
Lab 5 – Fully Functional Stop Watch

1 Objective

Build a fully functional stopwatch.

2 Introduction

The overall goal of this lab is to build a fully functional stopwatch. This system will involve
many smaller parts and putting them together in an overall design. This should not be new,
but this will be completed on a large scale than has been done so far. Be sure to save your
work often and make backup copies (e.g., USB flash drive, Network drive, etc.) Also, all of
your designs should be done with basic logic operations (and, or, not, xor, ...) and with the
provided flip-flops. All labs will be completed with structural designs and not behavioral
design.

Timer Sec
tenths

Sec
ones

Sec
tens

Min
ones

System
Clk

CE

start stop

CE

Reset

10 Hz

Pulse

Counter Block

Seven
Seg
De−

code

4 bits

4 bits
4 bits

4 bits

Attach to Display

AN3 AN2 AN1 AN0

Timer Mod
4

2:4
Decoder

Decimal Pt

Dp0
Dp1
Dp2
Dp3

System

Clock

4 x 7 Segment Controller

The above diagram shows the basic overall design of the stop watch. The timers and counters
will be built in Part II of the lab. Part I will concentrate on the four seven segment display
controller. The controller will allow unique data to be displayed on each of the digits of the
seven-segment display. The control part of the seven segment controller is the Mod 4 state
machine which you will design as part of this lab.

1



3 Part I

3.1 Preparation

1. Design a 2 to 4 Decoder. This circuit will have one input A(1..0) and produce a single
output D(3..0). It will require four separate functions for each output bit. A truth
table, K-map, equations, test bench and wave forms should be included in your final
lab write up.

2. Copy your trusty 4 to 1 MUX from the previous lab, since you will need it for this one.
(Be sure to include all the files).

3. In the previous lab, you also designed a 16 to 4 MUX, although it may not be in
a separate file or as a separate entity. Take time to separate this as its own circuit
element in preparation for use in this lab.

4. Design the Mod4 State Machine. You should include the state graph, truth table,
k-maps and equations in your lab write-up. (Reset has priority.)

R

R

R

R’I

R’I’

R’I’

R’I’
R’I

R’I

00

01

10

11

R + (R’I’)

R’I

Incr

Reset
Clk

Q(1..0)
2

After simplifying the Mod4 State Machine with K-Maps, you will have two next state
equations for Q(1) and Q(0). Draw these as D-type flip-flops and logic gates. The flip-
flops you will be using are simple D-type flip-flops with a synchronous “clear” input.
The VHDL code for the flip-flop is provided in the lab05files.zip file on the lab website.

Since the “reset” input to the state machine has priority, nd since the flip-flop has
a “clear” input, we can wire the “reset” signal directly to the clr input port of the
flip-flops. This automatically gives the “reset” signal priority since the flip flops will
always go to “0” on the next clock edge when this signal is asserted . This enables you
to simplify the transition table since you no longer have to design circuitry to reset the
state machine.

2



5. 4 × 7 Segment Controller

The 4 × 7 Segment Controller will allow you to display different data on each of the
four seven-segment displays. The operation is simple. It will read the first input and
display it on the first digit. It will then read the second input and display it on the
second digit and so forth. When it gets to the last digit it will start reading the first
digit again. When it cycles through this sequence fast enough the display appears to
show all four digits simultaneously.

The parts you will need for the 4 × 7 segment controller are:

(a) Seven Segment Decoder (This was used in Lab4, it will be provided for you.)
ssg.vhd

(b) 16 to 4 Mux (Reuse some code and design as described above.)

(c) Mod4 (make in this lab with provided flip-flops)

(d) 2 to 4 Decoder (Design as described above).

(e) 4 to 1 Mux (Reuse design)

(f) Programmable Timer (supplied) prog timer.vhd

Seven
Seg
De−

code

Attach to Display

AN3 AN2 AN1 AN0

Timer Mod
4

2:4
Decoder

Decimal Pt

Dp0
Dp1
Dp2
Dp3

4 x 7 Segment Controller

4 bits
4 bits

4 bits
4 bits

Clock

3.2 Procedure

1. Build the Mod4 state machine using VHDL code. Show the work you did to obtain the
next state equations. Compile the circuit then simulate it to verify correct operation.
Don’t forget to initialize the flip-flops by asserting the “reset” signal.

2. Build a Test Bench for the programmable timer. You are building this to become
familiar with the programmable timer. Program the timer to give a 200 Hz signal.

3



This will later be hooked up to the increment signal for the Mod4 counter. Determine
the value to load into the programmable timer to achieve this result. Document your
calculations.

(a) Download the Programmable Timer from the lab 5 web site.

(b) See the Programming the Timer tutorial for details on how to program the timer.

3. Build the 4x7 Segment Controller using the parts listed in the preparation. When you
copy files from your old labs, be sure to have unique copies for this new lab. Also put
your own copies of the provided VHDL in the same location.

4. Your new entity for the 4x7 Segment Controller should have the inputs and outputs
shown as well as a few test signals including the two outputs from the Mod4 and the
zero or tp clock (part of the programmable timer)

Inputs Outputs
Digit1 (4 bits) Ca
Digit2 (4 bits) Cb
Digit3 (4 bits) Cc
Digit4 (4 bits) Cd
System Clock Ce

Reset Cf
Dp0 Cg
Dp1 An0
Dp2 An1
Dp3 An2

An3
DP

Q(1) (Mod4 bit)
Q(0) (Mod4 bit)

tp
zero

5. Testbench

• Create a test bench for the Seven Segment Controller part.

• The inputs for the digits should be as follows

– 0001 on digit 1 - leftmost 7-segment display

– 1010 on digit 2

– 1011 on digit 3

– 1000 on digit 4 - rightmost 7-segment display

Dp0 through Dp3 should be mapped to switches. This will allow you to control
the decimal points during lab sign-off. Please note that dp is low asserted.

4



• Attach the rest of the inputs and outputs as appropriate for correct operation and
testing.

Test the results of your design. Have a TA verify the operation of your working circuit.

4 Part II

4.1 Overall Design

The stopwatch will be the culmination of previous designs. It is important to have valid
working parts for each of the previous parts before you start this lab. It is VERY important
to have a complete 4x7 segment controller working when you come into this lab. It will
SIGNIFICANTLY reduce the amount of time you spend working on this lab
Also note the graphic of the digilab from Part I. This indicates where the different buttons,
switches, and displays should be mapped.

4.2 Preparation

1. The start and stop buttons for the control of this design will be used in a way similar
to an SR Latch. You should use a flip-flop with the start and stop signals to control
the clock enable (ce) used within the circuit. Like the SR latch, if you press start the
output of the flip-flop should be ’1’ and when you press stop, the output of the flip-flop
should be ’0’.

2. Using conventional state machine design - design the Mod6 and Mod10 counters. You
should use the Flip-flops with Clear and Clock enable functionality - specifically the
DFF CE flip-flop given in the lab05files.zip. This will reduce the number of inputs
required in the design of the state machines.

Document the state graph, state table, k-maps, and equations in your lab write-up.
Also document your cascade design (see below).

001

010

011

000

101

100

Mod 6 Binary Counter Design the circuit for a Mod6 counter. It will have 6 total
states from 0-5. In addition to your 3 state bits, you should generate a clock enable

5



output since the counters will be cascaded. Cascading means that the clock enable
output will be the clock enable input for the next counter module. Determine exactly
when the carry out should be asserted.

Mod 10 Binary Counter Design the circuit for a Mod10 counter. It will have 10
total states from 0-9. Again, you should generate a clock enable output. Determine
exactly when the carry out should be asserted.

clk

Counter

Mod

clk

Counter

Mod

clk

Counter

Mod

− rollover output signal

− increment input signal

incr

reset

clk

states

rollover

incr incrstatesstates

incr

rollover

Cascaded Modulo Counters

rollover

resetreset

reset
rollover

The rollover outputs on the counter modules should be designed such that the signal
is asserted for the length of only ONE clock period.

3. The stopwatch requires a periodic pulse of 10 times per second. You must determine
what preload value to put into the programmable timer to generate the 10 Hz pulse.
Please refer to the previous lab if you do not remember how to setup the programmable
timer. Document your calculations and the load number in your lab write-up.

4.3 Procedure

The stopwatch will consist of

• 1 4x7 Segment Controller (Part I - be sure to include all of the building blocks)

• 3 Mod10 Binary Up Counters (This lab)

• 1 Mod6 Binary Up Counter (This lab)

• 1 Programmable Timer (Provided)

• 1 Start/Stop clock enable circuit (This lab)

1. Design and simulate your Start/Stop Clock Enable circuit.

2. Build the Mod6 and Mod10 counters. Simulate each separately to verify their correct
operation.

6



3. Build the Counter Block using the Mod10 and Mod6 counters. Simulate this block
to make sure that your counter will count correctly and that the digits will overflow
at the correct time. Any clock speed will work for the simulation because we are
only interested in the sequence of numbers at this time. When you hook up the
programmable timer later, you will have to plug in the correct value to get the correct
timing.

4. Add a programmable timer and program it to generate 10Hz.

(a) Add a Programmable Timer to your design. You can copy the VHDL source from
part I.

(b) See the Programming the Timer tutorial for details on how to program the timer.

(c) You may need to adjust the timer preload value in order to get the 10Hz frequency.

5. Complete the entire stopwatch. Create your test bench using:

(a) the Counter Block

(b) the 10Hz timer

(c) the start/stop clock enable (for controlling the start/stop functionality)

(d) the 4x7 segment controller

(e) 3 buttons: start, stop and reset

The reset should clear the values in the counter block but it should NOT stop the 4x7
segment display from operating.

Fully document your design.

Pass-off the circuit as defined in the Preparation Section. This includes a download
of the entire circuit using the top-level circuit provided in an additional zip file.

5 Programming the Programmable Timer Tutorial

5.1 Understanding the Programmable Timer I/O

The timer is really just a count down counter (i.e. it counts down to 0). When Reset is a “1”
or if the counter value reaches 0, the counter gets reloaded with the preload value (supplied
on the load number input port) and then begins counting back down to 0.

ce

clk

reset

load_number
zero

tp

counter
24

24

Programmable Timer

7



ce is the clock enable. Tying this to ’1’ or Vcc, will cause the timer to run
continuously.

clk is the clock input. It is connected to the system MCLK signal.

reset is the reset signal. It is an active high reset and is asynchronous to the
clock input.

load number is a 24-bit input bus which supplies a preload value (see below)
for the timer.

zero is the zero output signal which is asserted when the count reaches 0. The
zero signal is only asserted for one clock period of clk.

tp is a test point for the programmable timer. The output is a square wave at
1/2 the frequency of the zero output.

counter is a 24-bit output bus which gives the state of the 24 bits of the counter.
It is only used for debugging purposes.

The zero output will be connected to the Incr input of the Mod4 state machine you design
in part I of this lab.

5.2 Specifying the Preload Value

It is up to you to determine the value for the preload and provide it as an input to the
load number port..
To calculate the desired value for the preload you need the following data:

1. 50MHz system clock in

2. 200Hz increment clock out

3. Count down counter

As an example, suppose you wanted the ceo output port to pulse once every 12 clock periods.
You would specify the load number input to be:

conv std logic vector(12, 24) – the decimal number 12 specified as a 24-bit
number. This conversion function requires that you import STD LOGIC ARITH in
the library block found at the top of your code. For example:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL; -- this line is required for std_logic, etc.

use IEEE.STD_LOGIC_ARITH.ALL; -- this gives us the conv_std_logic_vector ...

You could also use:

"x00000C" – This is 12 in hexadecimal. In VHDL, hexadecimal is assumed to be
4bits wide per digit.

In either case, you would simply provide that number as input to the timer on the load number
port.

8


