MSFF

Master/Slave Flip Flops

A Master/Slave Flip Flop (D Type)

Either:
The master is loading (the master in on)
or
The slave is loading (the slave is on)
But never both at the same time...

DFF Detailed Schematic

Slave latch (SR)

A Falling Edge Triggered DFF
D

Oscillator (Toggle Circuit) Operation

Rising Edge Triggered DFF Schematic

Oscillator (Toggle Circuit) Operation

D Flip Flop Transition Table

No clock shown since it is edge triggered (assumed)

Falling vs. Rising Edge Triggered

Alternative Flip Flops

T
 JK

Toggle Flip Flop

$$
\text { Q+ = T'•Q + T•Q' = T } \oplus \mathbf{Q}
$$

Clock edge is assumed in this transition table...

Toggle Flip Flop

$$
\mathrm{Q}+=\mathrm{T}^{\prime} \cdot \mathrm{Q}+\mathrm{T} \cdot \mathrm{Q}^{\prime}=\mathrm{T} \oplus \mathrm{Q}
$$

An oscillator with an enable input (T)

Toggle Flip Flop

CLK

JK Flip Flop

Kind of a cross between a SR FF and a TFF
$\mathbf{Q}+=K^{\prime} \cdot \mathbf{Q}+\mathbf{J} \cdot \mathbf{Q}^{\prime}$

JK Flip Flop

CLK

Why Alternative FF's?

- With discrete parts (TTL family)
- JK or TFF's could reduce gate count for the input forming logic
- Extensively used
- With VLSI IC's and FPGA's
- JK or T FF's must be built from DFF+gates
- Larger, slower than a DFF
- Not used

Flip Flops With Additional Control Inputs

What is this?

What is this?

A falling edge triggered, D-type FF with enable
Master only loads when CLK=Enable='1'

What is this?

What is this?

CLK
A falling edge triggered, D-type FF with an asynchronous set
If Set=1 then $Q=>1$, regardless of $C L K$ or D

What is this?

What is this?

A falling edge triggered, D-type FF with a synchronous set
If $\operatorname{Set}=1$ then $Q=>1$ on the next falling edge of the clock, regardless of D

Flip Flops With Additional Control Inputs

- A variety of FF's have been made over the years
- They contain combinations of these inputs:
- Enable
- Set
- Reset
- The Set and Reset can be either:
- Asynchronous (independent of CLK)
- Synchronous (work only on CLK edge)

Flip Flop Timing Characteristics

Clock-to-Q Time $\left(\mathrm{t}_{\mathrm{cLK} \rightarrow \mathrm{Q}}\right)$

The output does not change instantaneously...

$\mathrm{t}_{\mathrm{CLK} \rightarrow \mathrm{Q}}$

time

ECE 238L
MSFF

Setup Time ($\mathrm{t}_{\text {setup }}$)

The input has to get there early enough to set the master latch before the clock turns off...

$\mathrm{t}_{\text {setup }}$

Same setup time as before
Clock is delayed through the NOT gate CLK

Falling Edge Hold Time ($\mathrm{t}_{\text {hold }}$)

$$
\left.t_{\text {hold }}=\text { Ons (AND gates turn off immediately }\right)
$$

You have to keep the old D value there until the AND gates are shut off... (but no longer)

Rising Edge Hold Time ($\mathrm{t}_{\text {hold }}$)

You have to keep the old D value there until the AND gates are shut off...

Flip Flop Timing

Timing of a Synchronous System

Example of a Synchronous System

