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A NOTE ON THE STABILITY OF LOCAL ZETA FUNCTIONS

DIMITER VASSILEV

(Communicated by Andreas Seeger)

Abstract. We show the existence of an interval of stability under small per-
turbations of local zeta functions corresponding to non-trivial local solutions
of an elliptic equation with Lipschitz coefficients.

Résumé. Nous démontrons l’existence d’un intervalle de stabilité pour la fonc-
tion zêta associée à une équation uniformément elliptique du second ordre à
coefficients lipschitziens.

1. Introduction and statement of the results

Let u be a function defined and continuous in the ball B2R of radius 2R centered
at the origin of RN . For 0 < 2r < R and λ ∈ C consider the integral

(1.1) Ju(λ) =
∫

Br

|u(x)|−λ dV,

where dV is the Lebesgue measure on R
N . For a fixed u the above integral converges

absolutely when the real part � (λ) of λ is negative and defines a holomorphic
function of λ in this region. A natural question is to find spaces of functions for
which Ju(λ) has a holomorphic extension to the right of the imaginary axis for any
u in the considered space. A second question is to ask if the extension is uniform
with respect to ”small” perturbations of u. In other words we are asking for classes
of functions for which

(1.2) to(u) = sup {t = � (λ) | Ju(λ) < ∞}
is strictly positive and furthermore for any t < to(u) there exists ε > 0, such that,
for every function v in the considered class of functions and satisfying

sup
x∈B2R

|u(x) − v(x)| < ε,

we have to(v) ≥ to(u).
If we consider the class of functions that are analytic near the origin, it is a

classical result that Ju(λ) can be extended to the whole complex plane as a mero-
morphic function with poles on the positive real axis; see [BG], [A], [Be], [Ka], [M]
and [Bj]. Having this we are led to study the so-called multiplicity, i.e., the value
of the smallest pole. It is clear that the stability to which we referred in the last
paragraph is a question about the multiplicity. It is important to have in mind
Varchenko’s example [V] according to which if N ≥ 3 we do not have stability in
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the class of real analytic functions. For sharp results in the setting or real analytic
functions on RN or holomorphic functions on CN we refer the reader to [DK], [N],
[PSS], [PS1] and [PS2].

Now consider the space of all local solutions of a fixed uniformly elliptic equation
with Lipschitz continuous coefficients aij ,

(1.3) Lu =
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
= 0.

The main result of this note is the following theorem.

Theorem 1.1. Let L be a uniformly elliptic operator with Lipschitz coefficients
as in (1.3) and u a non-trivial solution of Lu = 0 on B2R. There exist positive
numbers Ro and tu, such that, for any t < tu there exists an ε > 0 with the following
property: for every solution v of Lv = 0 on B2R satisfying

sup
x∈B2Ro

|u(x) − v(x)| < ε,

we have It(v)
def
=

∫
B
|v(x)|−2t dV < ∞ for any ball B, B ⊂ 2B ⊂ Ro, i.e., the

local integrability is an open condition for t’s in the interval t < tu.

As a consequence we can define the multiplicity for any solution u of the consid-
ered elliptic equation by setting

(1.4) to = sup {t | It(u) < ∞}.

The above theorem shows that to > 0 and there is an interval around t = 0 on
which we have stability under small perturbations. Our proof yields a precise lower
bound on tu; see (2.16). The very interesting questions of determining the value of
to or showing stability on the whole interval t < to are not addressed in this note.

We shall give the proof of Theorem 1.1 at the end of Section 2. In Section 3 we
make a comment on the stability in the class of holomorphic functions.

2. Ap weights and the stability for local zeta functions

The key point in the proof of Theorem 1.1 is that every solution of an elliptic
equation is an Ap weight for a suitable p > 0 (cf. [GL1], [GL2] and see also [GG])
and furthermore the Ap norm is controlled by the so-called frequency function. It
is well known that a reverse Hölder inequality implies the Ap property for some p;
[CF] and [St2]. In our case a reverse Hölder inequality will hold for the function u2

and all s > 1 (see Theorem 2.4) and our task is to write down the consequences of
this fact. For ease of exposition and in order to keep track of the dependence on
the various parameters we shall state all the results that lead to the Ap property of
solutions to elliptic equations in divergence form with Lipschitz coefficients. It is
worth comparing our result with the case of polynomial functions, namely for any
polynomial P on RN the function log |P | belongs to BMO(RN ) (cf. [St1]), hence
the finiteness of the integral It(P ) for some t > 0. Moreover (see [RSt]) |P | satisfies
a reverse Hölder inequality and |P |a is an Ap weight if −1 < ad < p − 1, p > 0,
where d is the degree of the polynomial P . However the Ap norm depends on the
degree d while in our case we have control of the Ap norm by the frequency of the
function u.
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Turning to our problem, let L be a second-order elliptic operator of the type

(2.1) Lu =
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
.

We shall assume A =
(
aij(x)

)
, i, j = 1, ..., N, is a Lipschitz, symmetric and uni-

formly elliptic matrix. Thus aij = aji and there exist λ, Λ > 0 such that for all
x, y, η ∈ RN and i, j = 1, ..., N we have

(2.2) λ|η|2 ≤ < A(x)η, η > ≤ λ−1|η|2 |aij(x) − aij(y)| < Λ|x − y|.

Let BR(x) denote the ball with center x and radius R, and let ρ be the distance
to its center. Suppose u is a weak solution of Lu = 0 in some ball BR(x). For
r < R we define, correspondingly, the height Hu(r) and the Dirichlet (energy)
integral Du(r) of u on the ball Br(x) by the following formulas:

Hx,u(r) =
∫

∂Br(x)

u2〈A∇ρ,∇ρ〉dσ,

Dx,u(r) =
∫

Br(x)

〈A∇u,∇u〉dV.

We shall use the notation H(r) and D(r) when there is no ambiguity about the
function and point we are using. The following lemma provides the key properties
of the height and energy associated to a fixed solution u. We refer the reader to
[GL1], [K] or [GV] for the proof.

Lemma 2.1. Given a linear uniformly elliptic operator L as above, there exists a
constant M = M(λ, Λ, N) such that for every solution Lu = 0 in BR(x) the height
and energy functions of u satisfy the following inequalities for a.e. r ∈ (0, R):

∣∣∣H ′
(r) − N − 1

r
H(r) − 2D(r)

∣∣∣ ≤ M H(r)

and

D
′
(r) ≥ 2

∫
∂Br(x)

〈A∇u,∇ρ〉2
〈A∇ρ, ∇ρ〉 dV +

N − 2
r

D(r) − MD(r).

Note that the inequality for the height function shows that H ′(r) > 0 for 0 <
r < N−1

M when H(r) is defined. It will be convenient then to define

(2.3) Ro = min{R

8
,

N − 1
M

},

and hence H ′(r) > 0 for 0 < r ≤ Ro. Therefore, if u is a non-trivial solution (i.e.
u 
≡ 0), then H(r) 
= 0 on (0, Ro]. We remark that if L is the laplacian, we have
M = 0 and the height is an increasing function of r wherever it is defined.

From now on we shall consider only non-trivial solutions. For every ball Br(x)
contained in the domain on which we are given a non-trivial solution, u we define
the frequency function by

Fx,u (r)
def
=

rDx,u(r)
Hx,u(r)

e2Mr.

Lemma 2.1 and the above observations imply the following monotonicity theorem.
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Theorem 2.2 ([GL1]). Suppose u is a non-trivial solution of Lu = 0 in BR(x). Un-
der these conditions the frequency Fx,u (r) is a continuous monotone non-decreasing
function of r ∈ (0, Ro], with Ro = min{R

8 , N−1
M }.

With the help of the monotonicity one proves that the measure u2 dV is a dou-
bling measure.

Theorem 2.3 ([GL1]). Suppose u is a weak non-trivial solution of (2.1) in BR(x).
With

(2.4) C̃o = λ22NeM22Fx,u (Ro),

we have ∫
B2r(x)

u2 dV ≤ C̃o

∫
Br(x)

u2 dV

for all 0 < 2r ≤ Ro.

The doubling property implies the following reverse Hölder inequalities.

Theorem 2.4 ([GL1]). Suppose u is a weak non-trivial solution of (2.1) in BR(x)
and let w = u2. There exists a positive constant µ = µ(λ, Λ, N) such that with

C̃1 =
µC̃o

2N
,

we have for all s > 1 and 0 < 2r ≤ Ro,

(2.5)
( 1
|Br(x)|

∫
Br(x)

ws dV
)1/s

≤ C̃1
1

|Br(x)|

∫
Br(x)

w dV.

The constant µ is the constant that appears in the classical Moser estimate
bounding the maximum of u2 on a ball by the average of u2 on a twice as big ball.
In the case of laplacian µ = 2N can be seen by the mean value property of harmonic
functions.

Remark 2.5. A similar result holds for w = |∇u|2 for some s > 1.

Let us denote by BRo
the ball centered at the origin with radius Ro, i.e., BRo

=
BRo

(0). Given a non-trivial solution u on some ball B2R, let Fu be the constant
defined by

(2.6) Fu = max{Fx,u(Ro) | x ∈ BRo
},

where Ro was defined in (2.3). By the monotonicity property Fu bounds the fre-
quencies on all balls B such that 2B ⊂ BRo

, where for a ball B we denote by 2B
the ball with the same center as B and twice its radius. It is clear that if u is a
non-trivial solution we have that the doubling property of Theorem 2.3 and the
reverse Hölder inequality of Theorem 2.4 hold for all balls B ⊂ 2B ⊂ BRo

with
the same constants Co and C1, replacing correspondingly C̃o and C̃1, and defined
respectively by

(2.7) Co = λ22NeM22Fu

and

(2.8) C1 = λ2µeM22Fu .

Let us also observe that since we have the reverse Hölder inequality for all s > 1
and C1 is independent of s, we can let s → ∞ and obtain the maximum of w on
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the ball. Alternatively, we can directly use Theorem 2.3 and Moser’s estimate. In
either case, the conclusion is the following theorem.

Theorem 2.6. Suppose u is a weak non-trivial solution of (2.1) in B2R, for some
R > 0. Let M = M(λ, Λ, N) be the constant from Lemma 2.1, Ro = min{R

8 , N−1
M }

and w = u2. For every ball B ⊂ 2B ⊂ BRo
the following inequality holds:

(2.9) sup
B

w ≤ C1
1
|B|

∫
B

w dV,

where C1 is defined in (2.8).

It is well known that a reverse Hölder inequality for some s > 1 implies that
w = u2 is an Ap weight for a suitable p depending on s. The Muckenhoupt weight
class Ap (BRo

) consists of all non-negative measurable functions w for which

‖w‖Ap

def
= sup

[
1
|B|

∫
B

w(x) dV

] [
1
|B|

∫
B

w(x)1−p′
dV

]p−1

< ∞,

where the sup is over all balls B with 2B ⊂ BRo
.

In our case we have (2.9), so we are going to look for an estimate on the possible
p’s. Let us define

(2.10) po = inf{p > 1|w ∈ Ap}.

In the following theorem we show that

po ≤
1 + 1

m log2 σN

1
m log2 σN

,

where σN denotes the area of the unit sphere in RN . The number m, related to
the doubling constant for dyadic cubes, is defined by

(2.11) 2m = C2
o ,

where Co is defined in (2.7). As is customary we denote w(Q) =
∫

Q
w dV and for

s ≥ 1 we define s′ to be the conjugate exponent 1
s + 1

s′ = 1.

Theorem 2.7. If u is a non-trivial solution of Lu = 0 in B2R, then u2 ∈ Ap (BRo
)

for every p = s̄′ satisfying

s̄ − 1 <
1
m

log2 σN ,

where m is the doubling exponent from (2.11) and σN is the area of the unit sphere
in R

N .

The fact that w is an Ap weight for some p was proven in Theorem 1.1 in [GL1].
Our task here is to prove the explicit bound on p, which gives a precise version of
the result in [GL1]. In the proof we will use the following lemma which is a simple
corollary from Theorem 2.6.

Lemma 2.8. Suppose w ∈ L1
loc (Ω), Ω a domain, is a non-negative function such

that (2.9) holds true for every ball B ⊂ 2B ⊂ Ω.
a) For every 0 < γ < 1 and δ given by

δ = 1 −
(1 − γ

C1

)
( ⇒ 0 < δ < 1 ),
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we have the following property: whenever E ⊂ B and w(E) ≤ γw(B) it must be

|E| ≤ δ|B|.

b) For every γ, 0 < γ < 1, and δ given by

δ =
1

σN
− 1

σN

(1 − γ

C1

)
( ⇒ 0 < δ < 1 ),

we have the following property: whenever E ⊂ Q and w(E) ≤ γw(Q), it must be

|E| ≤ δ|Q|,

where Q is any cube such that 4Q ⊂ Ω.

We note that 4Q stays for the cube with the same center as Q and four times
its size. With the help of the above lemma we can prove our main theorem.

Proof of Theorem 2.7. By the usual invariances it is enough to prove the claim for
w being a measure on a unit dyadic cube Qo satisfying

w(Qo) = |Qo| = 1.

Let m be such that 2m = C2
o . By Theorem 2.3 it follows that for any dyadic cube

Q and Q̃ a dyadic parent of Q,

(2.12) w(Q̃) ≤ 2m w(Q).

Define

f(x) =
1

w(x)
χQo

(x)

and the corresponding dyadic maximal function

Mf(x) = sup
x∈Q

1
|Q|

∫
Q

fw,

where the sup is taken over all dyadic cubes containing x. Now we have∫
Qo

w1−s̄ dV =
∫

Qo

f s̄−1 dV ≤
∫

Qo

(Mf)s̄−1 dV

≤
∫

Qo∩{Mf≤1}
(Mf)s̄−1 dV +

∞∑
k=0

∫
Ek\Ek+1

(Mf)s̄−1 dV,

where we define
Ek = {x ∈ Qo|Mf(x) > 2nk}

with n a fixed constant, to be chosen. The first integral in the above sum is bounded
by one, so we have to estimate the integrals in the sum.

For this we use the Calderon-Zygmund decomposition, i.e., given α > 0 we
decompose the set {Mf > α} as a disjoint union of dyadic cubes ∪Qj , such that,

(2.13) α <
1

|Qj |

∫
Qj

fw dV ≤ 2mα.

Furthermore, if α1 > α2, each dyadic cube in the decomposition at level α1 is
contained in a dyadic cube in the decomposition at level α2.
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Going back to the estimate of each of the terms in the sum, let us decompose
each of the sets Ek using, correspondingly, α = 2nk as described above. Therefore
we have∫

Ek\Ek+1
(Mf)s̄−1 dV ≤ 2n(k+1)(s̄−1)

∫
Ek\Ek+1

dV ≤ 2n(k+1)(s−1)|Ek|.

Note that
w(Ek ∩ Q) ≤ 2m−n w(Q),

for every cube Q in the decomposition of Ek−1. Indeed, by the properties of the
decomposition we have

w(Ek ∩ Q) =
∑
Qj

w(Qj),

where the sum is over all cubes Qj making Ek and such that Qj ⊂ Q. Using (2.13)
we obtain

w(Ek ∩ Q) =
∑
Qj

w(Qj) ≤ 1
2nk

∫
Qj

fw dV ≤ 1
2nk

∫
Q

fw dV

≤ 1
2nk

2m2n(k−1) w(Q) (Q is of height Ek−1!)

≤ 2m−n w(Q).

At this point we note that for any n > m the above inequality combined with
Lemma 2.8 gives

|Ek| ≤ δ|Q|,
where

(2.14) δ =
1

σN

[
1 −

(1 − 2m−n

C1

)]
, n > m.

Since the cubes of Ek−1 are contained in the cubes of Ek, we obtain by summing
over the cubes of Ek−1

|Ek| ≤ δ|Ek−1| ⇒ |Ek| ≤ δk.

Putting the estimates together we prove

(2.15)
∫

Qo

w1−s̄ ≤ 1 +
1
δ

∞∑
k=0

(
2n(s̄−1)δ

)k+1 = 1 +
2n(s̄−1)

1 − δ2n(s̄−1)
< ∞,

provided 2n(s̄−1)δ < 1, i.e., s̄ − 1 < 1
n log2 δ−1. Let us consider the function

log2 δ−1/n on the interval (m,∞), where δ = δ(n) is the function in (2.14). Then
clearly the integral (2.15) is finite if

s̄ − 1 < sup
n>m

log2 δ−1/n = log2 sup
n≥m

δ−1/n.

Since δ(m) = σ−1
N it follows that the integral in (2.15) is finite for any s̄ such that

s̄ − 1 < log2 δ−1/n|n=m =
1
m

log2 σN .

This concludes the proof of the theorem. �
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We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let u be a fixed non-trivial solution of Lu = 0 in B2R. Let
Ro be the constant defined in Theorem 2.2. Define the stability multiplicity of u
by

(2.16) tu =
1
m

log2 σN .

From Theorem 2.7 for t < tu we have It(u) < ∞ on any ball B with 2B ⊂ BRo
,

hence the first claim of our theorem.
To prove the stability result, it will be enough to show

(2.17) |Fu − Fv| = | sup
x∈BRo

Fx,u(Ro) − sup
x∈BRo

Fx,v(Ro)| ≤ C sup
B2Ro

|u − v|.

Indeed, assuming the above inequality and taking into account that m = 2 log2 Co

depends continuously on the quantity Fu (see (2.7) and (2.6)) it follows that there
exists an ε > 0, such that, if sup

B2Ro

|u− v| < ε and t < tu, then tu − t > |tu − tv|, and

hence t < tv.
At this point we are left with proving (2.17) to which task we turn. Let x ∈ BRo

and let v be any solution of Lv = 0 satisfying

sup
B2Ro

|u − v| <
1
2

sup
B2Ro

|u|.

We have

|Fx,u(Ro) − Fx,v(Ro)| ≤ Ro e2MRo

Hx,u(Ro)Hx,v(Ro)

[
Dx,u(Ro) |Hx,u(Ro) − Hx,u(Ro)|

+ Hx,u(r) |Dx,u(Ro) − Dx,u(Ro)|
]
.

For v as above and any y ∈ BRo
(x) the triangle inequality implies

|u2(y) − v2(y)| ≤ 5
2

sup
B2Ro

|u|.

Hence the height of v is bounded by the height of u as follows:

|Hx,u(Ro) − Hy,v(Ro)| ≤ 3
2
λNRo

N−1σN sup
B2Ro

|u| sup
BRo

|u − v|.

Furthermore, let us observe that ho = inf
x∈BRo

Hx,u(Ro) is a positive constant, ho > 0,

since u is a non-trivial solution. On the other hand, Caccioppoli’s inequality yields
for any x ∈ BRo

the inequality

|Dx,u(Ro) − Dy,v(Ro)| ≤ C sup
B2Ro

|u − v|,

with a constant C depending on Λ, λ, Ro, N and sup
B2Ro

|u|. Putting the above esti-

mates together we come to

|Fx,u(Ro) − Fx,v(Ro)| ≤ C sup
B2Ro

|u − v|,

with a constant C = C
(
λ, Λ, N, sup

B2Ro

|u|, inf
x∈BRo

∫
∂BRo (x)

u2 dσ
)
, which concludes

the proof of the theorem. �
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3. Local zeta functions for holomorphic functions

Let us now consider integrals of the type

(3.1) It(f) =
∫

Br

|f(z)|−2t dV,

where BR ⊂ C
N is the ball of radius R centered at the origin and f is holomorphic

in B2R. Using the convexity of u �→ u−t, u ∈ R, and the fact that the real and
imaginary parts of f are harmonic, we immediately obtain the following theorem.

Theorem 3.1. Let f be a not identically vanishing holomorphic function on B2Ro

and let 0 < 2r < Ro. There exists a t(f) > 0 such that for any t < t(f) there exists
an ε > 0 such that for every g holomorphic in B2Ro

and satisfying

sup
z∈B2r

|f(z) − g(z)| < ε,

we have It(g) < ∞.

As pointed out by the referee, the above theorem can also be proved by invoking
the Weierstrass Preparation theorem with parameters, as formulated for example
in [PSS].

It is an interesting question if Theorem 1.1 in the case of L being the laplacian is
in fact identical to the above theorem. We recall the following fact (see Proposition
6.2.2 of [Av]) which provides a link between the two classes of functions.

Theorem 3.2. Let h be function harmonic in the ball BR ⊂ R
n and for 0 < r < R

let h̃ be its holomorphic extension in the Lie ball Ur ⊂ CN . If

m(r) = max{|h(x)| : |x| = r}

and

M(r′) = max{|h̃(z)| : |z| = r′}, r′ <
r√
2

<
R√
2
,

then

M(r′) ≤ 3 · 2N
2 −1

(
1 − 2

r′
2

r2

)−N
2 m(r).

Recall that the Lie ball is defined by

Ur = {z ∈ C
N :

(
|z|2 + (|z|4 − |

N∑
j=1

z2
j |2)1/2

)1/2

< r}.

The above theorem can be extended to p-harmonic functions (see Theorem 6.1.1
[A]) or solutions of linear elliptic equations with real analytic coefficients ([DS] and
[E]).

Theorem 3.2 alone is not enough to show equivalence of the holomorphic and
harmonic cases since restriction of a locally integrable function to lower-dimensional
hyper-planes can result in a locally non-integrable function. It seems worth inves-
tigating if restricting holomorphic functions to a fixed lower-dimensional surface
gives rise to different stability results depending on the position of the surface.
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[Av] V. Avanissian, Cellule d’harmonicité et prolongement analytique complexe, Hermann,
Paris, 1985 MR0851008 (87j:31009)

[AKS] N. Aronszajn, A. Krzywicki, J. Szarski, A unique continuation theorem for exterior
differential forms on Riemannian manifolds, Arkiv för Matematik 4 (1962), 417-435
MR0140031 (25:3455)

[Be] I. N. Bernstein, Analytic continuation of generalized functions with respect to a parameter,
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