ 1, n = a + b ≥ 1,(4.10)

and recalling that Q = m + 2k, we finally re-write equation (4.9) as follows

∆φ =
n + 2

2
|∇φ|2

φ
− a

x
φx − b

y
φy +

n

2y
,(4.11)

in Ω = {(x, y) ∈ R2 | x > 0, y > 0}. We remark explicitly at this point that, without loss of
generality, we can assume that k ≥ 2, and therefore a ≥ 1. In fact, the case k = 1 corresponds
to the Heisenberg group Hn, and it has already been treated by Jerison and Lee in [29].

We now introduce the quantities

F = f − f∗, G = g + g∗,(4.12)

where

f = 2 < ∇φ,∇φx > − 2δ φxy, f∗ = φx
|∇φ|2

φ
,(4.13)
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g = − 2 < ∇φ,∇φy > + 2δ φyy, g∗ = (φy − δ)
|∇φ|2

φ
,(4.14)

and δ ∈ R will be suitably chosen subsequently. We notice that

fy + gx = 0

and therefore there exists a function P = P (x, y) such that

f = Px, − g = Py.

This gives in particular

∆P = fx − gy.(4.15)

An easy calculation shows that

P = |∇φ|2 − 2δ φy.(4.16)

We obtain from (4.16)

∆P = 2||∇2φ||2 + 2 < ∇φ,∇(∆φ) > − 2δ (∆φ)y,(4.17)

where we have denoted with ∇2φ the Hessian matrix of φ. We now use (4.11) to compute ∆P .
First, we see that

2 < ∇φ,∇(∆φ) > = − (n + 2)
|∇φ|4

φ2
+ 2(n + 2) < ∇2(∇φ),∇φ >(4.18)

− 2a

x
< ∇φ,∇φx > − 2b

y
< ∇φ,∇φy > +

2a

x2
φ2

x +
2b

y2
φ2

y − n

y2
φy.

We also find

(∆φ)y = − n + 2
2

φy|∇φ|2
φ2

+ (n + 2)
< ∇φ,∇φy >

φ
(4.19)

− a

x
φxy − b

y
φyy +

b

y2
φy − n

2y2
.

At this point we introduce the function

h = γ φ−(n+1),(4.20)

where γ = γ(x, y) is a strictly positive function on Ω which will be determined subsequently.
With F and G as in (4.12) we consider the differential expression

(hF )x − (hG)y = h (fx − gy) − h (f∗x + g∗y) + hxF − hyG(4.21)

= h [∆P − (f∗x + g∗y) +
n + 1

φ
(φyG− φxF )]

+ φ−(n+1)(γxF − γyG).

A computation gives
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f∗x + g∗y = ∆φ
|∇φ|2

φ
− |∇φ|4

φ2
+ 2

< ∇2φ(∇φ),∇φ >

φ
(4.22)

+ δ
φy|∇φ|2

φ2
− 2δ

< ∇φ,∇φy >

φ
,

φyG − φxF =
|∇φ|4

φ
− 2 < ∇2φ(∇φ),∇φ >(4.23)

+ 2δ < ∇φ,∇φy > − δ
φy|∇φ|2

φ
.

Using (4.22) and (4.23) we obtain from (4.21)

(hF )x − (hG)y = h

[
∆P − ∆φ

|∇φ|2
φ

+ (n + 2)
|∇φ|4

φ2
(4.24)

− 2(n + 2)
< ∇2φ(∇φ),∇φ >

φ
+ 2δ(n + 2)

< ∇φ,∇φy >

φ

− δ(n + 2)
φy|∇φ|2

φ2

]
+ φ−(n+1)(γxF − γyG).

At this point we use (4.17), (4.18) and (4.19) in (4.24) to obtain

(hF )x − (hG)y

(4.25)

= h

{(
2 ||∇2φ||2 − (∆φ)2

)
+ (∆φ)2 + − (n + 2)

|∇φ|4
φ2

+ 2(n + 2) < ∇2(∇φ),∇φ >

− 2a

x
< ∇φ,∇φx > − 2b

y
< ∇φ,∇φy > +

2a

x2
φ2

x +
2b

y2
φ2

y − n

y2
φy

− 2δ

(
− n + 2

2
φy|∇φ|2

φ2
+ (n + 2)

< ∇φ,∇φy >

φ

− a

x
φxy − b

y
φyy +

b

y2
φy − n

2y2

)
− ∆φ

|∇φ|2
φ

+ (n + 2)
|∇φ|4

φ2

− 2(n + 2)
< ∇2φ(∇φ),∇φ >

φ
+ 2δ(n + 2)

< ∇φ,∇φy >

φ

− δ(n + 2)
φy|∇φ|2

φ2

}
+ φ−(n+1)(γxF − γyG).

The expression in (4.25) can be simplified as follows



SYMMETRY PROPERTIES OF POSITIVE ENTIRE SOLUTIONS, ETC. 23

(hF )x − (hG)y(4.26)

= h

{[
2 ||∇2φ||2 − (∆φ)2

]
+ ∆φ

[
∆φ− |∇φ|2

φ

]

− 2a

x
< ∇φ,∇φx > − 2b

y
< ∇φ,∇φy > +

2a

x2
φ2

x +
2b

y2
φ2

y − n

y2
φy

+
2δa

x
φxy +

2δb

y
φyy − 2δb

y2
φy +

δn

y2

}

+ φ−(n+1)(γxF − γyG).

Next we evaluate the expression

∆φ

[
∆φ− |∇φ|2

φ

]
− 2a

x
< ∇φ,∇φx > − 2b

y
< ∇φ,∇φy >(4.27)

+
2a

x2
φ2

x +
2b

y2
φ2

y − n

y2
φy +

2δa

x
φxy +

2δb

y
φyy − 2δb

y2
φy +

δn

y2

=

n(n + 2)
4

|∇φ|4
φ2

− a(n + 1)
x

φx|∇φ|2
φ

− b(n + 1)
y

φy|∇φ|2
φ

+
n(n + 1)

2y

|∇φ|2
φ

+
2ab

xy
φx φy +

a(a + 2)
x2

φ2
x +

b(b + 2)
y2

φ2
y

− an

xy
φx − bn + n + 2δb

y2
φy +

n(n + 4δ)
4y2

− 2a

x
< ∇φ,∇φx > − 2b

y
< ∇φ,∇φy >

+
2δa

x
φxy +

2δb

y
φyy.

We now calculate

γxF − γyG = 2
[
γx < ∇φ,∇φx > + γy < ∇φ,∇φy >

]
(4.28)

− 2δ < ∇γ,∇φy > − < ∇γ,∇φ >
|∇φ|2

φ
+ δγy

|∇φ|2
φ

.

The next step is to compute

n + 2
n

(
∆φ − |∇φ|2

φ

)2

=
n(n + 2)

4
|∇φ|4

φ2
+ a2(1 +

2
n

)
φ2

x

x2
+ b2(1 +

2
n

)
φ2

y

y2
(4.29)

+
n(n + 2)

4
1
y2

− a(n + 2)
x

φx|∇φ|2
φ

− b(n + 2)
y

φy|∇φ|2
φ

+
n(n + 2)

2y

|∇φ|2
φ

2ab(n + 2)
n

φxφy

xy
− a(n + 2)

xy
φx − b(n + 2)

y2
φy.

Subtracting (4.29) from (4.27) we find
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∆φ

[
∆φ− |∇φ|2

φ

]
− 2a

x
< ∇φ,∇φx > − 2b

y
< ∇φ,∇φy >(4.30)

+
2a

x2
φ2

x +
2b

y2
φ2

y − n

y2
φy +

2δa

x
φxy +

2δb

y
φyy − 2δb

y2
φy +

δn

y2

− n + 2
n

(
∆φ − |∇φ|2

φ

)2

=

a

x

φx|∇φ|2
φ

+
b

y

φy|∇φ|2
φ

− n

2y

|∇φ|2
φ

− 4ab

n

φxφy

xy
+

2ab

nx2
φ2

x +
2ab

ny2
φ2

y +
2a

xy
φx

+
(2δ − 1)n

2y2
− 2a

x
< ∇φ,∇φx > − 2b

y
< ∇φ,∇φy >

+
2δa

x
φxy +

2δb

y
φyy +

b(1− 2δ)− a

y2
φy.

We now multiply equation (4.28) by γ−1 and add it to (4.30) obtaining

E
def= ∆φ

[
∆φ− |∇φ|2

φ

]
− 2a

x
< ∇φ,∇φx > − 2b

y
< ∇φ,∇φy >(4.31)

+
2a

x2
φ2

x +
2b

y2
φ2

y − n

y2
φy +

2δa

x
φxy +

2δb

y
φyy − 2δb

y2
φy +

δn

y2

− n + 2
n

(
∆φ − |∇φ|2

φ

)2

+ γ−1 (γxF − γyG)

=

a

x

φx|∇φ|2
φ

+
b

y

φy|∇φ|2
φ

− n

2y

|∇φ|2
φ

− 4ab

n

φxφy

xy
+

2ab

nx2
φ2

x +
2ab

ny2
φ2

y +
2a

xy
φx

+
(2δ − 1)n

2y2
− 2a

x
< ∇φ,∇φx > − 2b

y
< ∇φ,∇φy >

+
2δa

x
φxy +

2δb

y
φyy +

b(1− 2δ)− a

y2
φy

+ γ−1

{
2
[
γx < ∇φ,∇φx > + γy < ∇φ,∇φy >

]

− 2δ < ∇γ,∇φy > − < ∇γ,∇φ >
|∇φ|2

φ
+ δγy

|∇φ|2
φ

}
.

At this point we make a suitable choice of the function γ. We let

γ(x, y) = xayb.(4.32)

With this choice we find
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γ−1

{
2
[
γx < ∇φ,∇φx > + γy < ∇φ,∇φy >

]
(4.33)

− < ∇γ,∇φy > − < ∇γ,∇φ >
|∇φ|2

φ
+

γy

2
|∇φ|2

φ

}

=
2a

x
< ∇φ,∇φx > +

2b

y
< ∇φ,∇φy > − 2δa

x
φxy − 2δb

y
φyy

− a

x

φx|∇φ|2
φ

− b

y

φy|∇φ|2
φ

+
δb

y

|∇φ|2
φ

.

Substituting (4.33) in (4.31) gives

E =
2δb− n

2y

|∇φ|2
φ

+
2ab

nx2
φ2

x +
2ab

ny2
φ2

y +
2a

xy
φx(4.34)

− 4ab

n

φxφy

xy
+

(2δ − 1)n
2y2

+
b(1− 2δ)− a

y2
φy.

We finally choose δ in (4.34) as follows

δ =
n

2b
.(4.35)

With this choice we obtain from (4.34)

E =
2ab

nx2
φ2

x +
2ab

ny2
φ2

y − 4ab

n

φxφy

xy
(4.36)

+
2a

xy
φx − 2a

y2
φy +

an

2by2

=
2ab

n

(
φx

x
− (

φy

y
− n

2by
)
)2

.

Summarizing, we have proved the following identity.

Theorem 4.1. Let φ be a positive solution to the equation (4.11) in Ω = {(x, y) ∈ R2 | x >

0, y > 0}. With h = xaybφ−(n+1), and F and G as in (4.12), the following identity holds

(hF )x − (hG)y

= h

{[
2 ||∇2φ||2 − (∆φ)2

]

+
n + 2

n

(
∆φ − |∇φ|2

φ

)2

+
2ab

n

(
φx

x
− (

φy

y
− n

2by
)
)2}

.

Before proceeding we note explicitly that thanks to Schwarz inequality the term within square
brackets in the right-hand side of the above identity is non-negative, thus the right-hand side
is the sum of three non-negative terms. Our next step is to use the Kelvin transform to obtain
the asymptotic behavior of the function φ.
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Lemma 4.2. Let u 6≡ 0 be an entire solution to (1.1) in a group of Iwasawa type G. One
has u > 0 in G and u ∈ C∞(G). Suppose in addition that u is cylindrically symmetric, let
Φ = u−4/(Q−2) and denote by φ the symmetric part of Φ as in (4.5). One has for some constant
C = C(G) > 0 and large enough z = (x, y) ∈ Ω

C−1|z|2 ≤ φ(z) ≤ C|z|2, |∇φ(z)| ≤ C|z|, |∇2φ(z)| ≤ C.(4.37)

Proof. The proof is a simple consequence of the properties of the Kelvin transform in a group
of Iwasawa type. Let u* be the Kelvin transform of u. An easy computation, using (2.13) and
(4.8), gives N(g) = 2|z|1/2. From (4.8) and (2.15) we find also

|η1| =
y1/2

2|z| , |η2| =
x

16|z|2 .(4.38)

Notice that when z → ∞ we have |η1|, |η2| → 0. Since the Kelvin transform is an involution,
an argument very similar to that in the end of the proof of Theorem 1.4 gives the asymptotic
for u in (4.37). In fact, we see that both u and u* are entire solutions to (1.1) and they have
the decay (3.10). Using (4.8) again we obtain (4.37) for both u and u*. The bounds for the
derivatives follow from the homogeneity of the arguments of

φ(x, y) = |z|2φ*
(y1/2

2|z| ,
x

16|z|2
)
,(4.39)

where φ* =
(
u*

)− 4
Q−2 and from differentiation.

We are now ready to prove the main result of this section.

Proof of Theorem 1.5. We recall that we are assuming dimV2 = k ≥ 2, so that a ≥ 1, and
therefore h ≡ 0 on ∂Ω. We consider the functions Φ and φ as in Theorem 4.1 and Lemma 4.2.
For every R > 0 set ΩR = Ω∩B(0, R), ΓR = Ω∩ ∂B(0, R). Integrating the left-hand side of the
identity in Theorem 4.1 we find

∫

ΩR

[(hF )x − (hG)y] dxdy =
1
R

∫

ΓR

h [xF − yG] ds.(4.40)

We now use (4.12), (4.13), (4.14) and Lemma 4.2 to infer

∣∣∣∣
1
R

∫

ΓR

h [xF − yG] ds

∣∣∣∣ ≤ C R−n → 0 as R →∞.(4.41)

Combining (4.40) with (4.41) and with Theorem 4.1, we finally obtain

∫

Ω
h

{[
2 ||∇2φ||2 − (∆φ)2

]
+

n + 2
n

(
∆φ − |∇φ|2

φ

)2

+
2ab

n

(
φx

x
− (

φy

y
− n

2by
)
)2}

dxdy = 0.

The latter equation implies

2 ||∇2φ||2 = (∆φ)2, ∆φ − |∇φ|2
φ

= 0,
φx

x
=

φy

y
− n

2by
.(4.42)
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From the first two equations in (4.42) and from Lemma 4.2 we conclude in a classical fashion
(see, e.g., [45] or also [29]) that φ must be of the type

φ(x, y) = A2 (x2 + y2) + 2Aαx + 2Bβy + α2 + β2(4.43)

for some numbers A,B, α and β, with A2 = B2. On the other hand, the third equation in (4.42)
implies that must be

α = 0 and β =
n

4bB
.

Recalling that x = |ξ2|, y = |ξ1|2/4 one easily concludes from the above that

φ(|ξ1|, |ξ2|) =
A2

16

[
(
a + b

bA2
+ |ξ1|2)2 + 16|ξ2|2

]
(4.44)

for some A 6= 0. Using (4.10) we can rewrite (4.44) as follows

φ(|ξ1|, |ξ2|) =
Q− 2
16mε2

[(ε2 + |ξ1|2)2 + 16|ξ2|2](4.45)

where ε2 = Q−2
mA . Finally, keeping in mind that φ = v−4/(Q−2), and that u = (1/λ)v, with λ

given by (4.2), we obtain

u(g) = Cε ((ε2 + |x(g)|2)2 + 16|y(g)|2)−(Q−2)/4,

with Cε = [m(Q − 2)ε2](Q−2)/4. All other cylindrically symmetric solutions are obtained from
this one by left-translation. This completes the proof.

We are now ready to present the proof of Theorem 1.6.

Proof of Theorem 1.6. Let
o
D 1,2

ps (G) denote the subspace of
o
D 1,2(G) of the functions U such

that

U(g) = u(|x(g)|, y(g)),

for some function u : [0,∞) × Rk → R. We start with the observation that we can restrict our

considerations to the non-negative functions in
o
D 1,2

ps (G), i.e.,

Λ
def
= S−2

2 = inf





∫

G

|Xu|2dH(g) | u ∈
o
D 1,2

ps (G), u ≥ 0,

∫

G

|u|2∗dH(g) = 1



 .(4.46)

This follows from the invariance of the integrals under left translation, and the fact that if

U ∈
o
D 1,2(G), then also |U | ∈

o
D 1,2(G) and |XU | = |X|U || for a.e. g ∈ G. A suitable

adaptation of the method of concentration of compactness of P. L. Lions shows that the inf in

(4.46) is achieved, see [44]. Let v ∈
o
D 1,2

ps (G) be a function for which the inf is attained, thus

Λ =
∫

G

|Xv|2 dH(g),
∫

G

v2∗ dH(g) = 1.

Writing the Euler-Lagrange equation of the constrained problem (4.46) we see that v is a

positive entire solution of Lv = −Λ v(Q+2)/(Q−2). Let u
def
= Λ

1
2*−2 v, then u is a positive entire

solution of (1.1). Since u ∈
o
D 1,2

ps (G), Theorem 1.3 shows that u, modulo translations in the
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center, belongs to the one-parameter family of positive entire solutions, namely the functions
Kε in Theorem 1.1. From the definition of u, it is easy to see that

Λ =
(∫

G

|Xu|2dH(g)
) 2

Q
.

Since u is a positive entire solution of (1.1) we have
∫
G

|Xu|2 dH(g) =
∫
G

u2∗ dH(g), which

shows that Λ = ‖u‖2*−2
L2*(G)

. Note that Kε = δ1/εK, where we have let K = K1, and an easy
computation gives ‖δ1/εK‖L2*(G) = ‖K‖L2*(G). As already remarked, all considered integrals
are invariant under the translations (1.3) as well. From the above considerations we infer

Λ =


(m(Q− 2))Q/2

∫

G

1

[(1 + |x(g)|2)2 + 16|y(g)|2)]Q/2
dH(g)




2/Q

.(4.47)

To obtain the best constant S2 at this point we are left with the computation of the integral
in the right-hand side of (4.47). We begin with the following observation which is justified by
Proposition 1.2.9 and Theorem 1.2.10 in [11]. Suppose that U(g) = u(|x(g)|, |y(g)|) ∈ L1(G) is
a function with cylindrical symmetry on G. One has

∫

G

U(g)dH(g) =
∫

Rm×Rk

u(|x|, |y|)dxdy.(4.48)

Using (4.48) we find

∫

G

1

[(1 + |x(g)|2)2 + 16|y(g)|2)]Q/2
dH(g) =(4.49)

=
∫

Rm×Rk

dxdy

[(1 + |x|2)2 + 16|y|2)]Q/2
= 4−k

∫

Rm

dx

(1 + |x|2)Q−k

∫

Rk

dy

(1 + |y|2)Q/2
.

Consider now the integral

∫

Rn

dt

(1 + |t|2)a
, a >

n

2
.

One easily recognizes that

∫

Rn

dt

(1 + |t|2)a
=

σn

2
B

(n

2
, a− n

2

)
,(4.50)

where σn denotes the (n − 1)-dimensional measure of the Euclidean unit sphere in Rn, and
B(x, y) is the Beta function. Recalling the two formulas

σn =
2πn/2

Γ(n/2)
,

and

B(x, y) =
Γ(x) Γ(y)
Γ(x + y)

where Γ indicates Euler’s Gamma function, we conclude from (4.50)
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∫

Rn

dt

(1 + |t|2)a
= πn/2 Γ(a− n

2 )
Γ(a)

.(4.51)

Using (4.51) in (4.49), and recalling that Q = m + 2k, we finally obtain

∫

G

1

[(1 + |x(g)|2)2 + 16|y(g)|2)]Q/2
dH(g) = 4−k π(m+k)/2 Γ(m+k

2 )
Γ(m + k)

.(4.52)

Substitution of (4.52) into (4.47) gives

Λ = m(Q− 2)
(
4−k π(m+k)/2 Γ(m+k

2 )
Γ(m + k)

)2/Q
.

Therefore,

S2
2 =

1
m(m + 2(k − 1))

42k/(m+2k) π−(m+k)/(m+2k)

(
Γ(m + k)
Γ(m+k

2 )

)2/(m+2k)

.

This completes the proof of Theorem 1.6.

References
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