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ARTICLE INFO ABSTRACT

Automatic negotiation pricing and differential pricing aim to provide different customers with products/
services that adequately meet their requirements at the “right” price. This often takes place with the
purchase of expensive products/services and in the business-to-business context. Effective negotiation pric-
ing can help enhance a company’s profitability, balance supply and demand, and improve the customer
satisfaction. However, determining the “right” price is a rather complex decision-making problem that puz-
zles pricing managers, as it needs to consider information from many constituents of the purchase channel.
To further advance this line of research, this study proposes a systematic and learning approach that consists
of three different types of fuzzy systems (FSs) to provide intelligent decision support for negotiation pric-
ing. More specifically, the three FSs include: 1) a standard FS, which is a typical multiple inputs and single
output FS that forms a mathematical mapping from the input space to the output space; 2) an SFS-SISOM,
which is a linear fuzzy inference model with a single input and a single output module; and 3) a hierarchical
FS, which consists of several FSs in a hierarchical manner to perform fuzzy inference. To address the existing
problem of a standard FS suffering from the high-dimensional problem with a large number of influential
factors, a generalized type of FS (named hierarchical FS), including its mathematical models and suitabil-
ity for tackling the negotiation pricing problem, is introduced. In particular, a proof-of-concept prototype
system that integrates these three FSs is also developed and presented. From a system design perspective,
this artifact provides immense potential and flexibility for end users to choose the most suitable model
for the given problem. The utility and effectiveness of this proposed system is illustrated and examined by
three experimental datasets that vary from dimensionality and data coverage. Moreover, the performances
of three different approaches are compared and discussed with respect to some important properties of
decision support systems (DSSs).
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1. Introduction

Intelligent negotiation pricing and differential pricing are preva-
lent in retailing and business-to-business (B2B), and it is playing an
increasingly important role in electronic businesses. In traditional
retailing, it is natural to provide standard products and services to
all customers at a standard price. In recent years, with the rapid
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development of marketing science, it is well recognized that differ-
ent marketing and pricing strategies should be applied to different
segments of customers, because differential pricing can substantially
enhance organizational profitability and improve customer satis-
faction. This emerging phenomenon often occurs in the purchase
of expensive products/services (e.g., cars, houses, and systems). In
particular, tailor-made products/services require a sales process to
negotiate and settle the final price with customers individually.
Furthermore, the outcomes of negotiation pricing and differential
pricing often have a long-term impact on the organizational supply
chain relationship and the reputation of business in the B2B arena.
In supply chain management, for instance, price negotiation takes
place during annual price reviews, thereby providing an opportu-
nity for suppliers to adjust prices in response to recent changes in
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costs, as well as the customer relationships [20,21]. Many examples
of this scenario can be found in the industry. For example, broad-
band wireless service providers may provide differentiated services
to their customers with a variety of customized prices [9]; theaters
provide personalized prices of last-minute tickets depending on the
time remaining and the customer’s location [15].

To increase the effectiveness and efficiency of negotiation pricing,
companies often delegate certain degrees of pricing authority to sales
representatives who have direct contact with and better knowledge
of customers. The agreed price will then be approved by the pricing
manager. However, the salespeople may have different sales skills
and preferences, as empirical findings have revealed that sales rep-
resentatives might offer too many price concessions in order to
ensure the order [30]. Therefore, from the perspective of pricing
managers, disclosing the reservation price to all human agents is
unfavorable. In essence, decision-making for negotiation pricing is
a rather complicated process because it needs to consider informa-
tion from a plethora of organizational dimensions to identify the
right price for the company. It is worth noting that negotiation pric-
ing does not support the entire dynamic and interactive process of
price negotiation. Instead, it supports the most fundamental problem
in the price negotiation process, which helps pricing managers to
identify the right price when offering the unique product/service to
each individual customer.

Prior research efforts have been devoted to providing decision
support for negotiation pricing through different techniques,
including game theory (GT) [9,34], neural networks [2,20], expert
systems [4], case-based reasoning [15], and fuzzy logic [12,17,18].
Notwithstanding, certain drawbacks and challenges still exist with
these approaches because some hypothetical assumptions are
difficult to achieve in real scenarios, and the assessment of utility
functions is not feasible in many studies due to heterogeneity
and incidental parameters problems. Expert systems are heavily
reliant on expert knowledge and/or static negotiation strategies.
Hence, capturing knowledge in manual ways for the resultant
system would be less flexible and inefficient to handle the dynamic
changes and new cases in negotiations. Similarly, the neural network
approach [2,20] is limited in its interpretability, and its derived
results are questionable for the end users.

These extant approaches should resort to adequate and precise
information provided by negotiation parties for decision making.
However, uncertain information is often inherent in the dynamic
negotiation environments of real negotiation scenarios. The involve-
ment of uncertain information is an extremely imperative but often
under-addressed issue in negotiation pricing. Fuzzy set theory [32]
is well regarded as a useful tool for handling uncertain informa-
tion, and preserving transparency and interpretability in modeling.
Recently, several research efforts [12,17,18,34] have employed this
technique to provide decision support for negotiation pricing. In
essence, the majority of the existing approaches either focus on the
representation of involved uncertain attributes by using linguistic
terms, or employ expert knowledge to build static fuzzy rule-based
systems for reasoning. Yet, slight changes in negotiation conditions
may necessitate substantial expert interventions to modify the
corresponding rules to reflect the new conditions. Moreover, it is
difficult to validate and assess the quality of knowledge captured
from experts. Therefore, it is more desirable to build a fuzzy sys-
tem (FS) that would automatically learn from historical records to
generate the fuzzy rules, rather than completely depending on exter-
nal knowledge. Additionally, when the number of influential factors
is large, a standard FS easily suffers from the problem of dimension-
ality, since the number of required modeling parameters and fuzzy
rules exponentially increases with the number of involved attributes.
As such, dealing with uncertain information within negotiation pric-
ing is of particular interest to researchers and practitioners. Given
the different features (e.g., dimensionality and data coverage) of

the available historical dataset, choosing the most appropriate FSs
is another crucial task faced by the end users of decision support
systems (DSSs).

In an effort to remedy these pressing issues and challenges, this
study substantially extends the initial work of [8], and proposes a
systematic and learning approach to provide decision support for
negotiation pricing through FS theory. In essence, this study con-
cerns bilateral negations on the price, and considers the negotiation
pricing problem particularly from the seller’s point of view to pro-
vide intelligent decision support for pricing managers. Given a set
of historical records, mathematical relationships between influential
factors and the proposed price will be built by both learning from the
data itself and integrating expert knowledge. It is believed that the
proposed model can be leveraged to better predict the will-to-pay
and other reference prices (e.g., reservation price, target price, and
initial price) for unforeseeable transactions. Beyond the simplified
FS with a single input and a single output module (SFS-SISOM) that
has been presented in [8], this work employs the hierarchical fuzzy
system (HFS) approach, which is effective for tackling the dimen-
sionality problem to build predictive models for negotiation pricing.
The performances of three approaches (i.e., standard FS, SFS-SISOM,
and HFS) are further compared and discussed from different perspec-
tives, including interpretability, accuracy, generality, computational
cost, and applicability. Moreover, a prototype of an intelligent DSS
for negotiation pricing is designed and developed with an integration
of these three fuzzy approaches. The IT artifact provides substantial
potential and flexibility for end users to choose the most suitable
model for the existing negotiation pricing problem.

In the general context of DSS, it is worth distinguishing the
features of the proposed negotiation pricing DSS. Most extant studies
have been devoted to finding, from a set of known feasible deci-
sions, the best decision to fit with the given set of decision criteria
or maximizing the known utility functions. Therefore, these stud-
ies can be regarded as DSS with complete and certain information,
and the dominant approaches in DSS are decision analysis, ranking,
and optimization methods. For the negotiation pricing DSS, however,
the situation is very different because the best decision is attain-
able, and it is the highest price a customer is willing to pay. Yet, the
actual problem is that the highest willing-to-pay price is unknown.
Therefore, this type of decision-making problem requires DSS with
uncertain information. As the distinguishing feature here is the infor-
mation’s uncertainty, the dominant approaches in most existing DSS
are no longer applicable and a new approach is needed.

This paper is organized as follows: Section 2 reviews the related
work of negotiation pricing decision support, and introduces the HFS
and its challenges. In Section 3, a systematic approach employing
three different types of FS is proposed and presented to provide deci-
sion support for intelligent negotiation pricing. The applicability and
utility of the proposed approach is demonstrated and tested against
three datasets in Section 4, and the derived results are compared
and discussed in Section 5. In Section 6, a prototype system is devel-
oped and presented to provide a proof-of-concept for the proposed
work. The final section concludes this paper and suggests further
work directions.

2. Related work
2.1. Negotiation pricing decision support

Negotiation is a crucial activity in business, and is a complex,
time consuming, and iterative process which might involve intensive
information exchange and processing. In most business negotiations,
price is the most important attribute. According to utility theory,
in a multi-issue negotiation problems, a utility function can be
employed to model price, such that multi-criteria can be converted
and evaluated by one dimension [13]. Negotiation pricing aims to
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identify a mutually beneficial price for both seller and buyer. This can
often be achieved by iterative one-to-one interactions. An effective
negotiation pricing DSS may offer many benefits, such as maximizing
the company’s profitability, maintaining good customer relations,
balancing supply and demand, and improving inventory manage-
ment. Much work has been done recently on negotiation pricing
decision support in the areas of influential factor identification,
modeling negotiation behavior, user utility elicitation, and price pre-
diction by employing various techniques. A summary of recent works
on decision support for negotiation pricing is presented in Table 1.

For identifying and analyzing the underlying relationships
between influential factors and the negotiation price, the pioneering
work of [10] investigates the relationship between car price and
buyer attributes (e.g., income, race, and gender). Recently, more
efforts have been conducted to explore how reference prices influ-
ence the final price in negotiations and analyze their importance
(e.g., [1,13,20-22]). The reference prices can refer to the initial
price, participants’ reservation prices (i.e., the walk-away prices),
and participants’ target prices. Having recognized the importance
of these reference prices, some works aim to employ both parties’
references prices to accelerate and improve the negotiation pro-
cess. A common approach is to require both the buyer and the
seller to report their reference prices to a third-party before negoti-
ations. If the zone of potential agreement is empty, the negotiation
will not be launched (e.g., [13]). A classic approach to model the
negotiation behavior of participants is the well-known GT, which
emphasizes the interactions between buyers and sellers, and has
been widely applied in bargaining problems [9,24,34]. Some of
these game-theoretical models often assume that participants would
behave rationally and strategically to optimize their negotiation out-
come based on symmetrically available information. However, such
assumptions are difficult to achieve in real scenarios, and limit the
applicability of GT approaches for solving realistic negotiation prob-
lems. In principle, GT is a utility-based approach that relies on a
mathematical concept of optimal convergence where both parties’
utility functions are defined and optimized. However, the assessment
of utility functions is a time-consuming and error-prone process.

The above approaches mainly rely on adequate and precise
information for negotiation pricing decision support. In recent years,
researchers have become increasingly recognizant of the impor-
tance of the uncertain information inherent in dynamic negotia-
tion environments. For instance, it is not easy to precisely mea-
sure certain influential factors of negotiation pricing, such as cus-
tomer values, customer’s knowledge about the product, and the
degree of product popularity. In literature, FSs have been widely
regarded as appropriate tools for handling uncertain information,
and they have been employed to deal with the negotiation pricing
problem [12,17,18,34]. The majority of the existing systems gen-
erally either employs linguistic terms to represent and fuzzify the
involved uncertain attributes, or rely on expert knowledge and/or
a static strategy to generate decision-making rules. However, such
expert-defined and static fuzzy rules are rather limited. It has been
reported in [26] that only when the problem domain is certain, small,
and loosely coupled, can the knowledge be captured through man-
ual methods such as interviews and observations. Also, these static
fuzzy rules are inefficient to response the changes of negotiation
conditions.

To sum up, providing efficient and intelligent decision support
for negotiation pricing is not an easy task. This is evident in the
aforementioned drawbacks and challenges of existing approaches.
Applying computational intelligent methods to support negotiation
pricing decision making is gaining increased interest. In particular,
the approach, which employs computational intelligence and soft
computing to discover negotiation pricing patterns and behaviors
from historical data and human knowledge, seems appropriate to
overcome the existing limitations and handle the problem at hand.

2.2. Hierarchical fuzzy systems

The hierarchical fuzzy system (HFS) was firstly proposed to
control a steam generator’s drum level [23]. It has been proved that
the HFS is capable of approximating any non-linear function on a
compact set to arbitrary accuracy [29]. As such, HFS has been applied,
together with other machine learning techniques, to a variety of
application areas (e.g., [14,16,19]). Besides its universal approxima-
tion, HFS is also capable of relieving the high-dimensional problem
by reducing the number of required fuzzy rules [11,29]. More specif-
ically, a special case of an incremental hierarchical structure [5] and
the Takagi-Sugeno-Kang (TSK) FS [25] was proposed in [29], and has
been proved that the number of required fuzzy rules in HFS increases
linearly with the number of involved input attributes, rather than
exponential as in a standard FS. However, since the THEN part of
TSK FS is a polynomial of the input attributes, more parameters are
needed to achieve a good universal approximation capability. In [11],
the outputs of the lower level sub-FSs are fed as the THEN part into
the connected higher level sub-FS, such that more parameters are
required to compute the THEN part of each sub-FS. Since both the
above methods move the dimensional complexity of fuzzy rules from
the IF part to the THEN part, the proposed hierarchical structures
in [11,29] still suffer from the curse of dimensionality in terms of the
number of parameters.

To overcome the parameter dimensionality problems and
enhance the transparency and interpretability, a standard FS is used
in [33] to analyze the universal approximation of HFS. The results
show that the HFS is superior to a standard FS by using fewer param-
eters and fuzzy rules in terms of achieving the same approximation
accuracy. Hence, the proposed HFS in [33] is employed in this work.
Unlike a standard FS, which uses a flat high-dimensional FS to model
the given problem, the underlying mechanism of HFS is to group
several low-dimensional sub-FSs (in the form of a standard FS) in a
hierarchical manner to model the problem. A general structure of an
HFS consists of several levels that jointly contribute to computing the
final output. Each level can consist of sub-FSs and/or original input
attributes. In general, the lowest level’s sub-FSs receive the origi-
nal input attributes, and then produce the outputs that feed to their
upper level. Note that, the sub-FSs in the upper level not only can
receive the outputs from its lower level sub-FSs, but also the original
input attributes. The outputs from the same level’s sub-FSs are then
propagated as inputs to the upper level sub-FSs, until they reach the
highest level to derive the final output.

It has been attested theoretically that any continuous function
with a natural hierarchical structure can be modelled by HFSs with
fewer fuzzy rules and parameters [33]. This indicates that the task
can be divided into several sub-tasks, so it is easier to construct
a matching hierarchical structure for the problem if it has a nat-
ural hierarchical structure. As such, it is conceived that HFSs are
more suitable and effective to construct the system with a nat-
ural hierarchical structure. For the problem at hand, the pricing
manager’s advice and experience can be applied to decompose
the influential factors into several categories. Fig. 1 illustrates a
possible way to group the sample influential factors. As depicted
in Fig. 1, a natural hierarchical structure exists in the negotiation
pricing problem and the influential factors can be structurally clas-
sified. The sub-FSs in this hierarchical structure produce meaningful
intermediate variables, such as customer-related, product-related,
service-related, and company-related factors. The hierarchical struc-
ture can help pricing managers make a better decision, especially
when the number of influential factors is large. The HFS aggregates
the common influential factors into the same sub-FS, and gener-
ates a lower number of meaningful intermediate attributes. In so
doing, the generated top-level fuzzy rules are more interpretable by
pricing managers. Note that there is no supporting theory behind the
classification of influential factors for price negotiation in the current
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Table 1

Review of literature drawing on negotiation pricing decision support.
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Author(s) & year

Method(s)

Application domain and datasets

Aims and results

Giacomazzi et al. [9] (2012)

Zhao and Wang [34] (2015)

Game-theoretical approach

Game-theoretical approach

Simulated dataset in broadband
wireless access
Simulated dataset

A bilateral negotiation algorithm is proposed to identify
the price of the wireless bandwidth services.
This work investigates the pricing problem and service

Carbonneau et al. [2] (2008) Neural networks

Data obtained from conducting
bilateral negotiation experiments

decisions in a supply chain under fuzzy uncertainty con-
ditions. Expected value models are presented to identify
the optimal pricing and service strategies under three
different scenarios.

This work presents a neural network approach to estimate
the opponents’ responses in negotiations.

in the Inspire system

Chanetal. [4] (2011) Customer segmentation &
expert systems (generate shop
pricing rules by experts) &

empirical analysis

Lee etal.[15] (2012) Case based reasoning & fuzzy

cognitive map

Moosmayer et al. [20] (2013) Three layer neural network &

questionnaire to collect data

Wilken et al. [30] (2010) Empirical method

Kolomvatsos et al. [12] (2014) Fuzzy inference

Linetal. [17] (2011) Fuzzy expert systems (user-

defined fuzzy rules)

Lin and Chang [18] (2008) Fuzzy approach and fixed/
flexible quantity mixed
integer programming (MIP)

models

Computers and peripherals online

Simulation experiments

Business-to-business contexts

Questionnaire survey

Simulation experiments

Internet auction

Numerical examples

This work applies customer segmentation, and offers more
price discounts to more valuable customers. The experi-
ment results reveal that the use of differential pricing and
promotion strategies can improve the total sales without
greatly reducing the company’s revenues.

This paper proposes an agent-based mobile negotiation
framework for personalized pricing of last minutes theater
tickets whose values are dependent on the time remain-
ing until the performance and the locations of potential
customers.

This work explores the importances and significance of
the influential factors of negotiation pricing. The obtained
order of significance is: target price, initial price, walk-
away price and the size of the relationships.

This work presents how pricing managers can influence
salespeople’s pricing behaviors through information con-
trol. A theoretical model is proposed and tested against the
collected dataset.

This work proposes a fuzzy logic (FL) based approach for
negotiation decision support for sellers. Initially, the seller
can use FL reasoning to estimate negotiation time and
rounds, and then reason based on user-defined FL rules to
accept/reject decisions.

An agent-based price negotiation system is proposed in
this work. Within the system, end users are allowed
to customize their negotiation pricing strategies through
user pre-defined fuzzy rules.

This work develops a fuzzy approach to evaluating buy-
ers. The results are employed to support the order selec-
tion and final pricing decisions. The more valuable buyers
receive more discounts.

work. The classification of influential factors is actually case driven,
and it relies on expert knowledge to construct the hierarchical struc-
ture, rather than automatically generating the structure from any
classification theory.

3. The proposed approach

Fuzzy set theory has become an increasingly prevalent method-
ology for representing and dealing with uncertain information, and
has been successfully applied to many IT contexts, such as control
engineering, soft computing, and intelligent DSSs [6,7]. The merits of
utilizing fuzzy sets for representing subjective expertise/knowledge,
handling uncertainty, and modeling reasoning processes have been
widely discussed and verified [31]. This study proposes a systematic
and learning approach based on FSs to support negotiation pric-
ing. One of the major contributions of this study is shedding light
on investigating the features of three different types of FSs, namely
standard FS, SFS-SISOM, and HFS, especially on their applicabilities
in handling different negotiation pricing problems. As illustrated in
Fig. 2, the proposed approach is a data-driven method that aims
to learn from historical transactions. These three types of FSs are
thereby integrated into a single prototype system for pricing man-
agers. This section presents the mathematical models of these FSs,
as well as their associated learning algorithms. Since the standard
FS and the SFS-SISOM have been reported in [8], this paper places a
particular focus on the technical details of the HFS.

This study advances the understanding of the bilateral negotia-
tion which involves the one-to-one pricing problem. The model aims
to offer the right price to the right customer. Suppose that a series of
influential factors is X = (xq,---, ), and the offered price is y; then
the given problem is to build the mathematical relationship between
price y and the vector of influencing factors X. So it is denoted as:

Yy =PX) = P(x1,--- ,xn) (1)

If the relationship P(X) can be learned from historical data, then for
each new customer, the right negotiation price can be estimated by
using P(X) based on this customer’s values of the influential factors.
As uncertainties are inherent in negotiation pricing, they may exist in
the measure of influential factors, and/or the relationships between
influential factors and the proposed price. Thus an FS approach
becomes suitable and useful herein.

Note that the current study employs expert knowledge to man-
ually group the input attributes in the HFS. It is possible to develop
algorithms to allow for more automatic grouping of the input
attributes, which may improve the prediction accuracy in some
cases. Also, clustering is another plausible and useful approach to
grouping the input attributes. One main reason for utilizing the man-
ual grouping of the input attributes is due to the consideration of
the application. Since most of the automatic grouping algorithms
are driven by historical data, they are likely to lead to less rele-
vant attributes being selected in the same group. Consequently, the
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Customer-Related

«  Financial situation
«  Knowledge about the product
«  Perceived value

«  Location, etc.

Product configurations

Product-Related

Profits
Quantity
Quality

Influential factors

«  Degree of popularity, etc.

Service-Related

«  Payment method

«  Delivery method and time
«  Return policy

+  Warranty conditions, etc.

Degree of market competitions

Company-Related

Inventory level
Cost
Product's life cycle

. Customer values, etc.

Fig. 1. The factors influencing negotiation pricing.

intermediate variables will become meaningless and the resulting
HES will lose its interpretability. For example, to consider a DSS for
house negotiation pricing, if the floor number of the apartment and
local crime rate are classified in the same group by an algorithm,
the corresponding intermediate variables will not be meaningful and
the resulting HFS will just be a numerical model. On the other hand,
by allowing a pricing manager to manually group input attributes,
he/she may select the floor number and condition of an apartment

in the same group, and include crime rate and closeness to the shop-
ping center in the same group. In this manner, the corresponding
intermediate variables can be regarded as the house facility index
and location index, which are meaningful. Further, the resulting HFS
will show the impacts of the house facility index and location index
on the price of an apartment. As such, the manual grouping of input
attributes is very useful from an application point of view. For this
reason, it is perhaps a better choice than an algorithm grouping, since

Pricing manager

Prototype system with GUI

Standard FS

SFS-SISOM

Hierarchical FS

Fuzzy systems

Historical data

Fig. 2. The proposed approach for negotiation pricing decision support.
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it enables a user to build a negotiation pricing model that fits his/her
thinking and ensures interpretability and understandability.

3.1. Standard fuzzy system

A MISO standard FS builds a mathematical relationship between
n input variables and one output variable. It is known in [8] that
a complete fuzzy rule base of a standard FS requires K = H}‘:l N;
fuzzy rules, where N; is the number of fuzzy sets of thejth input vari-
able (xj € Uj c R;j = 1,2,...,n). In order to enhance the model’s
transparency, the triangular membership functions that used in [8]
are employed in all three types of FSs in this study. Given input
X = (x1,X2,---,Xn) and output y, the standard FS can be represented
as:

<
Il

y = fX z (H“ )J/z] dn (2)
j=1

iy-inel

where [ is the index set that represented as I = {iy,---,izlij =
1,2,---,N;;j = 1,2,---,n}, iyi -+ -in is the index of fuzzy rule and
,uf (xj) is the membershlp degree of the 1”1 fuzzy set in the ] input
vérlable fired by the input value x;.

In Eq. (2), parameters y;,..;, are learned from the recursive least
square (RLS) learning algorithm [28] whose technical details for
implementation can be found in [8]. To start the learning process, a
disturbance parameter (i.e., 0') needs to be identified, and it is often
a large number (e.g., 100,000). This parameter is introduced to tune
and balance the fitting to the historical data and to the initial param-
eters. During the learning process, the parameters are iteratively
updated to minimize the sum of errors. In the end, the recursive
learning process terminates either by achieving a satisfied error rate
(i.e., &) or reaching the maximum iteration number (i.e., T).

3.2. SFS-SISOM

To address the curse of dimensionality problem in standard FSs,
a novel SFS-SISOM has been proposed in [8]. Rather than modeling
the complete combination of all input variables and the output vari-
able, the SFS-SISOM resolves the complex model by building a linear
combination of several simple sub-models, and each sub-model rep-
resents the relationship between an input variable and the output
variable. Therefore, a fuzzy rule in the SFS-SISOM only contains one
input variable and the output variable, and it only requires S =
ZJ 1 Nj (i.e., N; is the number of fuzzy sets in theJ input variable)
fuzzy rules to cover the whole input space.

Mathematically speaking, the SFS-SISOM is formed by several
SISO standard FSs, and the outputs of such SISO FSs contribute to
the final output of the SFS-SISOM by carrying different important
weights. Thus, the SFS-SISOM can be represented as:

n N o
S, (Zu., y) 33wl = 3 3" s,

j=1 ij=1 j=1i=1 j=1i=1

3)

where w; represents the important weight of the j™ input vari-
able/SISO standard FS, and y{j is the central point of the corre-
sponding fuzzy set of the output variable when given the i]?“ fuzzy
set in the jth input variable (i.e, x;). These two parameters form a
new parameter C{j which is learned from a RLS algorithm [8], and
its implementation steps are similar to the standard FS, with the

main differences exist in the construction of input matrix, parameter
vector, and output vector.

3.3. Hierarchical fuzzy system

3.3.1. The model of the hierarchical fuzzy system

The mathematical model of the standard FS has been introduced
in Section 3.1, and the HFS consists of several standard FSs in a hier-
archical manner. As shown in Fig. 3, the a™ sub-FS in the h'" level (i.e.,
SFS") contains several intermediate attributes (i.e. y{’a . ,y’;:a) and
original attributes (i.e., x’lla, e th ). In this model, x refers to the
original input attributes, while y refers to the output of the sub-
FS. The output of SFS", denoted as o™?, is used as an intermediate
attribute (i.e., yﬁ‘“'b) of its upper level’s standard FS, so that the SFS!
can be represented as:

ha _ ,h+1b _ h,a h,a h,a
0 =Y _fh,a(yl )i vynhﬂ X1 tha)
ha Mha | hak mha h.akha
zjljz---]n,,_ai1iz---imh'ayjljz---jnhﬂiliz iy g || Py (y 9 1w (")

- Mha  hake,h, My q hak
St dngiviz-imyy Lley QRO TTES wh ()

(4)

In Eq. (4), ny 4 is the number of intermediate attributes of SFS! and
mpq represents the number of the SFS!’s original input attributes.
yﬁ;fa is the output of the sub-FS in the h — 1 level, and it is used as
the nffl, intermediate input attribute of the SFS/:; and xﬁ;ﬁ‘a is the m{f"
original input attribute of the SFS” Also, j1j2 < Jnpgitia - - - imy,, 1s the
index of fuzzy rules in the SFS!, and ,uhak( ) stands for the corre-
sponding output of the f“ fuzzy set of the K intermediate attribute
of the SFS!, while W’1 . "(xZ %) is the output of the il fuzzy set in the K
original input attrlbute of the SFS.

By employing the triangular membership functions in the HFS, Eq.
(4) can derive that:

Mha

z H hak( )nlj hak( ):1. (5)

Juizedng g iz dmy o k=1

Oh+1’b
SFSMT!
o h+10 h.
y! (o)
| SFSh |
h,a h,a
1 Ynh.a
ESENEEN
h—1,1... Thfl‘l h—1,2 .., ,.h—1,2 h,a ... Th,a
ka1 Tmp i T Tmp_1,2 Ty Ymp,a

Fig. 3. Mathematical model of HFS.
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Eq. (4) can be rewritten as:

Oh,u — z

Juaedny gtrig-imy,

Mha Mpq
hak (\ha h,ak ha ha
H ( )HW ( ) 11]2 dny g i1t imy o ©

k=1 k=1

(6)

The number of fuzzy rules in the HFS can be represented as:

H= Z{Z(ﬁ“?ﬁ)} (7)

k=1 =

where L is the number of levels in the hierarchical structure and S;
is the number of sub-FSs in the i level. n;; and m;, respectively,
represent the number of intermediate attributes and the number of
original input attributes of the /™ sub-FS in the i level (i.e., SFS!). N;

is the number of fuzzy sets in the K input attribute (can be either an
intermediate attribute or an original input attribute) of the SFS}.

3.3.2. Gradient descent learning algorithm

Different from the standard FS and SFS-SISOM, the HFS employs
the gradient descent learning algorithm to learn from historical
records in this work. Although RLS is capable of finding the global
optima, it is not applicable to HFS due to the existence of interme-
diate attributes. Since an HFS consists of several lower-level sub-FSs,
the final output is nonlinearly dependent on the non-top sub-FSs,
and the gradient descent learning algorithm is employed herein to
optimize the HFS’s parameters. The objective function of the gradi-
ent decent algorithm only minimizes the error based on the current
data instance (i.e., r):

e = L) - e (8)

2

In [27], an improved gradient descent algorithm is proposed and
it is adapted in this work. This algorithm aims to minimize the local
error by updating the parameters and integrates a normalization step
to handle the intermediate attributes in the HFS. Given an HFS, the
final error back propagates from the top level to the lower levels, and
the error derived from the upper level is used to update the parame-
ters of the neighboring lower level. Assume t is the learning iteration
index; the final error of a HFS is written as:

ep1(t) = oh1(t) — y(t), 9)

where L is the total number of levels in an HFS, and ob1(t) is the
predicted output of the top-level sub-FS in the t' learning iteration,
while y(t) is the target output provided in the given dataset. Given
a hierarchical structure as shown in Fig. 3, the error of SFSthl i
propagated to SFS! in the following way:

30h+1,b(t)

o) (10)

enal(t) = eng1p(t) x

For simplicity, the level index (e.g., h and h + 1) is omitted. Hence,
Eq. (10) is rewritten as:

dob(t)

ea(t) = en(t) x a3 (11)

Also, the HFS as shown in Eq. (6) can be simplified as:

o= 3| Taron [T

J1j2-dngitiz-img Lk=1

]y]112 “Jngi1i2-img * (]2)

The fuzzy rule index jqj; - - j,,ailiz ---im, of the SFS! is denoted as
Io, and []pe 11 k(yk)l_[k ]w (x;i) is denoted as Aj . Therefore, the
output of the SFS! is represented as:

0t = ZA,uy,a (13)

Eq. (11) can then be represented as:

9 Ab b
%mzqugﬁﬁgég
dAY (t)
= Eb zylb aoa t (14)

MO O 0k
3oa(t) - y (y [) 904(t)
of SFSh (i.e., 0) is the first intermediate attribute (i.e., y?) of SFSh*1.
In addition, since 0% = y’l’, Eq. (14) can be written as:

in wh1ch

. As shown in Fig. 3, the output

3Ap (1) A (£) Bujk:’](oa,t)

30°(0) ;ﬁwwt)x 30(t) (13)

According to the definition of triangular membership functions, it
is derived that:

1 0% e[dk1,dk]
=1-1 o0%e[dk dkt1] (16)
0 otherwise.

8;11.11'1(0‘1, t)
009(t)

where ¢ is the central point of the jiI" fuzzy set of the k™ attribute in
SFSp. This results in that the propagated error can be represented as:

be t)A (t) a k=1 dk
ep(t) x 2, 5 “1 (oﬂr 0% e [k, dk]
= yb t)A ( ) L
eq(t) —ep(t) x Zlb Z; ot ac [CjkYCJkJrl] (17)
0 otherwise.

Given the previous iteration results (e.g., y?a(t)), the gradient
descent learning algorithm iteratively updates the parameters of the
current iteration by:

Yt +1) =y () = A x x eq(t) (18)

where A is the learning rate parameter, and according to Eq. (13),

3 A (£ (1)
3y (D

doo(t)
TGS

= AL (t). (19)

Therefore, Eq. (18) can be rewritten as:

YE(E+ 1) = y2(0) = A x AL (£) x eq(t). (20)
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To sum up, according to the mathematical model of the HFS (i.e.,
Eq. (6)) and gradient descent algorithm (i.e., Egs. (17) and (20)), the
learning process of the HFS can be described as:

Step 1: Construction of the hierarchical structure

This task involves identifying the number of hierarchical levels,
the number of sub-FSs in each level, the allocation of original input
attributes, and the segmentation of the associated input attributes to
construct a sub-FS. This is currently identified by the end user.

Step 2: Initialization of the learning parameters

The initial parameters for each sub-FS (e.g., yZ“(O) for SFS!) can
either be initialized by experts or use default values. These param-
eters will be iteratively updated in the learning process. Since the
gradient descent learning algorithm may converge to a local optima,
the choice of initial parameters becomes essential. If the initial
parameters are close to the global optima, the algorithm stands a
good chance of finding the global optima. Also, the learning rate
parameter (i.e.,, A\) and two termination parameters (i.e., the maxi-
mum number of iteration T, and the error threshold §) need to be
initialized herein.

Step 3: Update of the parameters by using the recursive gradi-
ent descent algorithm

Based on the given initial parameters, calculate the final output of
the HFS and the error. After that, the error is back propagated from
the top level to the lowest level by using Eq. (17), and the error for
each sub-FS (e.g., ep4) can be calculated, respectively. Then apply Eq.
(20) to update the parameters for each sub-FS.

Step 4: Normalization of the intermediate parameters

Intermediate attributes are a newly introduced problem in the
HFS. In many cases, the intermediate attributes do not have seman-
tical meanings. Thus, this may result in the universe of discourse
of the derived intermediate attribute being unpredictable and diffi-
cult to pre-define. It has been proved in [27] that the approximation
accuracy of the HFS is independent of the definition domain of
intermediate attributes. Therefore, a method is proposed in [27] to
overcome this problem by normalizing the domains of intermediate
attributes into [0, 1]. The normalization process can be described as:

yp — min(y)

max(y;) — min(y) 21)

ha __
Y, =

where min(y;) is the minimal value of the intermediate attribute out-
puts within all non-top level sub-FSs, while max(y,) is the maximum
value. This ensures that the value of y?a"’ always lies within [0, 1].

Step 5: Termination of the learning process

Similar to RLS, the recursive learning terminates either by reach-
ing the maximum iteration number T, or reaching a predefined error
threshold €. Calculate the overall error E(t) = 1 x 3™ (o (£)—y(1));
if E(t) < § or t > T, the learning terminates. Otherwise, go back to
Step 3 witht =t + 1 and setr = 1 to start a new iteration.

4. Empirical results
4.1. Experimental data

Three negotiation pricing related datasets, which vary from the
number of instances to dimensionalities, were used in this study. A
summary of these three datasets are presented in Table 2.

4.1.1. DS1 - MP3 player dataset

A questionnaire survey was conducted at a major British univer-
sity to collect this dataset. The questionnaire consists of two parts:
Part 1 introduces the background scenario, in which a MP3 company
conducts a promotion to provide potential buyers with customized
discounts, with the aim to boost the product sales; Part 2 contains
two questions that capture participants’ demographic attributes and

four sets of questions that are associated with the four influential
attributes (i.e., importance, budget, usefulness, and knowledge about
the product) of product purchase. Participants were asked to answer
the questions along a five-point Likert-type scale. Furthermore, if
the product was deemed too expensive at its current price, the par-
ticipants were asked to suggest a minimal numeric discount that
would persuade them to reconsider of the purchase, and the speci-
fied discount was also regarded as the reservation price for pricing
managers. The questionnaires were sent out by hand or electroni-
cally distributed via a mailing list to students and academic staff at
the university. A total of 500 questionnaires were send out and 248
valid responses were returned and processed for further analysis.

4.1.2. DS2 - Boston house dataset

This is a publicly available dataset that captures the residential
property price for house sales in Boston in 1976.! In this dataset, 11
influential factors (see Table 2) were considered when identifying the
house price. Given the house properties, the right negotiation price
can be predicted by employing the proposed models. This dataset,
in particular, was chosen to testify to the utility of the proposed
approach in handling relatively high-dimensional problems.

4.1.3. DS3 - California dataset

This dataset collects house information from the 1990 Census
in California, and it is publicly available.? The dataset includes all
block groups in California and each block group on average includes
1,425.5 individuals living in a geographically compact area. The dis-
tances among the centroids of each block group as measured in
latitude and longitude were computed. In addition, all the block
groups reporting zero entities for the observed attributes were fil-
tered out. In total, this dataset records 20,640 observations on eight
independent attributes (i.e., median income, housing median age,
total rooms, total bedrooms, population, households, latitude, and
longitude) and the dependent variable is In(median house value).
Note that, this dataset does not report individual house information,
as it instead captures the aggregated information for all block groups.

4.2. Experimental results

The selection of initial values of learning parameters is a com-
mon problem in literature of machine learning. In this work, the
initializations of learning parameters are mainly determined by the
combination of expertise and pre-experiments with the goal to
achieve the optimal prediction results (i.e., cross validation based
on least APE and RMSE). In different FSs, different sets of initial
values of learning parameters were tested in pre-experiments, and
only the learning parameters that produce the optimal results are
reported. More specifically, the initializations of the different learn-
ing parameters are explained as follows: 1) Error threshold: in order
to monitor the best performance of different FSs, the error threshold
is set to be very small (i.e., 0.01) for all experiments; 2) Number of
iterations: within the pre-experiment, how the error changes with
the increase of iterations can be observed and plotted. The itera-
tion parameter that produces the stable prediction performance is
selected; 3) Learning rate: it is taken within the range of [0, 1] to
avoid missing out the optima, as a small value (e.g., 0.02) of learning
rate is selected in this work. A set of the combinations of iteration
and learning rate parameters were tested in the pre-experiments;
4) Disturbance parameter: this parameter is used to construct the
disturbance matrix in the RLS learning. As suggested by [28], a real
large number (e.g., 100,000) is often used for the initial value of
this parameter. The performances standard FSs and SFS-SISOMs are

1 http://lib.stat.cmu.edu/datasets/boston.
2 http://lib.stat.cmu.edu/datasets/houses.zip.
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Table 2
Summary of experimental datasets.

Dataset No. of input attributes No. of instances Input attributes Output attribute
DS1 - MP3 player dataset 4 248 1. Usefulness; 2. Importance; 3. Budget; Discount
4, Knowledge
DS2 - Boston house dataset 11 499 1. Crime; 2. Education; 3. Population; 4. Air Property value
quality; 5. Zone proportion; 6. No. of rooms;
7. Age; 8. Tax; 9. Convenience; 10. Distance;
11. Accessibility to highway
DS3 - California dataset 8 20,640 1. Median income; 2. Housing median age; In(median house value)

3. Total rooms; 4. Total bedrooms; 5. Population;
6. Households; 7. Latitude; 8. Longitude

quite sensitive to this parameter. Therefore, several pre-experiments
were conducted to select the appropriate disturbance parameter for
different FSs.

4.2.1. DS1 - MP3 player dataset

In this experiment, three FSs were all employed to predict diverse
situations, which varied in the number of training/testing instances
(i.e.,, 50, 100, and 248 samples were used in different situations,
respectively) and fuzzy attribute partitions. In the HFS, a hierarchical
structure with 2 sub-systems and no free parameters are employed
for all experiments. More specially, Usefulness and importance are
grouped to construct a sub-standard FS, whereas financial capability
and knowledge are grouped to construct another standard FS. The
learning rate is set to 0.02 and the error threshold is set to 0.01. The
number of iterations for the standard FS and the SFS-SISOM is set to
100. Since the input matrixes of the SFS-SISOM and the standard FS
are different, the selection of the disturbance parameter (o) value
could be different. In this study, pre-experiments revealed that the
standard FS and SFS-SISOM achieve optimal results when setting the
o = 9999999 and 99999, respectively. The reason for setting a larger

Table 3
Results of using the standard FS in the MP3 player dataset [8].

o for the standard FS is that it has more parameters, so a smaller 1/o
is needed to weigh down the impact of the initial parameters of the
standard FS model to fit the data better.

The obtained results, as listed in Tables 3 through 5, reveal that
all three FSs perform well when the divided sub-spaces are well
covered by training samples. The derived results mirror some inter-
esting findings: First, the standard FS suffers from the over-fitting
problem when there is an insufficient number of training data sam-
ples (e.g., Exps, Exp;q, and Exp;, in Table 3). However, by increasing
the number of training data samples to include all 248 instances
being used, the over-fitting problem for the standard FS is removed
gradually. Second, when the number of training data samples is
sufficient to cover the divided sub-spaces, the standard FS, among the
three FSs, performs the best in the sense of goodness of fitting (i.e.,
better accuracy for training data or smaller training error). However,
the SFS-SISOM and the HFS both obtain better testing accuracy (i.e.,
smaller error for testing data) than the standard FS. This is verified,
respectively, by the Exp,, Exp;, and Exp,5 in Tables 3 and 4. Moreover,
compared with the HFS, the SFS-SISOM can obtain similar testing
accuracy with fewer fuzzy rules and a lower number of learning

Experiment Training dataset (#) Testing dataset (#)

# ofrules Partitions Training APE (%) Training RMSE Testing APE (%) Testing RMSE Running time (second)

Exp, 31-100 (70) 1-30(30) 36 1,2,1,2 6.6283 1.1305 15.7317 1.7482 1.81
Exp, 1-70(70) 71-100 (30) 36 1,2,1,2 6.5245 0.7582 14.7936 2.4849 1.75
Exps 1-40 (40) 41-100 (60) 36 1,2,1,2 1.6495 0.1739 80.3334 7.8112 1.30
Expy 11-50 (40) 1-10(10) 36 12,12 3.2771 0.3826 21.4055 2.5766 1.28
Exps 21-50(30) 1-20(20) 36 1,2,1,2 1.1137 0.2591 18.9492 2.8863 1.13
Expg 1-5;21-50(35) 6-20(15) 36 12,12 1.2440 0.2680 21.3402 3.4829 1.20
Exp, 51-248 (198) 1-50(50) 36 1,2,1,2 8.3482 1.2396 12.6061 1.2643 3.73
Expg 51-248 (198) 1-50(50) 144 2,323 3.4679 0.8347 42.5941 3.2094 107.39
Expqg 1-30; 91-248 (188) 31-90 (60) 36 12,12 8.0517 1.0080 14.5664 2.0378 2.08
Expig 1-30; 91-248 (188) 31-90 (60) 144 2323 2.5822 0.3812 63.6023 12.2093 101.11
Expq 1-120(120) 121-248 (128) 36 12,12 8.6280 1.1464 12.5673 1.7509 2.57
Expq; 1-120(120) 121-248 (128) 144 2,323 1.7404 0.2948 24.8623 4.6594 111.01
Expq3 1-150; 241-248 (158)  151-240(90) 36 12,12 9.1615 1.2624 10.2230 1.4241 3.11
Expqy 1-150; 241-248 (158)  151-240(90) 144 2,323 3.3248 0.7825 24.8890 4.9452 120.21
Table 4
Results of using the SFS-SISOM in the MP3 player dataset [8].

Experiment Training dataset (#) Testing dataset (#) # of rules Partitions Training APE (%) Training RMSE Testing APE (%) Testing RMSE Running time (second)
Exp, 31-100(70) 1-30(30) 10 1,2,1,2 16.2000 1.7012 12.3035 1.2875 0.47
Exp, 1-70(70) 71-100 (30) 10 12,12 16.2004 1.6322 12.5001 1.5594 0.42
Exps 1-40 (40) 41-100 (60) 10 1,2,1,2 12.7127 1.0876 16.1389 1.9536 0.29
Exp, 11-50 (40) 1-10(10) 10 1212 16.6560 1.3656 6.1107 1.0769 0.22
Exps 21-50(30) 1-20(20) 10 12,12 21.3886 1.4440 7.4940 1.1040 0.19
Expg 1-5;21-50(35) 6-20(15) 10 1,2,1,2 20.4390 1.3806 8.5950 1.1521 0.20
Exp, 51-248 (198) 1-50(50) 10 12,1,2 9.8862 1.3894 12.1184 1.4428 0.77
Expg 51-248 (198) 1-50 (50) 14 2323 7.9622 1.2033 13.0766 1.2628 0.94
Expg 1-30; 91-248 (188) 31-90 (60) 10 1,2,1,2 9.7417 1.2073 11.7267 1.8978 0.77
Expqo 1-30; 91-248 (188) 31-90 (60) 14 2323 7.8455 0.9967 10.8846 1.7643 0.88
Expq, 1-120(120) 121-248 (128) 10 1,212 13.4239 1.5468 10.4996 1.3152 0.61
Expq; 1-120(120) 121-248 (128) 14 2,323 10.7789 1.3717 8.5867 1.2005 0.74
Expq3 1-150; 241-248 (158)  151-240(90) 10 12,1,2 11.1983 1.4857 9.1089 1.3065 0.66
Expi4 1-150; 241-248 (158)  151-240(90) 14 2323 10.1013 1.3206 7.6733 1.0936 0.88
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Table 5

Results of using the HFS in the MP3 player dataset.
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Experiment Training dataset

Testing dataset # of rules Partitions

Iterations Training APE (%) Training RMSE Testing APE (%) Testing RMSE Running time

(#) (#) (second)
Exp, 31-100 (70) 1-30(30) 16 12;12;11 10,000 9.9741 0.9404 12.7680 1.8076 2.12
Exp, 31-100 (70) 1-30(30) 21 12;12;22 6000 10.8963 1.7663 11.7490 1.6266 1.36
Exps 31-100 (70) 1-30(30) 28 12;12;33 10,000 10.4902 1.5118 12.8370 1.8318 2.06
Exp, 1-70(70) 71-100 (30) 16 12;12;11 10,000 10.1038 1.2613 12.6070 1.8312 2.06
Exps 1-70(70) 71-100 (30) 21 12;12;22 10,000 9.5615 1.1274 12.2300 1.9679 2.08
Expg 1-70(70) 71-100 (30) 28 12;12;33 10,000 10.5901 1.2619 12.8150 1.9052 2.03
Exp, 1-40 (40) 41-100 (60) 16 12;12;11 10,000 10.3302 1.5111 12.5770 1.8197 1.24
Expg 1-40 (40) 41-100 (60) 21 12;12;22 10,000 11.4601 1.0948 14.9430 2.9411 1.27
Expg 1-40 (40) 41-100 (60) 28 12;12;33 10,000 13.8669 1.7309 25.7410 5.6944 1.26
Expio 11-50 (40) 1-10(10) 16 12;12;11 10,000 11.2670 1.2055 6.6900 0.7983 1.27
Expyq 11-50 (40) 1-10(10) 16 12;12;11 3000 14.4835 1.4092 10.6896 1.6482 0.53
Exp, 11-50 (40) 1-10(10) 21 12;12;22 10,000 16.1273 1.6353 12.9130 1.6091 1.29
Expy3 11-50 (40) 1-10(10) 28 12;12;33 10,000 11.8673 1.0891 15.6870 3.7580 1.31
Expi4 21-50(30) 1-20(20) 16 12;12;11 10,000 13.7768 1.1744 8.7620 1.2906 0.99
Exps 21-50(30) 1-20(20) 16 12;12;11 3000 13.4583 1.3571 12.3371 1.8762 0.45
Expig 21-50(30) 1-20(20) 21 12;12;22 10,000 12.0021 1.0689 13.0840 2.2542 1.02
Expy 21-50 (30) 1-20(20) 28 12;12;33 10,000 10.8501 0.9221 14.5210 4.8472 1.04
Expg 51-248 (198) 1-50 (50) 16 12;12;11 10,000 8.8865 1.3633 12.5860 1.4644 5.40
Expig 51-248 (198) 1-50(50) 22 22;22;11 6000 8.4084 1.3067 13.1501 1.3202 3,40
Exp,q 51-248 (198) 1-50 (50) 21 12;12;22 10,000 8.5953 1.3225 13.9480 1.4482 538
Exp,, 51-248 (198) 1-50 (50) 28 12;12;33 10,000 8.9526 13174 15.3150 1.3774 5.47
Exp,; 1-30;91-248 (188)  31-90(60) 16 12;12;11 6000 9.1456 1.2401 11.1345 1.8376 3.14
Expys 1-30;91-248 (188)  31-90(60) 22 22;22;11 6000 8.6851 1.1210 12.7091 1.9002 3.30
Expyy 1-30;91-248(188)  31-90(60) 21 12;12;22 6000 8.0572 1.1163 15.2720 1.8671 3.20
Expys 1-30;91-248(188)  31-90(60) 28 12;12;33 6000 8.1971 1.1077 16.0640 1.9446 3.21
Exp,g 1-120(120) 121-248(128) 16 12;12;11 6000 10.6254 1.5046 9.9050 1.6352 2.11
Exp,; 1-120(120) 121-248(128) 22 22;22;11 6000 10.7058 1.4687 9.9592 1.6921 2.15
Exp,g 1-120(120) 121-248(128) 21 12;12;22 6000 11.4216 1.7332 11.6220 2.0507 2.12
Expyg 1-120(120) 121-248(128) 28 12;12;33 6000 10.5594 1.4292 11.5960 1.8939 2.10
Expsq 1-150; 241-248 (158) 151-240(90) 16 12;12;11 6000 10.2264 1.4780 9.9200 1.5209 2.70
Exps; 1-150; 241-248 (158) 151-240(90) 22 22;22;11 6000 9.9087 1.4225 9.1745 1.3747 2.74
Exps; 1-150; 241-248 (158) 151-240(90) 21 12;12;22 6000 10.6577 1.5578 10.1140 1.5967 2.69
Exps3 1-150; 241-248 (158) 151-240(90) 28 12;12;33 6000 10.3626 1.5206 10.4050 1.6123 2.74

iterations. Thus, it can be concluded that the SFS-SISOM performs the
best in this experiment.

4.2.2. DS2 - Boston house dataset

In this dataset, there were 499 historical samples with 11 input
attributes. For such a relatively high-dimensional but limited sample
dataset, the standard FS was not usable as it requires 211 = 2048
fuzzy rules, even when applying the simplest partition in which each
attribute contains only two fuzzy sets. Therefore, only the SFS-SISOM
and the HFS were applied in this experiment. The available dataset
was randomly decomposed into training/testing datasets, in which
414 samples were randomly selected to form the training dataset
and the other 85 records were used as the testing dataset. A natu-
ral hierarchical structure (as depicted in Fig. 4) is associated with the
given problem. Three meaningful intermediate attributes, namely
living environments, house property, and convenience, construct the
top level standard FS. Hence, the experiments in HFS all employ the
same hierarchical structure which consists of three sub-systems with
no free parameters. In addition, the learning rate is set to 0.02 and
error threshold is set to 0.01 for all experiment in the HFS. In the

SES-SISOM, the disturbance parameter is set to be 99,999 and the
number of iterations is set to 100. The pre-experiments show that
the obtained results are very similar when employing different num-
ber of iterations (i.e., 10, 100, and 1000), therefore, only the results
of running the 100 iterations are reported. The results of using the
SFS-SISOM and the HFS, together with the employed parameters, are
reported in Tables 6 and 7. Note that, in Table 7, when the partition
parameter is set to “n”, this indicates that the original and interme-
diate attributes were all divided into n sub-spaces (e.g., Exp,); when
the partition parameter is set to “n,m”, the original attributes were
partitioned into n sub-spaces, and the intermediate attributes were
divided into m sub-spaces (e.g., Exp; and Exps).

It can be concluded from the experimental results that both the
SFS-SISOM and the HFS performed well in this dataset, and can be
used as effective decision support models. Both approaches achieved
approximately 84% — 88% prediction accuracy in the testing dataset.
In general, the HFS performs slightly better than the SFS-SISOM in
terms of predictability (i.e., Testing APE(%)). On the other hand, the
standard FS was incapable of dealing with this dataset due to the
curse of dimensionality.

TopLevel S5
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Crime Education Population Alr Quality Zone Propartion

24 5FS:
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ERR 2
Convenience
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Fig. 4. Hierarchical structure for Boston house dataset.
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Table 6
Results of using the SFS-SISOM in the Boston house dataset [8].

Experiment  # of sub-spaces in attributes #of rules Training APE (%) Training RMSE  Testing APE (%) Testing RMSE  Running time (second)
1 2 3 4 5 6 7 8 9 10 11
Exp, 2 2 3 2 3 2 3 2 2 2 2 25 12.4817 3.6516 14.3455 5.3367 6.53
Exp, 3 3 5 3 5 3 5 3 3 3 3 90 12.4064 3.3852 13.1579 5.1074 13.22
Exps 3 3 3 3 3 3 3 3 3 3 3 44 12.0596 3.6064 14.0818 5.1709 9.98
Exp, 11 2 1 2 1 2 1 1 1 1 25 13.0903 3.7723 13.1299 5.2278 3.62
Exps 2 2 2 2 2 2 2 2 2 2 2 33 149134 41978 16.5419 6.0427 5.53
Table 7
Results of using the HFS in the Boston house dataset.
Experiment # of rules Partitions Iterations Training APE (%) Training RMSE Testing APE (%) Testing RMSE Running time (second)
Exp, 253 23 6000 13.6606 4.1415 12.8858 5.5013 66.93
Exp, 48 1 6000 15.3197 4.5951 15.2067 6.7762 59.48
Exps 104 13 6000 14.0024 4.8466 13.4519 6.5981 61.96
Exp, 116 1313;1212;111;111 6000 12.2817 3.6230 13.9064 5.9200 60.25
Exps 212 1313;1212;333;332 6000 14.1919 3.6930 13.7923 5.5817 63.53
Expg 212 1313;1212;333;332 3000 13.1382 3.4611 14.4630 6.0849 32.92

4.2.3. DS3 - California dataset

In this dataset, 20,640 observations were randomly partitioned
into two subsets, in which 70% (i.e., 14,448) were used for training
and 30% (i.e., 6,192) were used for testing. The eight input attributes
can be naturally grouped into two standard sub-FSs: the median
income, population and households reflect the block group properties,
while the housing median age, total rooms, total bedrooms, lati-
tude, and longitude represent the house properties. Then these two
meaningful intermediate attributes (i.e., block group properties and
the house properties) construct the top-level standard FS. Thus, the
sub-FSs construction setting is: 1 5 6; 2 3 4 7 8. The experiments of
the HFS in this dataset all employ the above hierarchical structure
that consists of two sub-FSs with no free parameters. In addition,
the learning parameters of the HES were set to: learning rate = 0.02,
error threshold = 0.01, and iterations = 1000. In the standard FS, in
order to obtain the result within an hour, the number of iteration is
set to 1 because the computational cost is very high (see more details
in Section 5.4). The results of using the three FSs, together with the
used parameters, are reported in Tables 8 through 10.

The results reveal that in general all three FSs can achieve very
good performances in terms of training and testing prediction accu-
racy (i.e., 96.3% -98.2%). However, the standard FS and the SFS-SISOM
are quite sensitive to the disturbance parameter. If an inappropriate
disturbance parameter was employed, the performance drops dra-
matically and even fails to derive the results (e.g., Exps in Table 8;
Exp, and Expg in Table 9). In addition, although the standard FS can
produce good prediction results, the flexibility of dividing the input
space is quite limited due to its high computational complexity. As
shown in Table 8, when 384 fuzzy rules are involved, it takes over
45 min to derive the results. It is time consuming and even impracti-
cal to employ the standard FS when some attributes are required to
be finely divided. The HFS produces slightly better prediction perfor-
mance than the SFS-SISOM, but with far more fuzzy rules. Although
the number of required fuzzy rules is large, the running time to
derive the result is short because the HFS requires much less space

Table 8
Results of using the standard FS in the California dataset.

computational cost. Moreover, the HFS is less sensitive to the learn-
ing parameters, it produces more stable prediction performances in
this experiment. This dataset involves relatively high dimensions,
and the HFS outperforms the other two FSs with respect to the
interpretability for the following reasons: 1) the standard FS jointly
considers eight attributes in a fuzzy rule, and the derived fuzzy rule
might be too complicated for end users to understand. Also, only
a small number of fuzzy sets (i.e.,, 1 or 2) is employed to describe
an attribute due to the curse of dimensionality; 2) the SFS-SISOM
only considers one attribute in a fuzzy rule. Instead, the HFS decom-
poses the high-dimensional problem into three sub-SFSs, therefore,
the negotiation behaviors can be better explained and understood
by considering diverse modeling granularities. Further from Exps in
Table 10, it shows that by uneven partitions for different attributes,
the number of rules in the HFS can be reduced significantly. The dis-
tinguishing merit of the SFS-SISOM is the modeling efficiency, as it
can produce good prediction accuracy by using fewer fuzzy rules and
iterations as long as the right learning parameters are identified.

In summary, this experiment shows that both the SFS-SISOM and
the HFS can handle high dimensional and large data effectively. The
dataset is based on the block group rather than individual house, as
it is less complicated and less non-linear, therefore the linear model
(i.e., the SFS-SISOM) performs well. However, it is expected that, if
the dataset with the individual houses is available, the HFS can be
more useful and effective. Therefore, the proposed three FSs provide
a comprehensive set of model choices and are able to handle various
needs to accurately model the negotiation pricing behavior.

5. Discussion

5.1. Interpretability and transparency

In regard to the development of DSSs, interpretability/
transparency is one of the most crucially desirable features. It is of
paramount importance for researchers to further apply this insight

Experiment  # of rules Partitions Disturbance parameter  Training APE (%)  Training RMSE  Testing APE (%)  Testing RMSE Running time (second)
Exp, 256 1,1,1,1,1,1,1,1 999 1.9407 0.3120 1.9653 0.3156 1,013.79

Exp, 256 1,1,1,1,1,1,1,1 99999 1.8963 0.3057 1.9432 0.3322 511.17

Exps 256 1,1,1,1,1,1,1,1 9999999 14.6492 8.1259 15.5764 10.5383 543.34

Expy 384 21,1,1,1,1,1,1 999 1.8679 0.3022 1.8922 0.3040 2,754.45

Exps 384 2,1,1,1,1,1,1,1 99999 1.8248 0.2963 1.8728 0.3185 2,785.24
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Table 9
Results of using the SFS-SISOM in the California dataset.

Experiment # of sub-spaces in attributes # of rules Disturbance parameter Iterations Training APE (%) Training RMSE Testing APE (%) Testing RMSE Running time

12345678 (second)
Exp, 11111111 16 999 10 2.2763 0.3913 22711 0.3653 9.13
Exp, 11111111 16 999 1000 2.2699 0.3574 2.2657 0.3591 519.16
Exps 11111111 16 9999 10 2.4640 0.3837 2.4566 0.3848 9.01
Exp, 11111111 16 99,999 10 N/A N/A N/A N/A 8.89
Exps 22222222 24 999 10 2.1638 0.3446 2.1531 0.3419 13.04
Expg 22222222 24 999 1000 2.1590 0.3436 2.1498 0.3413 1,409.67
Exp, 22222222 24 9999 10 2.2233 0.3508 22170 0.3487 13.23
Expg 22222222 24 99,999 10 18050.908 2838.5105 18183.354 2866.5483 13.05
Expg 33333333 32 999 10 2.0386 0.3263 2.0354 0.3247 21.06
Expio 33333333 32 9999 10 2.1547 0.3414 2.1586 03413 20.62
Expyq 33333333 32 99,999 10 N/A N/A N/A N/A 20.39
Expi; 4 4 4 4 4 4 4 4 40 999 10 2.0918 0.3340 2.0752 0.3296 3035
Expy3 4 4 4 4 4 4 4 4 40 9999 10 2.2093 0.3486 2.1936 0.3448 30.68
Expia 4 4 4 4 4 4 4 4 40 99,999 10 8.9838 1.6173 9.1614 1.6408 30.74

to the predicament of negotiation pricing. The proposed FS approach
not only enables effective knowledge discovery, but also efficient
knowledge representation in the form of linguistic IF-THEN fuzzy
rules, which are understandable and interpretable. When the dimen-
sion is low, the standard FS has the best interpretability, because it
can explain the complete conditions of input attributes within one
fuzzy rule. On the contrary, the SFS-SISOM can merely represent
one influential aspect and the outcome in the derived fuzzy rules.
However, the standard FS and the SFS-SISOM offer a flat view in the
sense that all attributes are listed at the same level, and the impacts
of different attributes become less apparent when a large number
of attributes and rules are involved. In the HFS, individual and less
important attributes are aggregated (by the lower level sub-FS)
into the higher-level indexes, which are combined with important
attributes to form a top-level sub-FS to derive the system output
(i.e., the negotiation price). For example, in DS2, the higher-level
sub-FS shows the aggregated impacts (in terms of intermediate
variables) of living environments, house property, and convenience
on the house price. In this manner, the top-level sub-FS provides
a high-level overview and interpretation (i.e., from a forest point
of view), while the lower-level sub-FS represents a more detailed
view of how each index is formed or formulated (i.e., how the forest
is formed from trees). In other words, the fuzzy rules derived from
the HFS present comprehensive multi-views to understand negoti-
ation pricing behaviors. Such a feature of HFSs, which can provide
both tree and forest views, is very useful for complicated negotia-
tion pricing problems to ensure and enable the interpretability and
transparency.

5.2. Accuracy

The APE (%) and the RMSE were employed in this study to mea-
sure performance accuracy. Such performance is dependent on how
well the partitioned sub-spaces are covered by the training data. In
order to analyze this point, consider the case where n input attributes
exist and the input space of each attribute is partitioned by m sub-
spaces (i.e.,, m+ 1 fuzzy sets). As such, there are m" and m x n divided
sub-spaces in the standard FS and the SFS-SISOM, respectively. In
the HFS, the total number of the divided sub-spaces is the same as

the number of the divided sub-spaces in the hierarchical level that
contains the maximum number of attributes. Suppose there are L
levels in the structure and n; attributes in the i" level; then the
total number of divided sub-spaces can be represented as: >"-_; m™.
Since n = Xk, n;, in most cases, the number of the divided sub-
spaces in the SFS-SISOM (i.e., m x n) and the number in the HFS (i.e.,
Zf:] m™) is smaller than that of the standard FS (i.e., m"). Thus, the
divided sub-spaces in the SFS-SISOM and the HFS stands a better
chance of being covered when given the same training dataset and
partitions. This explains why the testing accuracy of the standard
ES is lower than the other two FSs in some cases. Besides the num-
ber of required data samples, the selected learning algorithms also
contribute to the model’s performance. The RLS learning algorithms
for standard FSs and SFS-SISOMs ensure that the global optima are
found. However, the gradient decent algorithm used in HFSs may
lead to a local optima. If the selected initial parameters diverge to the
global optima, the performance of the HFS can be affected.

5.3. Generality

Generality relates not only to the capability of handling wide
problem domains, but also the capability of satisfying various mod-
eling requirements. In general, compared to the SFS-SISOM and the
HFS, the standard FS is less generic in handling high-dimensional
problems due to the large number of learning parameters and fuzzy
rules it requires. In order to cover the divided input space, the num-
ber of required training samples should be at least as many as the
number of required fuzzy rules; otherwise, the standard FS may suf-
fer from the high-dimensional problem. This drawback is clearly
evident in some experiments in DS1 (e.g., Exp;, in Table 3) and the
inability to build usable models on DS2. In addition, from the appli-
cation point of view, in some cases the user would like to partition
the input variable into a specified number of sub-spaces, such that
the negotiation behavior in a certain sub-space could be observed.
The capability of the standard FS to satisfy various modeling require-
ments is also bounded by the dimensionality problem. For instance,
in the DS1, the standard FS fails to produce acceptable predictive
results when the input attributes need to be partitioned into “2,3,2,2”
sub-spaces (i.e., Expg, Exp;g, and Exp,, in Table 3). Under the same

Table 10
Results of using the HFS in the California dataset.
Experiment # of rules Partitions Iterations Training APE (%) Training RMSE Testing APE (%) Testing RMSE Running time (second)
Exp, 76 111;11111;55 1000 2.5533 0.3977 2.6233 0.4107 226.16
Exp, 306 222;22222;55 1000 2.1122 0.3413 2.1939 0.3581 328.81
Exps 1124 333;33333;55 1000 1.9511 0.3160 2.039 0.3320 395.49
Expy 3286 4444444455 1000 1.866 0.3084 1.9342 0.3160 636.48
Exps 780 511;14155;55 1000 1.9082 0.3111 1.9908 0.3257 355.71
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Table 11
Summary of running time.

Standard FS SFS-SISOM

HFS

No. of rules (iterations) running time (second)

No. of rules (iterations)

running time (second) No. of rules (iterations) running time (second)

DS1  36(100) 1.99 10 (100)
114 (100) 109.93 14(100)
DS2 N/A 25-90 (10)
DS3 256 (1) 689.43 16-48 (100)
384(1) 2,769.84 16-48 (1000)

0.46 16—28 (6000) 2.56
0.86 16—28 (10000) 2.19
7.78 48-212(6000) 62.43
23.59 76—1124(1000) 326.54
964.42 3286-8028 (1000) 875.30

circumstance, SFS-SISOM and HFS are still capable of accomplish-
ing such tasks. As such, the SFS-SISOM and the HFS are superior
to the standard FS in terms of model generality. Further, HFSs are
universal approximators and, therefore, can represent any nonlinear
negotiation pricing models, whereas SFS-SISOMs are not universal
approximators and cannot accurately model some highly nonlinear
scenarios.

5.4. Computational cost

The computational cost concerns both the space and time com-
plexity in this study. For space complexity, both standard FSs and
SFS-SISOMs need to construct the input matrix. Hence, the required
space for standard FSs is O(MK), where M is the number of instances,
K = ]‘[J'?:1 N; is required number of fuzzy rules, and N; is the num-
ber of fuzzy sets of the jt’1 attribute, while the required space for
SFS-SISOMs is O(MS), where S = Zj’:l N; is the required num-
ber of fuzzy rules for SFS-SISOMs. Since HFSs employ the gradient
decent algorithm for learning, the learning parameters are updated
by instances. Therefore, the required computational space of HFSs is
much less than the other two FSs, and it is O(H), where H (see Eq. (7))
is the number of required fuzzy rule of HFSs.

In the proposed approach, triangular membership functions are
selected in order to achieve the interpretability and computing effec-
tiveness. Triangular membership functions are basically piecewise
linear functions, and their derivatives are simple to calculate. Given
T iterations, the time complexity of standard FSs is either O(KMT) or
0(1<Mg‘2) (depends on which termination condition reaches first),
where § is the error threshold. The time complexity of SFS-SISOMs
is either O(SMT) or 0(s1v1g‘2). In HESs, although there are multi-level
sub-FSs, all computations only involve the derivatives of triangu-
lar membership functions and some simple algebraic manipulations.
The time complexity of HFS can be represented as either O(HMT) or
O(HM§’2) [3]. In this study, all the experiments were conducted on
a laptop with Mac OS X 10.7.4, processor 1.7 GHz Intel Core i5, 4 GB
memory, and the running time of different FSs on different datasets

Dimensionality

Y Hign
SFS-SISOM HFS
» Data coverage
Low High
Standard FS
Low

Fig. 5. Applicability of different FSs.

are summarized in Table 11. Table 11 shows that the proposed mod-
els can obtain the results within a few seconds in most cases, and the
standard FSs take the longest time to derive the result, which is con-
sistent with the above analyses. In DS3, the standard FS takes over
45 min when 384 rules are involved. For SFS-SISOMs, if the number
of iteration is small, it is quick to derive the result. For HFSs, although
they involve a large number of fuzzy rules in DS3, the space complex-
ity is small, therefore, the running time of each iteration of the HFSs
is actually less than the standard FSs and SFS-SISOMs.

5.5. Applicability

One of the main contributions of this work is examining the appli-
cability of three FSs in dealing with negotiation pricing. In this study,
no approach can always outperform the others. The above experi-
mental results reveal that the applicability of three FSs can differ, so
understanding their applicabilities would be beneficial to select the
appropriate approach for the given problem. Generally speaking, the
standard FS is a better approach for low-dimensional problems with
sufficient data samples (i.e., dense data coverage). The main reason
behind this is that the required number of partitioned sub-spaces in
the input space is relatively small when modeling low-dimensional
problems, and such sub-spaces are more likely to be well covered
by training samples. This would help to improve prediction per-
formance. Moreover, in the standard FS, complete combinations of
input conditions are linked through fuzzy intersection operators and
are represented in the form of fuzzy rules. As such, it is more suitable
to select the standard FS when it is required to emulate and observe
different aspects of negotiation pricing behaviors. On the contrary,
the SFS-SISOM is a better approach for high-dimensional problems
with insufficient data samples (i.e., sparse data coverage). In the SFS-
SISOM, the mathematical relationship between the input attributes
and the output attributes is individually emulated. This results in
requiring far fewer fuzzy rules when modeling the high-dimensional
problems. The applicability of three FSs are depicted in Fig. 5.

The performance of the HFS lies between the standard FS and the
SES-SISOM, as both the standard and the SFS-SISOM FSs can be rep-
resented as special cases of HFS (as shown in Fig. 6). When there
are no free parameters in the hierarchical structure and each original

final solution (y)

| SFSE
| srst | | sFsy | [ sFsi |

Fig. 6. Special cases of HFSs.
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Table 12
Summary of the properties of three FS approaches.
Approach Interpretablity Computational cost Generality Flexibility
Low-dimensional high-dimensional
Standard FS A C C C C
SFS-SISOM C B A B B
HFS B A B A A

input attribute constructs a sub-FS (e.g., SFS}, SFS}, and SFS! in Fig. 6),
the HFS becomes a SFS-SISOM. On the other hand, when only one
sub-FS exists (i.e., the top level sub-FS) in the hierarchical structure,
and all original input attributes contribute to the top level sub-FS,
the HFS can be treated as a standard FS. Consequently, HFSs provide
more flexibility in building the predictive model, as the hierarchical
structure can be modified according to the features of the available
datasets. Compared with the other two FSs, HFSs can be more easily
adapted to meet various modeling requirements. The discussions of
the properties of three FSs are summarised in Table 12 in which ‘A’
indicates the best performance and ‘C’ indicates the worst.

The newly introduced HFS is important for the following rea-
sons: First, compared to standard FSs, which can represent any
continuous function to any degree of accuracy (i.e., universal approx-
imators) but suffer from the problem of dimensionality, HFSs are
universal approximators and are capable of overcoming the problem
of dimensionality. Second, from the learning mechanism point of
view, although both SFS-SISOMs and HFSs can handle the high-
dimensional data, the mechanism behind is vastly different. The
SFS-SISOM is a simplified approach by omitting certain impacts of
pricing attributes and more complicated behaviors (in particular, the
aggregated cross or 1 + 1 > 2 effect), so that it can be learned from

less data. However, the SFS-SISOM is unable to represent some com-
plicated systems or behaviors (i.e., not universal approximators) due
to their inherent structure. On the other hand, the HFS does not omit
pricing component, but employs the transfer learning mechanism
to handle data coverage problem. Take the DS2 for an example, as
long as there are sufficient data to learn the relationship between the
three intermediate variables and the house price, as well as how each
of the above three intermediate variables are formed, the knowledge
from one data sample of good living environment, property, and con-
venience can be transferred to represent other cases of good living
environment, property, and convenience even if these other cases
are good due to different reasons (i.e., the values of the attributes in
these cases are different from the available data sample). In short,
rather than using the simplification or omitting attributes as SFS-
SISOMs, the transfer mechanism enables HFSs to work effectively
when training samples don’t densely cover the input space. Thus,
HFSs as universal approximators are capable of representing any
complicated systems and providing a flexible structure to represent
any given negotiation pricing system with the right complexity and
desired accuracy if designed properly. Third, in the case of a large
number of negotiation attributes, HFSs can be designed to develop
interpretable systems where the lower-level sub-systems represent
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the impact from the raw attributes, and the higher-level sub-systems
provide a small number of human-understandable indexes which
aggregate the impacts from a set of raw attributes.

6. Developing a prototype system

In this section, a prototype system has been developed and pre-
sented. The system is a standalone Java application that provides
intelligent decision support for a series of negotiation pricing tasks.
The system allows pricing managers to load dataset, design, train, and
test the fuzzy model, and then predict the negotiation price/discount
for a new transaction. The graphic user interface (GUI) consists of
five components: menu, toolbar panel, display panel, tab control
panel, and status display panel (see Fig. 7). The menu groups the
basic functions of the system, and the toolbar panel provides a more
convenient way to access these functions. Once a user clicks the
functional buttons on the toolbar panel, the tab control panel will
automatically switch to the corresponding tab. When the system is
in use, the current status and instructions are displayed on the status
display panel. The basic functions are presented below:

o Open and view dataset: At the beginning, a pricing manager
can select the dataset which will be modeled from the Open
button. Before the system is in use, the user should ensure
the training dataset and the corresponding testing dataset will
be readily available and are named correctly in the predefined
way (i.e., filename + “-Test” indicates the testing dataset).
The loaded dataset, including the training dataset and testing
dataset, can then be displayed in the display panel.

o Design the model: When the user clicks the Design button
on the toolbar panel, a design panel, as shown in Fig. 7, is
provided and allows the user to identify the model type and
specify different learning parameters. The design panel con-
tains two parts: the SFS panel for the design of standard and

SFS-SISOM FSs, and the HFS panel for the design of HFSs.
Once the model type is selected, only the corresponding design
panel is enabled. The learning parameters and the hierarchi-
cal structure of HFSs must be entered in a predefined format.
A tooltip with the format instructions is also provided for each
parameter. The raw dataset will be reconstructed according to
the defined structure (e.g., attributes that in the same sub-FS
will be grouped together). The reconstructed dataset can be
checked via the “Processed Data” option in the “View” menu.

o Train and test the model: Once the design of the predictive
model is accomplished, the user can click the Train button to
train the designed model. The learning algorithm and defined
parameters are employed to learn the fuzzy rules from the
training dataset. The training results and generated rules will
then be displayed. Consequently, the generated fuzzy rules
(see Fig. 8) are used in conjunction with the testing dataset
to further validate the built model. The testing results, includ-
ing target values, predicted value, error, APE, and RMSE, are
shown in Fig. 9. The plot of the target value and the predicted
value provides the user with a clear and intuitive view of model
performance.

o Prediction: A suggested negotiation price/discount can be pro-
vided by the system to assist the pricing manager when given
a new transaction. In the prediction panel, the user can manu-
ally enter the information of a new transaction, and then click
the Predict button. The predicted price will be displayed (an
example is shown in Fig. 10). This proposed price can be used
as a baseline or resistance point in the price negotiation.

7. Conclusions

This study proposes a systematic and learning approach con-
sisting of three different FSs (i.e., standard FS, SFS-SISOM, and
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HES) to provide intelligent decision support for negotiation pricing,
in particular under the high-dimensional and uncertain scenarios.
The effectiveness and applicability of the proposed approaches are
demonstrated by three experimental datasets, varying from dimen-
sionality to data coverage. The main contributions of this work
include: 1) Instead of tackling the difficult and unrealistic tasks to
identify and maximize the utility functions in negotiation pricing,
this work proposes a new learning approach that concentrates on
identifying the right negotiation pricing by learning from historical
data. The proposed approach also is capable of learning the different
influential factors for different customers, gaining a good customer
relationship by offering the right price to the right customer; 2) To
handle the uncertain information in negotiation pricing, a system-
atic and comprehensive set of fuzzy models is proposed, developed,
and compared. Their advantages and capabilities under different
application scenarios are analyzed and discussed with respect to the
crucial properties of DSSs: interpretability and transparency, accu-
racy, generality, computational cost, and applicability; and 3) A DSS
prototype integrating the three FSs is developed and validated. The
system illustrates how the negotiation pricing DSS based on the
proposed approach can be designed and implemented for practical
uses.

This research has several significant implications for research
and practice. First, interpretability and transparency is one of the
most desirable features for DSSs. Compared with other data min-
ing techniques (e.g., neural networks), the FS-based approach is
capable of transforming the acquired negotiation pricing knowledge
into human understandable IF-THEN fuzzy rules. The derived fuzzy
rules can serve as unified guidance in negotiation pricing and also
be employed to train new sales representatives. Second, this study
endeavors to draw more attention to the dimensionality problem in
negotiation pricing, which has yet to be thoroughly investigated in

the literature. It has been proven both theoretically and practically
that the standard FS is more susceptible to the problem of dimen-
sionality. This study has shown that the other two types of FSs can
be used as a means to complement the standard FS in handling high-
dimensional problems. Third, this study reveals the properties and
features of the three FSs. The proposed approach and the integrated
platform can provide immense potential and flexibility for end users
to choose the most suitable model for any particular problem.

Like many prior empirical studies, this research inevitably has
several limitations that may trigger further research. With the rapid
development and promising results of e-negotiations, the proposed
approach can be integrated into e-negotiation platforms. In addition,
the current prototype is not role-based and it does not distinguish
different groups of targeted users (e.g., data operators, model train-
ers, salespeople, and managers). It is an important direction to
improve the prototype by separating different tasks for different
groups of users, and providing clear visuals that guide users to the
appropriate and applicable parts of the system. Moreover, since dif-
ferent users may have different preferences on the model properties,
it is difficult for the intelligent DSS to determine the most appropri-
ate FS model on behalf of the decision maker. One plausible way to
automate the model selection is to allow the user to specify his/her
model preferences in the prototype system, then an overall perfor-
mance score can be derived. Finally, it will be interesting to extend
the current model to support multi-issue and bilateral negotiation
decision support for future studies. If the historical data of bidding
and offering during the price negotiation process were available, it
will be possible to build two additional models to learn the bid-
ding behavior and successful offering strategy. Then the system will
be not only able to predict the final agreement prices proposed in
this study, but also guide the offering strategy based on the bidding
behavior.
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Fig. 10. Prototype system - model prediction.
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