LATCH

Storage Bi-stability Latches

ECE 238L

LATCH Page 1

of Combinatorial Circuits

ECE 238L

LATCH Page 2

the beginning

of sequential circuits

ECE 238L

LATCH Page 3

Sequential Circuits

 The output of a Combinatorial Circuit depends only on the <u>current</u> inputs

 The output of a Sequential Circuit can remember something about the <u>past</u>

Sequential Applications

- Do 'X', then do 'Y' 3 times, then do 'Z'
- Take the dot product of 2 vectors
 - One element at a time
- Control a car wash
 - Rinse
 - Soap
 - Rinse
 - Dry
- All of these require *memory*
 - To remember where in the process they are ...

Bi-Stability = Key to Memory

This is a stable state it will sit like this forever

This is also a stable state it will sit like this forever

There are 2 stable states a bi-stable circuit...

ECE 238L

LATCH Page 6

SR Latch - A Bi-Stable Circuit

This is a stable state it will sit like this forever

This is also a stable state it will sit like this forever

ECE 238L

LATCH Page 7

SR Latch Transition

ECE 238L

ECE 238L

LATCH Page 11

SR Latch Transition Table

(what it will change to)...

ECE 238L

LATCH Page 14

SR Latch Transition Table

	S	R	Q	Q+				
	0	0	0	0	No chango			
	0	0	1	1	No change			
	0	1	0	0	Deset it			
	0	1	1	0	Resein			
	1	0	0	1	Sot it			
	1	0	1	1	Sern			
) Q'	1	1	0	?				
	1	1	1	?				
The <u>current state</u> of the Q output								
The next state of the Q output								

The <u>next state</u> of the Q output (what it will change to)...

ECE 238L

LATCH Page 15

SR Latch: S=R='1'

Is the latch SET??? => no Is the latch RESET??? => no What is it? => neither We avoid this input combination in normal usage, mainly because it makes no sense

ECE 238L

LATCH Page 16

SR Latch Transition Table

S	R	Q	Q+		
0	0	0	0	No change	
0	0	1	1	No change	
0	1	0	0	Posot it	
0	1	1	0		
1	0	0	1	Sot it	
1	0	1	1	Sern	
1	1	0	N/A		
1	1	1	N/A		

ECE 238L

SR Latch - Next State Equation

SR Latches - So What?

- Illustrate simple notion of *bi-stability*
 - Two stable states
 - S and R inputs move latch between them
- A memory
 - when Q='1' \Leftrightarrow latch storing a '1'
 - when Q='0' \Leftrightarrow latch storing a '0'
- Will hold its value indefinitely

SR Latches - What Are They Used For?

- Mainly to explain simple storage in digital design textbooks [©]
- Simple SR latch not used in designs very much
 - Due to some timing issues we will learn later...
- Simple SR latch <u>forms basis for most</u> <u>other kinds of storage elements</u> we will study

Symbology

ECE 238L

GLATCH

Gated Latches

ECE 238L

LATCH Page 22

SR Latches Always Sampling Inputs

- An SR latch will:
 - Respond to S/R input changes
 - ALWAYS!
- Sometimes we want to:
 - Control when a storage element loads
 - Use a gated latch

The Gated SR Latch

When GATE='0' ⇔ GR=GS='0' ⇔ latch cannot be modified

When GATE='1' ⇔ GR=R, GS=S ⇔ works like an SR latch

The GATE signal allows us to control *when* the latch will be loaded with a new value

ECE 238L

LATCH Page 24

Gated SR Latch Next State Equation

How many inputs are in the transition table?

Can you draw it?

Gated SR Latch Truth Table

Gate	S	R	Q	Q+			
0	0	0	0	0	No		
0	0	0	1	1	NO		
0	0	1	0	0	change		
0	0	1	1	1			
0	1	0	0	0	possible		
0	1	0	1	1			
. 0	1	1	0	X		•	
0	1	1	1	X			
1	0	0	0	0			
1	0	0	1	1	Like		
1	0	1	0	0			
1	0	1	1	0	an		
1	1	0	0	1			
1	1	0	1	1	SR		
1	1	1	0	X			
1	1	1	1	X	latch		
CE 238	SL				LATCH Page 27	© 2006	

Gated SR Latch Next State Equation

$Q + = GATE \cdot S + R' \cdot Q + GATE' \cdot Q$

ECE 238L

Gated SR Latch

- Sometimes known as a *loadable SR latch*
 - Can be *loaded* with new value

The Gated D Latch

When GATE='1' \Leftrightarrow Q follows D (storage) When GATE='0' \Leftrightarrow Q retains old value (retention)

ECE 238L

LATCH Page 30

Gated D Latch - Timing

ECE 238L

Gated D Latches

- Sometimes called a *transparent* latch
 - When GATE='1':
 - \cdot Q follows D
 - D is reflected on Q output
- Allows us to control *when* to store new data into latch
 - D = data to be stored
 - GATE = control signal

Gated D Latch - Example of Use Storage element Indication Data to be D of data stored Q' stored Q GATE Store signal

ECE 238L

Gated D Latches - Delays

If GATE='1', When D changes, Q/Q' will change after: $t_{D \rightarrow Q} = t_{NOT} + t_{AND} + t_{NOR} + t_{NOR} = t_{NOT} + t_{AND} + 2x t_{NOR}$

Why t_{NOT}?

Why 2 x t_{NOR} ??

Gated D Latches - More Delays

If D is constant: When GATE \rightarrow '1', Q/Q' will change after: $t_{GATE} \rightarrow Q = t_{AND} + t_{NOR} + t_{NOR} = t_{AND} + 2x t_{NOR}$

Why no t_{NOT}?

ECE 238L

LATCH Page 35

An Example Gated D Latch Circuit

ECE 238L

Toggle Circuit Problem

- As long as GATE='1'
 - Latch will repeatedly load new values $0 \rightarrow 1 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow 1 \dots$
- Solution #1:
 - Make GATE='1' for a very short time
 - Hard to do reliably in a LARGE system
- Solution #2:
 - Build a new storage element out of gated
 D latches (the flip flop) <> next lecture

Symbology

ECE 238L

LATCH Page 39